
Registration of photoacoustic
tomography vascular images:
Comparison and analysis of
automatic registration
approaches

Qinran Yu, Yixing Liao, Kecen Liu, Zhengyan He, Yuan Zhao*,
Faqi Li* and Tianqi Shan*

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering,
Chongqing Medical University, Chongqing, China

Image registration is crucial in the clinical application of photoacoustic

tomography (PAT) for vascular growth monitoring. Aiming to find an

optimized registration scheme for PAT vascular images acquired at different

times andwith varying imaging conditions, we compared and analyzed different

commonly used intensity-based and feature-based automatic registration

schemes. To further improve the registration performance, we proposed a

new scheme that combines phase correlation with these commonly used

intensity-based registration methods and compared their performances. The

objective evaluation measures: peak signal-to-noise ratio (PSNR), structural

similarity index metric (SSIM), root mean square error (RMSE), and quantitative

visual perception (jump percentage P), as well as subjective evaluation using

mean opinion score (MOS), were combined to evaluate the registration

performance. Results show that the feature-based approaches in this study

were not suitable for PAT image registration. And by adding phase correlation as

rough registration, the overall registration performance was improved

significantly. Among these methods, the proposed scheme of phase

correlation combined with mean square error (MSE) similarity measure and

regular-step-gradient-descent optimizer provides the best visual effect,

accuracy, and efficiency in PAT vascular image registration.
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1 Introduction

Monitoring vascular growth is critical for tumor growth monitoring [1]. Traditional

imaging modalities such as magnetic resonance imaging (MRI) [2–4], ultrasound (US)

[5–10], computed tomography (CT) [11–14], etc. have been commonly applied to

evaluate the structural and functional changes of tumors and surrounding blood
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vessels in clinical practice, but these methods usually involve

contrast agents and suffer from low contrast or resolution.

Photoacoustic imaging (PAI), as a new radiation-free and

non-ionizing imaging modality, has been developing rapidly

in recent years [15]. It utilizes the different light absorptions

of tissues to provide unique optical contrasts. The different light

absorption coefficients of hemoglobin and various tissue

chromophores at different wavelengths give PAI unique

advantages in structural and functional vascular imaging

[16–22]. Numerous studies have proved the effectiveness of

PAI in vasculature imaging [23–27], which can be used to

visualize the development of single blood vessels around

growing tumors, changes in blood oxygen concentration

within tumors, and the depth growth of neovascularization

areas [28–33]. Comparing and analyzing the changes of blood

vessels around tumors at different stages, including

neovascularization and irregular changes in vascular

morphology, can offer essential knowledge for monitoring the

development and treatment of the disease, and realizing early

screening and postoperative evaluation of cancer [34–36].

To observe and compare the morphological and functional

changes of vasculatures and tissue structures through the disease

progression, images need to be collected at different times.

Therefore, to identify the differences in these images, the first

problem to be solved is image registration. Image registration as a

basic task in medical image analysis is a process of matching the

images of the same scene obtained at different times, from

different viewpoints, or by different sensors [37]. Single-mode

registration is often used to analyze changes in images taken at

different imaging periods, such as surgical effect evaluation [38,

39] and tumor growth monitoring [40–42]. MRI usually requires

the combination of T1 and T2 sequence images to obtain tissue

structure information with different contrast [43]. In

photoacoustic imaging, we often need to use different optical

wavelengths and sensors with different center frequencies to

obtain different structural and functional information of

tissues [15]. Image registration is needed before the

comparison of tissue changes. Thus, finding a good

registration scheme for PAI images taken at different times

and with different imaging conditions (e.g., with different

optical wavelengths or transducer center frequencies) is

necessary for comparative analysis of the changes in target

tissues through disease progression.

At present, the registration studies involved in photoacoustic

imaging are mostly about real-time registration or PAI image

registration with other imaging modalities [44–48], and there is

no comparative study on different registration schemes for PAI

images taken at different times with different transducers and

optical wavelengths. In this study, we tested different automatic

registration schemes using four categories of image datasets

collected under three optical wavelengths and two transducer

center frequencies. In addition, a new scheme was proposed to

further improve the registration performances. The results were

evaluated and compared by combining subjective and objective

evaluation measures. The proposed scheme provides efficient

and accurate automatic image registration for PAT vascular

imaging, which can be applied to the applications such as

vascular change monitoring, early screening, and postoperative

treatment evaluation using photoacoustic imaging.

2 Materials and methods

2.1 System overview

A circular-scanning PAT system was used for imaging (See

Figure 1). A fast-tuning OPO laser (Beijing ZK Laser Co.,Ltd.;

wavelength range: 680–980 nm; repetition frequency: 100 Hz)

was used as the excitation source. The light was coupled into a

customized optical fiber bundle (CeramOptec GmbH) for light

delivery. A digital delay pulse generator (Beijing ZK Laser

Co.,Ltd.) sent triggers to laser and data acquisition

simultaneously. The ultrasound transducer (ULSO TECH CO.,

LTD.; center frequency: 5MHz and 7.5 MHz) was mounted on a

four-dimensional motion control module (Zolix Instruments

Co., Ltd.) which consists of three linear stages and a rotator.

The photoacoustic signals were detected by transducers, and then

amplified and collected by a customized amplifier and

automotive oscilloscopes (Picoscope 5000D). Degassed water

was used as the coupling medium for PA waves. The system

control interface is developed using Labview to realize the

synchronized motor scanning and data acquisition. The image

processing module developed using MATLAB includes image

reconstrucion, processing, registration, data anaysis and other

functions.

2.2 Image processing workflow

The workflow of image processing is shown in Figure 2.

Firstly, the images were reconstructed using the delay and sum

algorithm (DAS). Furthermore, to reduce the artifacts and

background noises, preprocessing using bilateral filter and

fuzzy C-means (FCM) was applied to achieve relatively clean

background and extract target tissues. Finally, different

registration schemes were applied to the PAT images, and the

results were evaluated and compared by subjective visual

evaluation (MOS) and objective evaluation measures (PSNR,

SSIM, RMSE, jump percentage P).

2.3 Image datasets

The image data used in this study were all generated by the

self-built PAT system. The backs of the volunteers’ hands were

imaged. In the experiments, the hands were held firmly on the
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holder (at a certain angle) in the tank of degassed water and

were completely submerged (see Figure 3). The relative angle

and distance of the imaging area of the hand back to the

transducer was measured and kept consistent for the same

subject in different experiments. Laser pulses (under ANSI

limit) are diffused and incident from the top so that the light

uniformly covers the entire imaging area. The receiving

direction of the transducer is perpendicular to the incident

direction of the laser, and the target is scanned circularly. The

position of laser incidence and the position of transducer

reception are controlled and recorded by the four-

dimensional motion module to ensure the consistency of

the imaging conditions of the same target tissue. During

the imaging process, the sampling rate was 62.5MHz, and

the scanning step was 1° covering 180°. 5,000 data points were

collected at each position and were averaged 20 times. For

different sets of data, three different wavelengths (720°nm,

850°nm, and 960 nm) and transducers with different center

frequencies (5°MHz and 7.5 MHz) were used for imaging.

The experiments were approved by Chongqing medical

university.

Since the transducer we used was a flat unfocused single-

crystal transducer with a large acceptance angle, and the

signals from the same tissue could be received within a

certain range. In addition, the blood vessels we imaged

were superficial. Lights are uniformly irradiated, and one

hand was held on the holder in a certain angle. Therefore,

the problem caused by slight changes of projection angles at

different times would not occur.

In order to verify the feasibility of the scheme, we carried

out phantom experiments (See Figure 4). The silicone tubes

(inner diameter 1.5 mm, wall thickness 0.5 mm) and Y-junction

were used to simulate the vascular morphology in vivo, and

Indian ink solution with light absorption coefficient of blood

FIGURE 1
Schematics of the experimental system.

FIGURE 2
Flowchart of image processing.
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was circulated by a peristaltic pump to simulate the blood flow.

Every time the transducer completed a circular scanning, it

moved down 1 mm for another scanning, and it moved down

five 5 mm in total. The results showed the morphology of the

tubes clearly, and there was no significant difference among the

five tomographic images. In addition, to verify the change of 2D

projection caused by the change of detection angle, we tilted the

phantom 15°, which was much larger than the angle difference

that could occur in the experiments of the hand back imaging,

and then compared the results with that of the phantom placed

FIGURE 3
(A) is PAT imaging dataset acquisition experiment. (B) is a schematic diagram of imaging area of the hand.

FIGURE 4
Phantom experiments to simulate blood flow imaging. (A) is the experimental device of the phantom experiment, which simulates the flow
process of blood in the body through a peristaltic pump. (B) is the phantom of Y-shaped silicone tube. (c1) -(c5) are the first to fifth layers of the PAT
images.
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horizontally (See Figure 5). It is proved that the transducer

could receive signals from the same target within a certain range

and the change of the results due to the slight differences in the

angle can be neglected. Therefore, for superficial blood vessel

imaging, the image would not change due to the slight

difference of 3D projection angle.

To evaluate the performance and accuracy of different

registration methods, the blood vessels of the backs of human

hands were imaged. Four categories (nine groups) of datasets

collected by transducers with two center frequencies and at three

optical wavelengths were used for the registration test (see

Table 1). Image registration methods are implemented in

FIGURE 5
(A) is the scanning imaging experiment diagram under horizontal state, and (B) is the scanning imaging diagram under phantom tilt of 15°. (C,D)
are photoacoustic imaging images corresponding to (A,B) respectively.

TABLE 1 Overview of hand vascular photoacoustic image datasets.

Number of datasets Type Wavelength Transducer frequency Imaging parts

Dataset1 Single frequency single wavelength 850 nm 7.5 M Volunteer 1 right hand back

Dataset2 720 nm 7.5 M Volunteer 1 left hand back

Dataset3 960 nm 7.5 M Volunteer 2 right hand back

Dataset4 Single frequency multi-wavelength 850nm/960 nm 7.5 M Volunteer 1 right hand back

Dataset5 720nm/850 nm 7.5 M Volunteer 3 left hand back

Dataset6 Multi-frequency single wavelength 850 nm 5M/7.5 M Volunteer 2 right hand back

Dataset7 720 nm 5M/7.5 M Volunteer 1 left hand back

Dataset8 Multi-frequency multi-wavelength 720nm/850 nm 5M/7.5 M Volunteer 1 left hand back

Dataset9 850nm/960 nm 5M/7.5 M Volunteer 1 right hand back

Frontiers in Physics frontiersin.org05

Yu et al. 10.3389/fphy.2022.1045192

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1045192


MATLAB, using an Intel Core i7, 10th generation with 1.61 GHz

clock speed and 16 GB RAM.

2.4 Preprocessing

The images were acquired by transducers with different

center frequencies at different wavelengths and the original

photoacoustic images had a low signal-to-background ratio

(SBR). Therefore, preprocessing is necessary to bring images

taken with different imaging conditions to a similar intensity

and improve SBR for subsequent registration. Firstly,

normalization was applied to bring the images to similar

intensity in order to simplify the computation. Then,

bilateral filter was applied to smooth and denoise the

background, as well as to preserve the edges [49], and FCM

was applied to extract the target tissue [50].

2.5 Image registration

After preprocessing the images, the reference image and

floating image were obtained. We tested four commonly used

intensity-based (see Figures 7A–D) and two feature-based

(SIFT and SURF) registration schemes. In addition, we

proposed a new scheme by adding phase correlation as

rough registration to improve the performance of these

intensity-based methods. The registration schemes were

investigated using four types of image datasets (see Table 1)

collected at three wavelengths by transducers with two central

frequencies.

2.5.1 Registration based on intensity information
The intensity-based registration method uses grayscale

information to directly calculate the similarity degree of the

image, which has the advantages of simple operation without

complex preprocessing and extensive computation. Its

registration process is to select the corresponding similarity

measure function according to the characteristics of the

images, and then by applying a specific search algorithm in

the parameter space of the chosen geometric transformation

model, the geometric transformation parameter that maximizes

the similarity is found. The image registration quality mainly

depends on the similarity measure function.

2.5.1.1 Similarity measure function

Mean square error (MSE) and mutual information (MI) are

common measure parameters in intensity-based registration

[51]. MSE usually represents the deviation between the

calculated and the actual values. In image registration, MSE is

used to evaluate the accuracy and performance of the algorithm.

The smaller MSE represents higher accuracy and better

performance of the algorithm. It is defined as Eq. 1:

MSE � 1
mn

∑m−1

i�0
∑n−1
j�0
[I(i, j) −K(i, j)]2 (1)

where I and K are the floating and reference images, respectively.

The m, n is the number of samples, that is, the number of pixels

corresponding to the floating image I and the reference image K.

I, j denotes any pixel. MI is an essential concept in information

theory, which describes the correlation between two systems or

how much information they contain with each other. In image

registration, the MI of the two images reflects the degree of

mutual inclusion through their entropy and joint entropy. The

mutual information of the two images can be expressed as Eq. 2:

MI(X,Y) � H(X) +H(Y) −H(X,Y) (2)

H(Y) � −∑L−1
k�0

p(rk)logp(rk) (3)

P(rk) � h(rk)
n

� nk
n
� h(rk)∑

k
h(rk) k � 0, 1, ..., L–1 (4)

H(X,Y) � −∑
xy

pxy(x, y)logpxy(x, y) (5)

H is the entropy of the image. For an image Y, the entropy

can be expressed as Eq. 3. Let the gray level value of image Y be

r ∈ [0, L − 1], the rk represent the gray value of level k. The p (rk)
represents the probability of gray level k, which can be expressed

as Eq. 4. The h (rk) is the histogram discrete function

representation of the image Y, nk represents the number of

pixels whose gray level value is rk in image Y. For two images

X and Y, the joint information entropy of two images can be

expressed as Eq. 5. When the similarity of two images is higher,

or the overlap part is larger, the correlation is higher and the joint

entropy is smaller, that is, the mutual information is larger.

2.5.1.2 Optimizer

The role of the optimizer is to guide each parameter of the

objective function to update the appropriate size in the correct

direction during the updating process of the iterative function, so

that the updated parameter drives the value of the objective

function to approach the global minimum continuously. The

regular step gradient descent optimizer (RSGD) and the one-

plus-one evolutionary optimizer (OPOE) are commonly used

optimizers. The regular step gradient descent optimizer follows

the gradient of image similarity measure in the extreme direction

[52]. It uses a constant step length along the gradient between

computations until the gradient change direction. Thereafter,

with each change in the gradient direction, the step size is

reduced according to the relaxation factor. The one-plus-one

evolutionary optimizer iterates to find a set of parameters that

yield the best registration result. It does this by tuning the

arguments (the parent arguments) from the last iteration. If

the new (child) parameters yield a better result, the new

parameter becomes the adjusted new parent parameter. The
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next iteration will be more aggressive. If the result of the child

parameter is not as good as that of the parent parameter, the

parent parameter remains, and the next perturbation will be less

aggressive [53].

2.5.2 Registration based on feature information
The feature-based registration method extracts the common

features from the reference image and the floating image as the

registration primitives. It then estimates the geometric

transformation model and parameter values between the

reference and floating images by establishing the

corresponding relationship between the registration primitives.

It has the advantages of low computational complexity and

strong robustness. It is suitable for registering images with

complex geometric deformation, but not for registering images

with blurred feature points or a smaller number of features.

2.5.2.1 Scale-invariant feature transform

Scale-invariant feature transform (SIFT) is proposed and

further improved by Lowe et al. [54]. It can effectively solve

the problem of image scale invariance and rotation invariance,

and has good robustness to noises and illumination changes. The

main idea of the algorithm is: firstly, the scale space of the image

is established; then, the extremum points of the image are

searched in the scale space; the feature descriptors are

established for the extremum points; the similarity matching

is carried out by the feature descriptors; the parameter estimation

of the model is transformed; and finally the registration is

completed.

2.5.2.2 Speeded up robust features

Speeded up robust features (SURF) is an improvement of

SIFT [55]. The main feature of SURF is to use the Hessian

determinant value as the feature point and respond to the Harr

wavelet transform. It uses the integral graph effectively, and the

processing speed is accelerated.

3 Evaluation

After image registration, specific evaluation measures were

used to assess the performance of the registration algorithms. The

MOS, time consumption, SSIM, PSNR, RMSE, and percentage P

of jump in quantitative visual perception were calculated and

compared to evaluate the registration performance of different

registration methods.

3.1 Subjective visual evaluation

Subjective evaluation is the most common and direct

image evaluation method [56]. Image registration must first

satisfy the qualitative visual perception. In MOS, image

quality is divided into five grades according to its merits,

and the best rating is five.

3.2 Objective and quantitative evaluation

When visually challenging to judge, objective parameters are

usually applied to evaluate the registration performance

quantitatively. In this study, the objective evaluation measures

used are computation time, RMSE, SSIM, PSNR, and jump

percentage P in quantitative visual perception.

3.2.1 Computation time
Computation time is used to measure the computing speed of

image registration. Under the same conditions, the algorithm

with less computation time is faster in image registration. There

is often a tradeoff between computation time and registration

accuracy in practical applications. Therefore, balancing these two

factors to optimize quality and efficiency is also the pursuit of

image registration algorithms.

3.2.2 Root mean square error
RMSE is usually applied to indicate the deviation between the

calculated value and the actual value. The smaller the RMSE, the

higher the accuracy and the better the algorithm’s performance.

It is represented as Eq. 6:

RMSE �
�������������������
1
n
∑n
i�1
(				T(p′i, θ) − pi

				)2√
(6)

Where p’ and p represent the matching points in the image to be

registered and the reference image.

3.2.3 Structural similarity index metric
SSIM is a measure of the similarity between two images.

SSIM is designed based on the ability of the human visual system

to capture the structural features of images. The image is

evaluated by brightness, contrast, and structure. The value

ranges from 0 to 1, and the higher value represents the higher

the similarity between the two images in brightness, contrast, and

structure. In practical applications, the Gaussian function,

variance, and covariance are generally used to calculate the

mean value of images instead of traversing the pixels to

achieve higher efficiency. It can be expressed as Eq. 7:

SSIM(x, y) � (2uxuy + C1)(2σxy + C2)(u2
x + u2

y + C1)(σ2x + σ2y + C2) (7)

Where, μx is the mean of x, μy is the mean of y, σ2x is the variance

of x, σ2y is the variance of y, and σxy is the covariance of x and y.

3.2.4 Peak signal-to-noise ratio
PSNR is used to measure the difference between two images,

which can compute the impact of the noises that affect the quality
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of its representation between registered and reference images.

PSNR is the most commonly used objective evaluation index of

images. It is based on the error between corresponding pixels.

Thus it is the image quality evaluation based on error sensitivity.

The higher value of PSNR indicates better registration quality.

Since it doesn’t consider the visual characteristics of the human

eyes, the evaluation results are sometimes inconsistent with

visual perception. Mathematically, it is given as Eq. 8:

PSNR(X,Y) � 10 log10
⎛⎜⎜⎜⎜⎝ max(Y)
1/NM∑NM

x,y�1(X − Y)2
⎞⎟⎟⎟⎟⎠ (8)

3.2.5 Visual perception
The brightness effect and the spatial frequency masking

effect are two essential characteristics of human vision.

According to these effects, an important parameter of

visual discrimination, just noticeable difference (JND), is

derived. This parameter is used to calculate the change of

effective pixels number of an image, namely, jump

percentage P (higher p-value is better). Thus, it can

obtain quantitative evaluation results consistent with

human visual perception. The evaluation algorithm is

given in Figure 6.

4 Results

The different intensity-based (see Figure 7) and feature-

based registrations are evaluated and compared. In our

results, the feature-based registration method has a low

registration rate (SIFT 33.3% and SURF 11.1%), and poor

registration quality. This is due to the insufficient feature

points or feature pairs in the PAT images. The results

FIGURE 6
Quantitative visual perception algorithm.
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indicate that the feature-based registration in this study is

not suitable for applications like hand blood vessel PAT

images. In Figure 7, examples of registered images (dataset

9) of each registration method are shown. Although phase

correlation (CORR) cannot obtain high registration quality,

it is fast. And by applying it as a rough registration with other

methods, the overall registration performance can be

significantly improved. Therefore, we took it as a rough

registration to combine with other registration schemes

and compared the results with and without CORR. In

Figure 7, A-H refers to the eight different registration

schemes. A–D are the registration results without phase

correlation, which are MSE and regular step gradient

descent optimizer, MSE and one-plus-one evolutionary

optimizer, MI and regular step gradient descent optimizer,

MI and one-plus-one evolutionary optimizer. E-F are the

registration results of phase correlation combined with the

previous methods. In the registration images, magenta and

green represent the differences between the two images, and

the registered part is white.

4.1 Mean opinion score

Three people who did not participate in the experiment

were invited to evaluate the images. A score of 5 refers to the

best result, and the percentage of a score of 4 or above in all

datasets was used as the evaluation index. A higher

percentage indicates a better result. The MOS evaluation

results for different registration schemes are shown in

Figure 8. Before phase correlation was applied as a rough

registration, the scheme of MI with regular step gradient

descent optimizer got the best registration result, which was

33.33%. After using phase correlation as rough registration,

the overall registration quality was improved. The percentage

was increased by 14.81%–48.15%. Overall, the scheme of

phase correlation combined with MSE and regular step

gradient descent optimizer offers the best registration

results (59.26%).

4.2 Computation time

Figure 9 shows the time consumption of the eight registration

schemes with different datasets. We repeated the experiments

five times for each dataset with each registration method and

plotted the averaged time consumption, which excludes the

contingency and is representative to a certain extent. As can

be seen from Figure 9, similarity measure MSE has a faster

registration rate than MI when the optimizer is consistent. When

the similarity measure is consistent, one-plus-one evolutionary

optimizer takes less time than regular step gradient descent

FIGURE 7
Example of image registration for dataset 9. (A–H) represents different image registration algorithms.
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optimizer. Overall, whether rough registration is applied or not,

the scheme of MI with regular step gradient descent optimizer

takes longer. The scheme of MSE with one-plus-one evolutionary

optimizer, takes the shortest time. Other schemes take about the

same time.

4.3 Objective evaluation measures

The SSIM, RMSE, PSNR, and percentage of visual perception

P were calculated (see Figure 10). We compared the

performances with and without phase correlation rough

registration across all the nine groups of datasets. In addition,

we also compared the performances among the eight registration

schemes in each type of datasets. Figure 10A shows the SSIM

value of registration results using different registration schemes

in the nine groups of datasets. After introducing phase

correlation as rough registration, the total SSIM value of nine

data groups did not change significantly, which means they have

similar contrast and structural degradation. Comparing the eight

schemes, the scheme of phase correlation combined with MSE

and regular step gradient descent optimizer has good SSIM

values for each type of datasets. Figure 10B shows the RMSE

value. Overall, with rough registration, the registered image has a

better RMSE value, indicating better registration image quality.

Taken individually, phase correlation combinedMSE and regular

step gradient descent optimizer had high accuracy in most

datasets. Figure 10C represents the PSNR of the datasets. The

overall image quality is slightly improved after rough registration.

Figure 10D shows the quantified percentage of visual perception.

For each type of datasets, phase correlation combined MSE and

regular step gradient descent optimizer has a higher value of P, in

other words, it is more perceptive to the human eye. As a whole,

when the optimizer is consistent, the similarity measure MSE

FIGURE 8
MOS evaluation of different registrationmethods. (A–H) represents registration schemes. The proportion of results with a score of four or above
is shown in parentheses.

FIGURE 9
Mean computation time of 8 registration schemes in
9 groups of datasets.
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performs better than MI. That is, it has a higher value of SSIM

and PSNR, as well as a lower value of RMSE. When the similarity

measure is consistent, the regular step gradient descent optimizer

has a better performance than the one-plus-one evolutionary

optimizer, which is also reflected in a higher value of SSIM and

PSNR, and a lower value of RMSE. Moreover, this result remains

unchanged after phase correlation is introduced for rough

registration.

5 Discussion

5.1 Optical wavelength

Different endogenous contrast agents have different

absorption spectra. Hemoglobin is commonly used as an

endogenous contrast agent, which is widely used for vascular

imaging in the visible and near-infrared spectral ranges. When

the wavelength is 720 nm, the absorption coefficient of HbO2 is

less than that of HbR. When the wavelength is 850 nm, the

absorption coefficient of HbO2 is greater than that of HbR.When

the wavelength is 960 nm, more deep information can be

provided [57]. In the human body, the oxygen content of

arterial blood is higher than that of venous blood [58].

Therefore, when imaging at different wavelengths, veins and

arteries can be effectively distinguished. These wavelengths are

commonly used in vascular functional imaging [59].

5.2 Image registration

Feature-based methods are widely used in image registration.

However, our results show that sufficient feature points or feature

pairs cannot be obtained in the PAT images of hand blood

vessels, resulting in low registration efficiency. The reasons for

this could be that PAT images are lack of rich curve inflection

points and local curvature discontinuity points, which do not

meet the corner features commonly extracted in SIFT and SURF

feature extraction. Therefore, the feature-based registration

method is unsuitable for registering PAT images of a small

range of hand blood vessels.

Intensity-based registration is the primary registration

method analyzed in this study. Different similarity measures

and optimization methods turn the registration problem into an

optimization problem. The grayscale calculation in a small range

provides a fast computation while ensuring high accuracy. In our

FIGURE 10
The evaluation of 9 groups of datasets using objective measures. (A–D) represent SSIM, RMSE, PSNR, and jump percentage P, respectively.
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study, we found that among the commonly used registration

methods we tested, the mean square error similarity

measurement combined with the regular step gradient descent

optimizer has better accuracy, but it is time-consuming. In order

to improve the performance, we proposed to apply phase

correlation as a rough registration to combine with the

previous methods. Although the registration accuracy of phase

correlation is low, it has the advantage of fast registration in

simple translation. Therefore, we proposed a new scheme that

divided the registration into two parts. First, the registration of

large positions is completed by phase correlation, and then the

registration adjustment of small errors is carried out using MSE

and regular step gradient descent optimizer. The results showed a

significant improvement in the overall registration performance.

In addition, we found that all these registration methods showed

a relatively consistent variation in performance on different types

of data, which indicates that they can be applied for image

registration of all the four types of PAT data. Comparing the

eight registration schemes by combining MOS, time

consumption, and objective evaluation measures, the proposed

scheme of phase correlation combined MSE and regular

step gradient descent optimizer has stable and superior

performance.

5.3 Evaluation

Image registration must first satisfy the subjective

visualization. In this study, subjective evaluations were

conducted by different subjects to satisfy the qualitative visual

evaluation, as well as to reduce subjectivity. When the differences

are hard to identify for the visual assessment, objective evaluation

measures are often applied to analyze the registration results

quantitatively. The reasons for selecting SSIM, RMSE, and PSNR

are as follows:1) by calculating SSIM and PSNR, we can compare

the image quality of the registered images relative to reference

images, including image contrast, brightness, structural

degradation, and unwanted noise; 2) The error between the

float image and the reference image can be measured by

calculating RMSE.

Since the SSIM, PSNR, and RMSE are calculated based on

pixel intensity, it is possible that these objective measures give

results different from the subjective visual evaluation. When

subjective visual evaluation cannot be made, it is necessary to

add the measure of quantitative visual perception to reflect

human visual perception. Therefore, both subjective and

objective evaluation measures should be considered when

judging image registration performance. Meanwhile,

computation time is also worth considering. To some extent,

there is a tradeoff between the computation time and registration

accuracy. Our goal is to achieve high-quality fast registration.

Thus, the overall computation time and accuracy also need to be

considered comprehensively.

By combining the four objective measures, subjective visual

evaluation, and computation time, we evaluated the

performances of different combinations of the two most

commonly used similarity measures and optimizers for

intensity-based registration with four types of PAT datasets.

We also combined phase correlation with these registration

methods and evaluated the change in registration

performance. The results show that by adding phase

correlation, the overall performance can be greatly improved,

and by combining phase correlation with MSE and regular step

gradient descent optimizer, the registration gives better

performance in all four categories of datasets. The results

were validated using multiple sets of data for each category

and were consistent.

6 Conclusion

In this study, intensity-based and feature-based automatic

registration methods were investigated in the application of PAT

vascular imaging using four types of human hand vascular PAT

data. In addition, a new scheme with phase correlation was

proposed to improve the performance of the previous

registration methods. The feature-based registration methods

(SIFT and SURF) did not provide good performance in our

application. We had evaluated the performances of the intensity-

based schemes by applying subjective visual evaluation and four

objective evaluation measures SSIM, RMSE, PSNR, and jump

percentage P. In addition, computation time was also considered.

We found that by adding phase correlation as a rough

registration, the overall registration performance can be

significantly improved. From the results, we can conclude that

the proposed scheme combining the phase correlation rough

registration, mean square error measurement, and regular step

gradient descent optimizer gives the best overall performance.

This study provides a useful tool of image registration for clinical

applications of PAT vascular imaging, such as vascular growth

monitoring for early screening and postoperative evaluation of

cancers.
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