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Network embedding has attracted a lot of attention in different fields recently. It

represents nodes in a network into a low-dimensional and dense space while

preserving the structural properties of the network. Some methods (e.g.

motif2Vec, RUM, and MODEL) have been proposed to preserve the higher-

order structures, i.e., motifs in embedding space, and they have obtained better

results in some downstream network analysis tasks. However, there still exists a

significant challenge because original motifs may include redundant noise

edges, and embedding entire motifs into embedding space may adversely

affect the performance in downstream tasks. To overcome this problem, we

propose a motifs enhancement framework for network embedding, based on

edge reweighting. Through edge reweighting, the weight of redundant noise

edges between motifs is decreased. Therefore, the effect of redundant noise

edges will be reduced in the embedding space. We apply the edge reweighting

as a preprocessing phase in network embedding, and construct the motifs

enhanced network by incorporating enhanced motifs structures with the

original network. By doing this, the embedding vectors from the motifs

enhanced network can achieve better performance in downstream network

analysis tasks. Extensive experiments are performed on two network analysis

tasks (community detection and node classification) with synthetic and real-

world datasets. The results show that our framework outperforms state-of-the-

art network embedding methods.
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1 Introduction

Network embedding, also known as network representation learning, maps the nodes

in a network to vectors in a low-dimensional and dense space while preserving various

structures and connectivity patterns between nodes [1, 2]. These vectors can be used with

existing machine learning algorithms to accomplish downstream network analysis tasks--

e.g., node classification [3], link prediction [4], community detection [5],
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recommendation [6], and anomaly detection [7]. Due to the

excellent performance in different network analysis tasks,

network embedding has attracted a lot of attention.

From academia and industry. And various network

embedding methods have been proposed from different

perspectives [1]. To capture the higher-order structural

patterns between nodes, lots of works have been presented to

integrate higher-order structures into network embedding [8, 9].

As themost common higher-order structures, networkmotifs are

considered building blocks for a complex network, and have been

found in various networks--e.g., the networks of neurology,

ecology, and biochemistry [10, 11]. Studying network motifs is

effective for understanding structures and functions in real-

world complex networks [12]. Therefore, lots of network

embedding algorithms have been designed to preserve

network motifs, such as motif2Vec [13], RUM [14], and

MODEL [15], which achieved excellent performance in

different network analysis tasks.

However, all these methods are implemented to embed entire

network motifs into the embedding space including some

redundant noise edges, which may affect the performance of

network embedding. We illustrate this situation with an example

in Figure 1. Figure 1A shows an original undirected network with

two communities. Figure 1B is the motifs from the network in

Figure 1A, and we set the triangle to be the motifs of interest. To

retain higher-order relationships, previous works preserved all

these four motifs in embedding space. However, among these

motifs, m3 is constituted by nodes from different communities.

Hence, preserving motif m3 will make the distances between

nodes 3, 4, and five which belong to different communities closer

in embedding space and this may adversely affect the

performance in downstream tasks. Therefore, incorporating

entire network motifs including redundant noise edges into

embedding space will impact the performance of network

embedding in downstream tasks.

In this paper, we propose MERP, a Motifs enhanced

network embedding based on Edge Reweighting

Preprocessing to overcome the above-mentioned problem

of the existing methods. Specifically, we first construct the

motifs weighted network by incorporating the higher-order

structures--i.e., motifs, with first-order structures. Then an

iteration motifs enhancement algorithm is designed based on

a random walk to re-assign the weights of edges in the motifs

weighted network. By edge reweighting, we decrease the

weight of redundant noise edges in the motifs. Through

iteratively processing this procedure, we obtain the motifs

enhanced network. Finally, the final embedding vectors are

obtained by projecting the motifs enhanced network with

existing network embedding methods. Experiments on

synthetic and real-world networks demonstrate that our

framework achieves better performance than existing

network embedding algorithms in community detection

and node classification.

To summarize, the main contributions in this paper are as

follows:

• We propose a new framework to incorporate enhanced

motifs in network embedding to overcome the problem of

preserving redundant noise edges in embedding space,

which is commonly existing in previous works.

• We apply an iteration edge reweighting algorithm based on

a random walk to re-assign the weight of edges in motifs

before network embedding and our algorithm is a general

technique that can be easily combined with existing

network embedding methods.

• We perform experiments with two typical network analysis

tasks, community detection, and node classification, on

synthetic and real-world networks to evaluate our

approach. Experimental results show that our method

improves the state-of-the-art baselines by 0.65%–10.79%

(NMI) in community detection task, and 0.21%–2.29%

(micro-F1) in node classification task.

The rest of the paper is organized as follows. In section 2,

we summarize network embedding research specifically

related to network embedding methods with the network

motifs. Then we propose our framework with enhanced

motifs based on edge reweighting preprocessing in section

3. Section 4 outlines the experimental results on two network

analysis tasks: community detection and node classification.

Finally, section 5 presents our conclusions and discussions

with future works.

FIGURE 1
An example of network motifs and redundant noise edges. (A) Original network. (B) The motifs of original network.
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2 Related works

Network embedding has attracted a lot of attention in

recent years. It learns the low-dimensional representations of

nodes in a network and preserves the structure information

which aims to close the gap between network analysis and

machine learning technologies. In this section, we briefly

review the related works. Several comprehensive surveys

could refer to [1, 2, 16, 17].

Network motifs have been proven to play an important role

in describing the higher-order structural information between

nodes in networks. Therefore, preserving the network motifs can

improve the performance of network embedding in downstream

network analysis tasks. And some works have been proposed to

incorporate network motifs in network embedding. Dareddy

et al. proposed the motif2Vec [13], which transformed the

original heterogeneous network into a motif network by

computing the motif adjacency matrices. Through the skip-

gram model, the final embedding vectors were obtained and

achieved better results in node classification and link prediction

tasks. Yu et al. designed a new strategy MotifWalk in RUM to

represent the motifs [14], which used each motif as a new node to

construct an auxiliary network. The embedding vectors were

obtained by executing a random walk on the auxiliary network

and had better performance in node classification and network

reconstruction. Wang et al. proposed the MODEL algorithm to

preserve the networkmotifs by autoencoder [15]. InMODEL, the

first-order similarities were redefined according to common

motifs between nodes, and the second-order similarities were

determined by the neighbors between the nodes. In the work of

HONE [18], Rossi et al. constructed a series matrix to represent

network motifs, such as the weighted motif adjacency matrix, the

motif transition matrix, the motif Laplacian, and the normalized

motif Laplacian. The final embedding vectors were got by solving

a minimization problem with different matrices. In MBRep [19],

Qian et.al proposed a generalized motif-based higher-order

representation learning method. It learned triangle motif

embedding in a heterogeneous network using a SkipGram

model and had a better performance in link prediction. Ping

et.al presented an algorithm LEMON [20] to bridge connectivity

and structural similarity in a uniform network representation via

motifs.

Although these methods preserve network motifs in different

ways and have good performance in different network analysis

tasks, all of them incorporate entire network motifs in

embedding space. As we have mentioned earlier, there are

some redundant noise edges in network motifs making the

performance of these methods still have space to improve. In

our work MERP, we conduct an iteration algorithm to decrease

the weight of redundant noise edges in motifs before

incorporating the network motifs in the embedding space. In

this way, our method achieves better results in different tasks

than the existing methods.

With the development of deep learning in various domains,

network embedding based on the deep neural network has drawn

increasing research attention and tremendous related works have

been proposed [1, 16]. Such as InfoMotif [21], GSN [22], and

MBHAN [23], these works incorporated subgraphs or attributed

structural roles in GNN and achieved notable performance gains

compared with state-of-art GNNs. There are also some network

embedding methods designed for specific networks, such as

signed networks [24–26], bipartite networks [27–29], dynamic

networks [30, 31], and heterogeneous networks [32–34]. In this

paper, we mainly focus on the most essential case where only the

static, homogeneous network is available.

3 Motifs enhanced network
embedding based on edge
reweighting preprocessing

The framework of MERP is shown in Figure 2, which

includes three steps. The first step is the extraction and

representation of network motifs. In this step, network motifs

containing redundant noise edges are extracted and represented

as the motifs weighted network. The second step is network

motifs enhancement, which constructs the motifs enhanced

network by reweighting redundant noise edges in motifs

through multiple iterations of the random walk-based method.

The third step is network embedding, which projects the motifs

enhanced network by existing network embedding methods and

preserves the enhanced motifs structures into the embedding

space.

3.1 Motifs weighted network construction

Given an undirected and unweighted network G= (V, E), we

can construct the adjacency matrix A from node list V and edge

list E, where A is a symmetric matrix and represents the first-

order structures of the network G. To get the higher-order

structure information of motifs, we can use some existing

motifs detection algorithms such as FANMOD [35]. With

these tools, the motifs set M � {m1, m2, m3 . . .ml } is extracted
from the network G, where each mi is a motif. By the motifs set

M, we construct the motifs adjacency matrix WM, where the

value of each element wM
i,j in WM is the number of times that

node i and node j appear together in the motifs set M.

For example, in Figure 1A, node two and node three appear

in motif m1 and motif m2, so the value of wM
2, 3 is 2. The motifs

adjacency matrix WM contains all the motifs structures in the

network G. However,WM may have different dimensions with A

because some nodes may not be contained in any motif.

Furthermore, WM does not preserve the first-order

relationships between nodes. Therefore, we construct the

motifs weighted matrix W′ that combines the adjacency
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matrix A and the motif adjacency matrix WM to keep the same

nodes set as in the original network and to preserve the first-

order structures between nodes.

W′ � A +WM (1)

The motifs weighted matrix W′ not only retains the motifs

structures, but also the first-order information between nodes.

Some previous motifs-aware network embedding approaches are

based on the motifs weighted network and can achieve better

results than traditional network embedding methods in some

network analysis tasks. However, the motifs weighted matrixW′
contains the entire motifs including some redundant noise edges.

These inter-community motifs cut will be retained in the network

embedding vectors, which deteriorates the performance in

downstream tasks. Therefore, it needs to filter the noises and

reduce the weight of redundant noise edges in motifs. To achieve

this goal, we re-assign the weights in the motifs weighted matrix

by motifs enhancement.

3.2 Motifs enhancement

As we have described earlier, some motifs are conducted by

nodes from different communities, and the edge between these

nodes are the redundant noise edges for these edges would make

the communities more obscure in the embedding space.

To reduce the influence of redundant noise edges in the

motifs weighted matrix, we propose a motifs enhancement

method to reduce the weight of these edges.

We use the dynamic behavior of nodes to determine whether

two nodes in the motifs belong to the same community. It has

proved that a random walker will be stuck for a longer time in the

same community than between communities. Thus, random

walkers starting from nodes in the same community will

behave in a similar way when they randomly walk across the

networks. Generally, nodes belonging to the same community

have similar dynamic behaviors, while the dynamic behaviors of

nodes belonging to different communities have lower similarities.

Therefore, the weight between the nodes can be reweighted by

the dynamic behavior similarity of the two nodes. If the dynamic

behavior similarity between two nodes is low, it means that the

two nodes have a high probability of belonging to different

communities. The weight of the edges between them can be

reduced. Many methods can be used to describe the dynamic

behaviors of nodes [36–40]. In this paper, we use the k-step

random walk for calculation simplicity [39].

Specifically, the k -step random walk in the network can be

calculated by the k -order adjacency matrix. Therefore, for the

motifs weighted matrix W′, we first calculate its diagonal matrix

D with the elements shown as follows:

dij �
⎧⎪⎨⎪⎩

∑
p

Wi,p
′ i � j

0 i ≠ j
(2)

Then the transition probability matrix P of motifs weighted

network is defined as:

P � D−1W′ (3)

Each element pij in P is the transition probability from node

vi to vj within one step in motifs weighted network.

Then we can calculate the k-step transition probability

matrix as following:

Pk � P/P (4)

Each element Pk
ij in Pk records the probability that node vi

reaches vj through k steps randomwalk. Each row ofPk--i.e.,Pk
i·, can

be regarded as a vector in n-dimensional space and can be used to

represent the dynamic behavior of node vi. To capture all behaviors

fromorder one to order k, we use the transition probability of the first

1~ k order vectors as the behavior of the node. Therefore, the

behavior representation of all nodes can be represented by the

sum of the first k-order transition probabilities:

FIGURE 2
The framework of MERP.
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Rk � ∑k
i�1
Pi (5)

To measure the similarity of the dynamic behavior

between nodes, we can choose a variety of similarity

calculation methods, such as Euclidean distance, correlation

coefficient, and cosine similarity. Here we use cosine similarity

to calculate the behavior similarity between nodes for the

cosine similarity can well capture the difference between two

vectors in high-dimensional space. Therefore, the dynamic

behavior similarity calculation based on cosine similarity is as

follows:

Sim(vi, vj) � Rk
i · Rk

j

‖ Rk
i ‖‖ Rk

j ‖
(6)

If the behavior vector of node vi and node vj have high similarity,

the corresponding similarity calculation Sim(vi, vj) is close to 1,
otherwise, if the behavior vectors of node vi and node vj have

large differences, the corresponding similarity calculation

Sim(vi, vj) is close to 0. Therefore, the similarity Sim can be

used to measure whether the edge between two nodes is a

redundant noise edge.

For each edge (vi, vj) existing in the motif weighted network,

we set its weight to the value of the similarity Sim(vi, vj). In this

way, we get a new motifs-weighted network. Then in this new

motifs-weighted network, the above weights calculation process

is repeated. Through I iterations of calculation, the motifs

structures in the motifs weighted network are continuously

enhanced. For convenience, we call the final network as the

motifs enhanced network and the weights in the motifs enhanced

network are marked as ~W, which incorporates the enhanced

motifs information between nodes. The outline of motifs

enhancement by edge reweighting preprocessing is

demonstrated in Algorithm 1.

Whereas, it is time-consuming to calculate Rk in real

applications, especially for large-scale networks. To speed up

the calculation, we take advantage of the characteristics of

network G. Since network G is a general network, the

adjacency matrix A is a symmetric matrix. Then both the

motifs adjacency matrix W and the motifs weighted matrix

W′ are symmetric matrices.

Although the transition probability matrix P is an

asymmetric matrix, P has a symmetric structure. Since

D1/2PD−1/2 � D−1/2W′D−1/2 (7)

The symmetric matrix D−(1/2)W′D−(1/2) has eigen-

decomposition QΛQT and Q is orthogonal matrix, Λ �
diag(λ1, ...λn).

And we have the equations:

D1/2PD−1/2 � D−1/2W′D−1/2 � QΛQT (8)
D1/2PkD−1/2 � (D 1

2PD−1/2)k � (QΛQT)k � QΛkQT (9)

So, Equation 4 can be rewritten as:

Pk � D−1/2(QΛkQT)D−1/2 (10)

And Equation 5 can be calculated as:

Rk � ∑k
i�1
Pi � ∑k

i�1
D−1/2(QΛiQT)D−1/2 � D−1/2Q⎛⎝∑k

i�1
Λi⎞⎠QTD−1/2

(11)

3.3 Complexity analysis

The time complexity of our algorithm is primarily dominated by

the cost of calculating the eigen-decomposition of the transition

probability matrix P. For a large-scale network, we could use some

algorithms to calculate the first h eigenpairs to approximate the eigen-

decomposition ofmatrixP, such as the Lanczos algorithm [40]. Hence

the time complexity for eigen-decomposition is O(t × n2) in the

worst case, where t is the average number of nonzero elements in rows

of thematrix. And inmost instances, transition probabilitymatrix P is

sparsity and t≪ n. Furthermore, given a network G, the eigen-

decomposition step can be calculated offline. The time complexity

to calculate cosine similarity between each pair of nodes isO(n2). The
total time complexity ofMERP isO((t + L) × n2 × I), where L is the
edges number of network and I is the iteration number. And the

iteration number I is small, mostly less than 10.

Input: Network G = (V, E), adjacency matrix A of the

network G, motifs set M of the network G, step for

random walk k, iteration I

Output: weighted matrix ~W with motifs enhanced

information

1: Construct the motifs adjacency matrixWM from M

2: W′ � A +WM

3: for m = 0 to I do

4: Calculate the degree matrix D by Equation 2

5: Calculate the transition probability matrix P

by P � D−1W′
6: for n = 1 to k do

7: Rn+ � Pn

8: end for

9: for each edge (i, j) in E do

10: Calculate the similarity Sim(vi, vj)of node vi and

vjby Equation 6

11: wij
′ � Sim(vi, vj)

12: end for

13: end for

14: Calculate the final motifs enhanced

matrix ~W � W′
15: Return ~W

Algorithm 1. Motifs enhanced by edge reweighting

Frontiers in Physics frontiersin.org05

Lv et al. 10.3389/fphy.2022.1045555

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1045555


4 Experiments

To evaluate the performance of our method, we perform two

different experiments on network analysis tasks: community

detection and node classification.

4.1 Community detection

Community detection is to divide nodes into different

clusters according to the connection between nodes, which is

one of the most important network analysis tasks [41]. There

are dense connections between nodes in the same

community, while the connections between nodes in

different

Communities are relatively sparse. To test the effectiveness of

our method, we conducted community detection experiments on

both synthetic and real-world datasets. Similar to the community

detection experiments involved in NE-MRF [42], we first use

different network embedding to map the nodes into low-

dimensional space. Then these node vectors are clustered into

different clusters using the k-means algorithm. To avoid the

sensitivity of k-means clustering to the initial centroid, we

perform each experiment 5 times and calculated its average

value as the final result. With the ground truth community

information of these data, we use normalized mutual

information (NMI) as the results evaluation metric. The

higher the NMI, the closer the result obtained by the method

is to the ground truth.

4.1.1 Synthetic datasets
To evaluate the effectiveness of our algorithm, we use the

LFR framework to obtain six synthetic networks with known

community information [43]. In the LFR framework, both the

degree distribution of nodes and the size of communities satisfy

the power-law distribution, which is consistent with most real-

world networks. We set the main parameters in the LFR

framework to construct synthetic networks in our

experiments as follows: 1) the number of nodes is 1,000, 2)

the average node degree is 20, 3) the maximum node degree is

50, 4) the minimum number of nodes in the community is 50, 5)

the maximum number of nodes in the community is 80. The

main difference between these six synthetic networks is λ,

which is used to control the ratio of a node’s edges

connecting to other nodes in different communities. And the

values of λ are [0.2, 0.5, 0.6, 0.65, 0.7, 0.8]. The higher the value,

the more the node is connected with the nodes in different

communities, and the more difficult the community detection

task is.

We compare the framework proposed in this article with

three well-known network representation learning algorithms

(deepWalk [3], node2vec [44], and GraRep [45]). The methods

combined our.

Framework with deepWalk, node2vec, and GraRep are

called: MERP-D, MERP-N, and MERP-G respectively. We use

the default parameters in these algorithms as the setting

parameters in our experiments. All embedding dimensions in

our experiments are set to 128.

The results of the community detection for synthetic

datasets are shown in Figure 3. Compared with traditional

methods, our proposed framework has achieved the best

results in all six synthetic datasets. On the whole, when

λ <0.6, both our proposed method and traditional

methods can obtain good performance in community

detection for the community structures are obvious in

LFR networks. When λ > 0.7, the community structures

are not prominent enough in synthetic networks and the

motifs contain more redundant noise edges, making the task

of community detection more difficult. However, our

method can still achieve marginally better performance

than the original algorithms. When 0.6≤ λ≤ 0.7, our

method can achieve better results than traditional

algorithms. Specifically, MERP-N can achieve 44.15%

higher NMI than the original node2vec method when

λ � 0.65. And MERP-D can get 4% NMI higher than the

original deepWalk algorithm. Meanwhile, MERP-G is 2%

higher than the GraRep method, although GraRep is also a

method based on a k-step transition probability matrix.

4.1.2 Real-world datasets
In this section, we evaluate the performance of our

proposed method on eight real-world datasets with ground

truth in the community detection task. The attributes of these

eight real-world datasets are shown in Table 1. In this

experiment, we compare our framework with deepWalk,

node2Vec, GraRep, and MRF-based methods [42]. The

MRF-based method incorporates the Markov random field

with network embedding and can achieve better performance

than other traditional algorithms (e.g. SNMF [46], MNDP

[47]) in community detection tasks. And we use the results

described in the original paper of the MRF-based method

because getting better results by this method requires

adjusting a lot of parameters. The community detection

results of all methods are shown in Table 2. We see that

our methods MERP-D, MERP-N, and MERP-G acquire

better results compared with the original methods. We also

find that our approach performs better on five out of six

networks compared with the MRF-based method. From the

experiment results in table 2, we can conclude that our

method has comparable performance on the community

detection task compared with other higher-order structures

preserving network embedding methods.

4.1.3 Parameter analysis
To evaluate the effect of k and I parameters in our

framework on community detection tasks, we perform
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experiments on real-world datasets. In these experiments,

the value of random walk step k was changed from 3 to 6,

because previous works have shown that community

structures in a random walk would more clearly when the

step size is less than 6. For different networks having similar

performance, we just exhibit the results of our method

MERP-N on Friend6 and Cora networks. We show the

community detection results NMI (%) with respect to k

and I in Figure 4.

As shown in Figure 4, community detection results have a

little change and the performance is relatively stable.

Furthermore, we also find that with different parameters

MERP-N on both networks still shows competitive

performance compared with other methods. As shown in

Figure 4B, the worst result is 44.04%, but this result is still

better than other results obtained by most of the traditional

methods.

4.2 Node classification

To evaluate our framework in different network analysis

tasks, we perform experiments on multi-label node

classification. We use three widely used networks for node

classification in this section. The details of these networks are

shown in Table 3.

BlogCatalog [48] is an online social network of bloggers,

where nodes are bloggers and edges are the friendship network

among the bloggers. Node labels represent topics of interest to

the bloggers.

Protein-Protein Interactions (PPI) [49] is a subgraph of the

PPI network forHomo Sapiens. Nodes represent human proteins

and edges represent physical interaction between proteins. Node

FIGURE 3
Comparison of our method with three embedding methods, (A) deepWalk, (B) node2vec, and (C) GraRep, on LFR benchmark networks with
different mixing parameters.

TABLE 1 Statistics of real-world datasets.

Datasets |V| |E| #Communities

Friend6 69 220 6

Friend7 69 220 7

Polbook 105 441 3

Football 115 613 12

Polblogs 1,222 16,717 2

Core 2,707 5,429 7

Email 1,005 25,571 42

DBLP 13,184 48,018 5

TABLE 2 Performance comparison of different methods on real-world networks (the MRF-based method did not give results on Email and DBLP
networks; we mark these with ‘N/A’).

Datasets deepWalk node2vec GraRep MRF MERP-D MERP-N MERP-G

Friend6 91.55 87.31 83.82 95.21 95.67 95.21 84.35

Friend7 90.27 91.05 84.63 94.55 94.61 93.24 87.91

Polbook 56.36 56.31 52.96 58.61 59.29 58.15 55.9

Football 91.93 92.03 92.47 93.91 92.69 92.69 92.71

Email 69.18 70.13 68.04 N/A 70.35 71.03 68.49

Polblogs 73.79 75.53 71.17 74.27 74.44 72.74 71.17

Cora 38.7 44.91 38.17 45.68 42.24 45.91 41.69

DBLP 72.17 70.06 60.38 N/A 74.44 72.74 71.17

The bold values are the highest performance in each dataset.
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labels stand for biological states obtained from the hallmark

gene sets.

Wikipedia1 is a words co-occurrence network from the first

million bytes of theWikipedia dump. Nodes areWikipedia pages

and edges are hyperlinks between pages. Labels represent the

part-of-speech (POS) tags of pages which are inferred using the

Stanford POS-Tagger [50].

And our experimental settings in this section were the same as

the NetMF [51]. Firstly, we randomly sampled a ratio of nodes as the

training set and the others as the test set. The ratio was changed from

0.1 to 0.9 with the step size being 0.1. Then, we used the one-vs-rest

logistic regressionmodel LIBLINEAR2 as the classification algorithm.

The experiment procedure was repeated 10 times to reduce the effect

of different training set and test set. The performance is evaluated in

terms of average micro-F1. We also compare our framework with

deepWalk, node2vec, and GraRep. Our framework with deepWalk,

node2vec, and GraRep are also called MERP-D, MERP-N, and

FIGURE 4
Effect of parameters k and I on community detection task on (A) Friend6 and (B) Cora.

TABLE 3 Statistics of benchmark datasets.

Dataset |V| |E| #Labels

BlogCatalog 10,312 333,983 39

PPI 3,890 76,584 50

Wikipedia 4,777 184,812 40

FIGURE 5
Performance evaluation with varying the ratio of training data on three real-world networks with different methods. (A) BlogCatalog network,
(B) PPI network, and (C) Wikipedia network.

1 http://mattmahoney.net/dc/text.html. 2 https://www.csie.ntu.edu.tw/\~cjlin/liblinear/.

Frontiers in Physics frontiersin.org08

Lv et al. 10.3389/fphy.2022.1045555

http://mattmahoney.net/dc/text.html
https://www.csie.ntu.edu.tw/\\%7Ecjlin/liblinear/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1045555


MERP-G, respectively. Finally, Figure 5 shows the results on the three

networks in terms of micro-F1.

From the results and the curves in Figure 5, we find that our

methods (MERP-D, MERP-N, and MERP-G) can achieve a

better (or at least similar) micro-F1 than the original methods

(deepWalk, node2vec, and GraRep) on all three real-world

datasets.

Furthermore, we can make some interesting observations

from Figure 5. We find that GraRep has a better performance

than random walk-based methods (node2vec and deepWalk) no

matter the ratio of the training set on Wikipedia and PPI

networks. And our method MERP-G is still better than the

original GraRep on all three networks in all training ratios. In

all three networks, the original methods deepWalk and node2vec

have similar results. However, in our model, MERP-N has the

best results on BlogCatalog and Wikipedia networks while

MERP-D has the best performance on the PPI network. To

summarize, our proposed method incorporating enhanced

motifs in network embedding can achieve significant

improvements compared with the original network embedding

methods on the node classification task.

4.2.1 Parameter analysis
To analyze the effect of parameters k and I on node classification,

we also conducted experiments with MERP-N on the BlogCatalog

and Wikipedia datasets. The training ratios varied in the range [0.1,

0.5, 0.9]. The steps k changed in the range [3, 4, 6], and the number of

iterations I varied from three to 7.

The node classification results are shown in Figure 6 in terms

of micro-F1. From Figure 6, we can see our framework exhibit

stable performance with different parameters.

Specifically, with the same training ratio, the micro-F1

results range within 2\% on all three datasets. This

demonstrates that the performance of our method on

node classification is insensitive to the setting of the

parameters.

5 Conclusion and discussions

In this paper, we proposed a novel motifs enhancement network

embedding framework (MERP) based on edge reweighting

preprocessing. MERP framework is used to incorporate the

enhanced motifs information with local structure information in

the original network. By an iteration motifs enhanced algorithm, the

weights of motifs between nodes in different communities are

decreased. In this way, we reduce the effect of redundant noise

edges in motifs. And we applied edge reweighting as a preprocessing

stage making nodes’ embedding vectors useful to all kinds of

downstream network analysis tasks. Moreover, MERP can be

effortlessly applied with the most available network embedding

algorithms. Compared with other higher-order structures

preserved network embedding methods such as M-NMF [8] and

Cosine [9], our method embeds motifs in the network embedding

space which is proven to contain rich information and can reveal

semantic information of vertices. The experimental results for

downstream network analysis tasks: community detection and

node classification, as well as the parameters analysis, illustrate

that MERP achieves remarkable improvements compared with

the existing network embedding methods.

In this study, we mainly focused on normal networks and

neglected other different types of networks, such as signed

networks, bipartite networks, and heterogeneous networks. And all

these networks have been proven to exist motifs. Furthermore, we

only analyzed the static networks and not considered dynamic

networks which are common in the real world. For future work,

we plan to investigate the effects of motifs-enhanced based network

embedding on these networks with different types of nodes and edges.

Our method can effectively improve the structure of original

networks to enhance the ability of network embedding algorithms.

Due to the improvement of network structure, some problems of

other network analysis algorithms may also be solved or improved,

such as the resolution limit in community detection [52, 53]. Some

studies have shown that network enhancement can mitigate the

FIGURE 6
Effect of parameters k and I on node classification task on real-world dataset (A) BlogCatalog and (B) Wikipedia.
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resolution limit and improve traditional community detection

algorithms [35, 54]. So, our method can also enhance the ability

of traditional algorithms in community detection.
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