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Cherenkov radiation emitted by Kuznetsov–Ma soliton (KMS) with an arbitrary

propagation constant in the presence of higher-order dispersions is studied

analytically and numerically. We show that the third-order dispersion (TOD)

yields asymmetric radiated bands, while the fourth-order dispersion (FOD) gives

rise to symmetric radiated bands only when the value of FOD is positive. In

contrast to radiations emitted by other localized waves, such a radiation

emerges periodically in propagation, and can exhibit multi-frequency bands

which depends strongly on the propagation constant of the KMS. We presented

radiation conditions to calculate different frequency bands, which shows great

agreement with numerical simulations. Important radiation features such as

radiation frequencies, velocities, and distances are shown in phase diagrams.

Our results could be helpful for controllable radiations in nonlinear fiber and

other nonlinear systems.
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1 Introduction

The ability of solitons to emit dispersive radiation also known as Cherenkov radiation

is a property vividly expressing their wave nature. Although radiation emission by solitons

has been well known in the 1990s [1–3], such a radiation is confirmed to be one of the key

nonlinear frequency conversion mechanisms of coherent supercontinuum generation [4].

This allows a substantial increase in the spectral bandwidth of pulsed laser sources [5]. In

particular, recent studies confirmed that soliton radiation leads to broader optical

frequency combs on a photonic chip which can help refine time standards [5–7].

Cherenkov radiation in nonlinear optics is caused by the higher-order dispersion. The

latter continues to pose major challenges in our understanding of nonlinear phenomena

despite being vigorously investigated [8]. Indeed, owing to precise dispersion engineering,

recent studies demonstrated that fourth-order dispersion (FOD) can give rise to gener

ation of a new class of solitons, i.e., pure-quartic solitons [9, 10]. This opens a novel path

for the design of pure-quartic soliton laser [11] and the exploration of pattern transition of

modulation instability [12].

In addition to radiation emission by solitons, recent studies revealed radiation

properties of shock waves [13, 14] as well as nonlinear “breathing” waves including

Akhmediev breathers [15] and Peregrine rogue waves [16]. It has been shown that the

symmetry-breaking dynamics of modulation instability (MI) spectrum induced by third-
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order dispersion (TOD) [17] turns out to be the radiation

emission by Akhmediev breathers [15]. This radiation can

also lead to disappearances and recoveries of the Fermi-Pasta-

Ulam recurrence [18]. Furthermore, higher-order nonlinear

effects, such as the spontaneous Raman scattering and self-

steepening terms can also break the spectrum symmetry of

breathers [19–21]. However, there exists another type of

“breathing” wave—Kuznetsov-Ma soliton (KMS) [22, 23]

that has attracted considerable attention recently [24–30].

KMS is oscillating due to the coherent interaction with a

constant background [24, 28]. In contrast to Akhmediev

breathers and Peregrine rogue waves, KMS describes not

only the MI in the small amplitude regime, but also the

interference between bright soliton and plane wave in the

large amplitude regime [28]. When the amplitude of the

background tends to zero, the period of oscillations

increases and in the zero limit the KMS turns into an

ordinary bright soliton [24]. The periodic evolution in

propagation of the KMS has been observed experimentally

both in fiber optics [25] and in hydrodynamics [26]. It has also

been predicted in a microfabricated optomechanical array

[27]. Even in dissipative optical systems, the KMS solution

provides a basis in clarifying many experimental and

numerical observations of oscillating phenomena [31, 32].

FIGURE 1
Characteristics of radiations emitted by KMSs induced by TOD in both time and frequency domains with different propagation constants b=1.5
(left column) and b=2.5 (right column). (A,B) show false color plots of spatio-temporal evolution; the dashed black line refers to KMS velocity vg, and
the dashed white line refers to radiation velocity vR. (C,D) correspond to the evolution of the Fourier spectrum (log scale) of (A,B). The radiation
frequencies are obtained exactly from the resonance condition [10]. Namely, ω0=25.6748, ω01=27.5391, ω02=−2.11617, ω03=−0.422941. (E,F)
are output spectrums in log scale (solid blue) comparedwith the input spectrum (dashed blue). The intersection points in the insets correspond to the
radiation frequencies. Other parameters are a =1, β3=0.24.
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In this paper, we study Cherenkov radiation emitted by KMS

with an arbitrary propagation constant in the presence of higher-

order dispersions including TOD and FOD. Distinctive periodic

radiation by KMS can be observed. We show such radiation

depends on the propagation constant. The radiation frequencies

can be calculated via the wavenumber-matching condition.

2 Physical model and radiation
conditions

We consider the pulse propagation in optical fiber ruled by

the nonlinear Schrödinger equation in the presence of the TOD

and FOD. It reads in dimensionless form [8]:

zψ

zz
+ α

2
ψ − iβ2

2
z2ψ

zt2
+ β3

6
z3ψ

zt3
− i

β4
24

z4ψ

zt4
� iγ|ψ|2ψ, (1)

where, in nonlinear fiber system, ψ denotes the slowly varying

pulse envelope of optical field, z is the evolution distance, t is the

retarded time, β3 and β4 denote the third and fourth order

dispersions, α is the gain or loss, and γ stands for the

nonlinear parameter. If β3 = β4 = 0, β2 = 1, α = 0, and γ = 1.

Eq. 1 admits the KMS solution [22, 23]:

ψ z, t( ) � a − 2
δ cos 1/2ξz( ) + ib

�
δ

√
sin 1/2ξz( )

b cosh 2
�
δ

√
t( ) − a cos 1/2ξz( )[ ]ei 1/2kbz( ),

(2)
where kb = 2a2, ξ � 4b

�
δ

√
with δ = b2 − a2. The parameter a is the

background amplitude, while b (≥a) determines the KMS

amplitude and the period (Dz = 2π/ξ) in propagation. In the

limit case b → a, Eq. 2 reduces to the doubly localised Peregrine

rogue wave with infinite period in z. The radiation properties of

such limiting case induced by the TOD have been studies in Ref.

[16]. In contrast, we consider here a general case of the KMS

radiation with an arbitrary b. Such an additional degree of

freedom induces nontrivial radiation properties of KMS.

We start with the phase of the KMSs. As the KMS is a

particular nonlinear wave on the plane wave background, the

total phase turns out to be the sum of the linear background

contribution and the nonlinear KMS contribution. It reads

explicitly:

ϕkms z, t( ) � 1/2kbz + ϕnl z, t( ). (3)

where the nonlinear phase ϕnl is given by

ϕnl z, t( ) � tan−1 −2b �
δ

√
sin 2b

�
δ

√
z( )

ab cosh 2
�
δ

√
t( ) + a2 − 2b2( )cos 2b

�
δ

√
z( )[ ].

(4)
Clearly, such a phase exhibits periodic profile in propagation; it

has the maximum value at the pulse peak t = 0. The z-derivative

maximum phase corresponds to the maximum wavenumber of

the KMS. The latter is given by:

kkms z( ) � dϕkms z, t � 0( )
dz

� kb + knl z( ), (5)

where

knl � −2
�
δ

√
b sin 4

�
δ

√
b( )μ + 4δb2 a2 − 2b2( )z sin 2

�
δ

√
bz( )

μ2 + 4δb2 + sin2 4
�
δ

√
b( ) , (6)

and μ � ab + (a2 − 2b2) cos(2 �
δ

√
bz). Here, knl denotes the

nonlinear wavenumber of the KMS. The variation of kkms(z)

follows that of the KMS amplitude, exhibiting periodic

profile in z.

Resonant radiation occurs as a result of interaction between

the KMS and linear dispersive waves. The latter has the form exp

(iωT + i1/2kdwz), where T = t − 1/2vgz with vg being the group

velocity, and kdw is the wavenumber which constitutes the

radiation from the soliton frequency. By inserting the term of

linear waves in Eq. 1, we find the dispersion relationship:

kdw � β4ω
4 + β3ω

3 − β2ω
2 + vgω. (7)

From here, we have the radiative velocity of linear wave

FIGURE 2
Variations of initial radiation distances (z0j) (A), radiation frequencies (ω0j, j= 1, 2, 3) (A), group velocity of first cell of KMS (vg) (B), radiation velocity
of dominating radiation band (vR) (B), and radiation efficiency (η) (C) versus b.
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vR � dkdw/dω � 4β4ω
3 + 3β3ω

2 − 2β2ω + vg. (8)

Resonant radiated frequencies can be obtained by imposing

the matching condition of wavenumber. As the KMS admits both

linear and nonlinear contributions of wavenumber, the resonant

condition admits different forms. The simplest resonant

condition reads

kdw � kb. (9)

Namely, only the linear (lowest-order) wavenumber of the

KMS is considered. This has been used in the resonant

radiation of Akhmediev breathers [15], where the associated

Fermi-Pasta-Ulam recurrence can be well controlled by the

value of TOD.

A more accurate estimate of the radiated frequencies is

obtained by considering the total wavenumber of the KMS. It

is given by

kdw � kkms z( ). (10)

On the other hand, by considering an additional nonlinear

correction arising from cross-phase modulation (induced by the

intense background) [13], we obtain another radiation condition:

kdw � kkms z( ) − 2kb � knl z( ) − kb. (11)
This condition is composed of the effective nonlinear

contributions of the KMS wavenumber. It has been

demonstrated that this radiation condition produces accurate

description of radiated frequencies of the limiting case of KMSs

(i.e., Peregrine rogue waves) [16].

Despite being different in form, all radiation conditions can

admit multiple radiated frequencies. We will investigate below

the properties of resonant radiation emitted by KMSs by

considering the radiation condition [10]. The availability of

three different radiation conditions will be also clarified.

Note that since kdw must be evaluated in the frame where

the KMS is stationary, in each radiation condition, vg = 2dt/dz

is equal to the velocity of the KMS induced by the odd-order

dispersion. Moreover, as the KMS is a particular nonlinear

periodic mode in propagation, resonant radiation can occur

periodically. In particular, as b is large, KMS suffers

acceleration in propagation [see Figures 1, 4]. Thus, for

each cell of KMS, the velocity should be re-estimated

carefully.

Furthermore, for a given optical fiber system, i.e., the

higher-order dispersion parameters are fixed, the radiation

properties of KMSs depend strongly on the parameter b. Such

radiation properties can be well described by four physical

quantities, namely, radiation frequency ωR, the initial

radiation distance z0, KMS velocity vg and radiation

velocity vR. In the following, we will study these physical

quantities with different b. All numerical results are obtained

from the numerical integration of Eq. 1 by the split-step

Fourier method.

3 Radiation induced by third-order
dispersion

We first consider the radiation properties emitted by KMSs

induced only by the TOD. As is well known, the TOD results in

asymmetric spectral distribution in processes of modulation

instability and Fermi-Pasta-Ulam recurrence [15]. TOD also

causes asymmetric spectra for Peregrine rogue waves [16].

However, for KMSs with different parameters b, the radiation

properties are different.

Figure 1 shows radiation characteristics emitted by KMSs

with different b in both time and frequency domains. The initial

condition is extracted from solution [2] at z = 0. We then

consider two cases with b = 1.5 and b = 2.5. The other

parameters are a = 1, β2 = 1, β3 = 0.24, and β4 = 0. As can be

seen from the figure, KMSs, in either case, generate distinctive

radiation in propagation. The group velocity of KMSs is induced

by the TOD. If one chooses the opposite value of TOD, the

velocity will be opposite. In particular, the radiation occurs

periodically at the particular (maximum-compressed) distance

where KMSs have maximum amplitude. This can be clearly seen

from the characteristic of spectral distributions.

An interesting result is that as b is small, the KMS has a

unique group velocity as shown in Figure 1A. This results in

that the radiation spectrum corresponds to a unique frequency

ω0. However, when b is large, KMSs suffer accelerating

propagation [Figure 1B]. This means that for each cell of

KMS shown in Figure 1B, the velocity vg is different and

should be re-estimated. Due to the difference of vg in each cell

of KMS, radiation frequency in each cell is also different. A

slight deviation from the initial radiation frequency (ω01) can

be clearly observed in the spectral distribution. This leads to

radiation band broadening as z increases. In addition to the

dominating radiation band, there are two radiation lines (ω02

and ω03) which are not that obvious in the spectra. Such

frequencies can be given by the cubic resonance equation. As

can be seen, the appearance of these three radiation bands

corresponds to different initial distances (z01, z02, and z03).

Note that all these numerical results are completely

consistent with the analytical results given by Eq. 10. This can

be observed from the spectrum profiles shown in Figure 1. The

intersection points in the insets correspond to the radiation

frequencies obtained exactly from the resonance condition. As

can be seen, such frequencies coincide with those obtained by

numerical simulation.

To better understand the radiation phenomenon, we depict, in

Figures 2A,B, the variations of radiation frequencies (ω0j, j = 1, 2, 3),

initial distances (z0j), the group velocity of first cell of KMS (vg), and

the radiation velocity of dominating radiation band (vR) as b

increases. Interestingly, we numerically find a critical value of b,

say bc ≈ 2.45, that divides the regions into two parts. Namely, when

b ≤ bc, there is only one radiation frequency (ω01) with its initial

distance (z01). As b increases, z01 decreases sharply while ω01
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increases slightly. Instead, if b > bc, three radiation frequencies (ω0j)

emerge from different initial distances (z0j). However, due to the

secondary radiation bands (ω02 and ω03) are always weak, only the

radiation velocity of dominating radiation band vR is shown in

Figure 2B. As b increases, vR decreases and |vg| increases.

In addition to the radiation frequency, the efficiency of

radiation is also the crucial property that should be

considered. Here we define radiation efficiency η = (S1 − S0)/

S0, where S1 denotes the numerical integration of the spectrum

with higher-order dispersion for given b, while S0 stands for the

numerical integration of the spectrum without higher-order

dispersion. We then show the radiation conversion efficiency

versus the propagation constant b. As shown in Figure 2C, the

radiation efficiency increases and then decreases as b increases.

The maximum efficiency occurs when b ≈ 2.4.

4 Radiation induced by fourth-order
dispersion

Next, we consider the radiation properties induced only by

the FOD. In contrast to the case of radiation induced by the TOD,

FOD can result in radiation only when β2 and β4 have the

same sign.

FIGURE 3
Propagation of perturbed KMS without radiations (β4=−0.096, left column) and with radiations (β4=0.096, right column). (A,B) show the false
color plot of spatio-temporal evolution. In (B), the dashed black line refers to group velocity, and the dashed white line refers to radiation velocity.
(C,D) are the corresponding evolution of Fourier spectrum (log scale). (E,F) are graphical solution of Eq. 10. ω0j is given by the cross of the green
horizontal line standing for kdw, with the blue solid curve signifying the quartic dispersion relation.
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Figure 3 displays the evolution characteristics of KMSs with

positive and negative FOD (β4). One can see from the figure that

in either case, KMSs propagate with zero group velocity vg = 0. As

shown in Figure 3A, KMS cannot produce radiation when FOD is

negative. It propagates with zero group velocity just as the

standard KMS. This is because that the quartic equation

(radiation condition) has no real roots.

On the contrary, when β4 is positive, radiation waves appear in

the first cell of the KMS, as shown in Figure 3B. Specifically, just as

the case of TOD, radiation waves generate at the maximum-

compressed distance where KMSs have maximum amplitude.

Unlike the case of TOD, there are two radiation waves which are

symmetrical about t = 0. Namely, they have opposite radiation

velocity vR. After the radiation, the KMS splits into several subwaves

distributed symmetrically with respect to t = 0.

A further observation for resonance radiation in frequency

domain shows that KMSs produce two symmetrical radiation

bands with frequencies ω01 and ω02 (ω01 = −ω02). This

corresponds to the linear waves with opposite radiation velocity vR
shown in time domain.We emphasize that these radiation frequencies

fit the calculated frequencies accurately. In addition, with the value of

FOD increasing, the two radiation bands get closer. Note that

although the radiation condition yields a quartic equation, there

are only two real roots that correspond to the radiation frequencies.

FIGURE 4
Radiation properties induced by the combined effects of TOD and FOD. (A,B) show false color plots of spatio-temporal evolution and spectra
with two. In (A), the dashed black lines refer to group velocities of the first and second cell of KMS, vg1=−0.92033, vg2=−2. The dashedwhite lines refer
to radiation velocities vR1=−21.5271, vR2=58.0662. (C,D) Radiation frequencies and spectra for the first cell of KMS with vg1. (C)Graphical solutions of
Eq. 10. ω01 and ω02 are the intersection points corresponding to the radiation frequencies obtained exactly from the resonance condition. (D)
Output spectrum in log scale (solid blue) compared with the input spectrum (dashed blue). (E,F) Similar to (C,D) but for the second cell of KMS with
vg2. The parameters are β3=0.24, β4=0.096, and b = 1.5.
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5 Radiation induced by third-order
dispersion and fourth-order
dispersion

Let us consider the radiation properties induced by the

combined effects of TOD and FOD. In order to better

understand this combined effects, we consider the radiation

shown in Figure 1A but perturbed by a small positive value

of FOD.

As shown in Figure 4, even when b is small, KMS can suffer

accelerating propagation. This means that FOD enhances the

group velocity of KMS. Clearly, the group velocity of the first cell

is different from that of the second one, i.e., vg1 ≠ vg2. The

radiation occurs in each cell of KMS. Due to the coexistence of

FIGURE 5
As in Figure 2 for β3=0.24, and β4=0.096. The variations of radiation distances (z0j) (A), radiation frequencies (ω0j) (A), group velocity of first cell of
KMS (vg) (B), radiation velocities of two dominating radiation bands (vR1, vR2) (B), and radiation efficiency (η) (C) versus b.

FIGURE 6
Dominant radiation frequencies under different radiation conditions [9]–[11]. (A) Variations of single radiation frequency (ω0) induced by TOD.
(B,C) Variations of two radiation frequency (ω01, ω02) induced by TOD and FOD. (D) Comparison between radiation frequencies (ω01, ω02) and the
numerical simulations with a special b circled in (B) and (C). (E)Comparison of the frequency calculations for the three resonance conditions with b=
2.8 when β3 = 0.24 and β4 = 0.
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TOD and FOD, linear radiation waves appear on two sides of the

KMS with velocities vR1, vR2. However, they are asymmetric

about the group velocity of KMS. The spectrum distribution

reveals that the two radiation waves correspond to the

frequencies ω01, ω02. The radiation bands become wider as z

increases, since the variety of the group velocity of KMS causes

the slight frequency shift. We perform the radiation condition for

the first 2 cells of the KMS. Again, the analytical frequencies agree

with those obtained by numerical simulations.

Figure 5 shows the variations of radiation frequencies (ω0j),

initial distances (z0j), group velocity of first cell of KMS (vg), and

radiation velocities of two dominating radiation bands (vR1, vR2)

as b increases. The critical value of b (bc = 2.15) is obtained

numerically. When b ≤ bc, two radiation bands with frequencies

(ω01, ω02) appear at initial distances (z01, z02). As b→ 1, z01 ≈ z02.

As b increases, both z01 and z02 decrease, and in particular, z01 ≠
z02. Correspondingly, ω01 and ω02 increase slightly. Instead, if b >
bc, two additional radiation bands with frequencies (ω03, ω04)

emerge at different initial distances (z03, z04). The radiation

efficiency in the presence of both TOD and FOD is shown in

Figure 5C. As can be seen, the variation of the radiation efficiency

is irregular as b increases due to the coexistence of TOD and

FOD. This coexistence induces the difference of the initial

radiation distances between two radiation bands.

We point out that all results shown above are obtained by

considering the radiation condition [10]. Let us clarify here the

availability of the conditions [9, 11]. To do so, we numerically

calculate the radiation frequencies under different conditions. We

first show in Figure 6A, the variation of single dominant frequency

(ω0) induced by TOD as b increases. As can be seen, three curves

obtained under different conditions are much close to each other. In

the case of two dominant frequencies (ω01, ω02) induced by both

TOD and FOD (Figures 6B,C), a slight difference can be observed for

ω01 when b is small, as shown in Figure 6C. We compare this

difference with the numerical simulation. As shown in Figure 6D, the

frequency ω01 obtained under the condition [10] shows a greet

agreement with the numerical simulation. This is because when b

is small the dominant mechanism of KMS formation is the

modulation instability (namely, the property of KMSs is similar

with that of Peregrine rogue waves). In this case, the plane wave

background plays a key role and the linear contribution of the

wavenumber cannot be ignored. However, when b is large the

dominant mechanism of KMS formation is the linear interference

between solitons and a plane wave. The nonlinear contribution of the

soliton wavenumber plays a dominant role in radiation. As shown in

Figure 6E, when b = 2.8, we can see clearly that the condition [11]

provides a better description of the radiation frequency.

6 Conclusion

We have studied analytically and numerically Cherenkov

radiation emitted by KMSs with arbitrary propagation constant b

in the presence of TOD and FOD. The radiation emerges

periodically in propagation and can exhibit multi-frequency

bands which depends strongly on the propagation constant.

We presented radiation conditions to calculate different

frequency bands, which shows great agreement with

numerical simulations. All these results are available for the

single-mode fiber. Breather emission can be extended into a

generalized framework in a multimode fiber, where resonant

radiations emitted by conical waves in a multimode fiber (so-

called discretization of conical emission) have been revealed

recently [33].
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