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Polymer nanocomposites exhibit versatility in their mechanical and structural

features predominantly due to the huge surface area provided by nanoparticles.

Interaction of the nanoparticles with polymer matrix selectively dictates the

applications suitable for a particular polymer nanocomposite system. Novel

hybrid polymer-derivedmaterials based on polymer grafted nanoparticles (NPs)

can either be mixed with the polymer matrix or self-suspended without matrix

polymer. In both cases superior properties are demonstrated compared to the

traditional polymer nanocomposites, most notably by 1) incorporation of NPs

into polymers without “mixing problems” and 2) a wide range of the transport

phenomena (from solids to viscous fluids). Hence, hairy nanoparticle-based

nanocomposites are equipped to handle specific and unique challenges in

manufacturing and processing methods. It is known that the transport

properties can be tuned by altering the molecular design of hairy

nanoparticles (i.e., grafted polymer chemistry, NP concentrations, grafting

density, and polymer molecular weight) and matrix polymer (e.g., molecular

weight). In this article, we review the 1) most common methods of synthesizing

hairy nanoparticle, 2) their microscopic dynamics and structural features and 3)

some interesting applications of nanocomposite based on hairy nanoparticles.

We discuss the effect of various parameters like nanoparticle size, molecular

weight of the polymer etc. on the features of nanocomposites and its

implications on the properties.

KEYWORDS

nanocomposites, synthesis, dynamics, structure, properties

1 Introduction

Polymer nanocomposites derived from polymer grafted nanoparticles guarantee

uniform dispersion of nanoparticles and immunity from phase separation [1–4]. In

the absence of free polymer, they are known as one component nanocomposites (OCNC).

Usage of OCNC have been explored in a variety of applications like gas separation, energy

storage etc. due to their unique properties [5–10]. The synthesis chemistry of OCNC can

control multiple parameters like the diameter, nanoparticle shape, polymer molecular

weight (MW), grafting density etc., giving rise to remarkably tunable properties.

Application oriented parameter optimization creates opportunity like probing the

origin of properties, which is again a multiparametric problem.
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The properties of OCNCs are dependent on the dynamics

and viscoelasticity of grafted polymer. Dynamical and

viscoelastic features of the polymer are governed by the

assembly of nanoparticles and confinement effects. The

assembly of nanoparticles is also dependent on the

conformational entropy of the grafted chains. Therefore, there

exists an interdependence of polymer properties, dynamics and

particle assembly [4, 11]. Miscellaneous parts of this problem are

discussed in literature by several researchers, many times in

relevance of an application. Here, we review some of the

crucial research in this area. The goal of this short review is

to furnish the reader with sufficient knowledge to understand the

critical advances in the field.

2 Synthesis

Synthesis of OCNC is carried out via two approaches:

“grafting from” and “grafting to” methods [12–18]. In

“grafting from” approach, the monomer is attached to

nanoparticle surface and then polymerized, typically by free

radical polymerization, such that the polymer grows on the

nanoparticle surface [19, 20]. For example, Chevigny et. al.

showed the three step polymer grafting process on silica

nanoparticles, consisting of silanization of surface with

aminopropyltriethoxysilane, followed by grafting of the

initiator and polymerization [21]. Similar procedures are used

with the other kind of nanoparticles like gold, iron oxide etc.,

[22–24]. Polymer synthesized from the surface of nanoparticles

using reversible addition fragmentation chain transfer

polymerization (RAFT) and Atom Transfer Radical

Polymerization (ATRP) have been reported widely including

the study of polymerization kinetics [25–29]. The advantage of

grafting from method is achievement of high grafting densities

due to the ease of attaching high number of monomers on

surface. However, the grafted polymer suffers from high

polydispersity, limiting their suitability for fundamental studies.

In the “grafting to” approach, polymerized chains are

attached to the nanoparticles surface [13, 30]. This allows to

graft monodisperse polymer on nanoparticle, making these

excellent model systems. Polymer chains functionalized with

coupling agents like carbonyldiimidazole, disuccinimidyl

carbonate etc., are covalently bonded to the silanized particle

surface [21, 31]. Due to the bulkiness of chains, the grafting

densities are generally lower as compared to the “grafting from”

method. However, some newly reported methods claim higher

grafting densities even by “grafting to”method. Ligand exchange

chemistry produces high grafting density with coordinate bond

between the metal nanoparticles and ligand functionalized

polymer chains [32, 33]. Shui et. al. reported that using a

mixture of good and bad solvent for the polymer, grafting

density could be controllably varied [33]. By changing the

ratio between solvents, they achieved grafting densities up to

2.8 chains/nm2. In another method, micelles of block copolymers

are generated in a solvent followed by the solidification of the

micellar core [14, 34]. Different shapes of nanoparticles could be

produced such as spheres, plates etc., depending on the ratio of

the block lengths and polymer concentrations [35].

We note that there exists a variety of nanoparticle type and

polymer combinations e.g., carbon nanotubes grafted with

various polymers, polystyrene grafted silica, poly (3-

hexylthiophene) grafted ZnO etc., [36–40] However, the

discussion for all of these combinations is not the focus of

this review. With a brief introduction to the gist of employed

synthesis techniques, we now discuss the structure and dynamics

of OCNCs.

3 Structure and dynamics

Structure and dynamics of OCNCs have been widely studied

using techniques such as static and quasielastic light, small angle

X-ray and neutron scattering (SAXS and SANS), microscopy,

dielectric spectroscopy, rheology etc. Structural and dynamical

features of OCNC exist over multiple length as well as time scales

with further complexities at each level.

Some of the intriguing and counterintuitive features are

present at length scales from few Angstroms to few

nanometers of segmental dynamics i.e., from few picoseconds

to few nanoseconds. One could assign the relaxation in this

region to the monomer mobilities. Kim et al. used dielectric

spectroscopy, rheology and SAXS on polyisoprene grafted silica

nanoparticles to show that the segmental dynamics of grafted

chains is slower and more coupled than that of the ungrafted

FIGURE 1
Representative distribution of relaxation times for shorter
grafted chains and longer grafted chains as compared to the neat
polymer.
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chains [41]. They followed the effect of MW and grafting density

to conclude that with increase in molecular weight,

entanglements and grafting density, the slowing down of

dynamics becomes lesser prominent. They attributed their

observations to the space filling constraint felt by the grafted

chains. On the other hand, Jhalaria et. al. showed using

quasielastic neutron scattering (QENS), that for several MW

of polymethyl-acrylate grafted silica nanoparticles, the segmental

dynamics accelerates as compared to the free polymer [42]. This

is attributed to the local increase in the molar volume in

nanocomposites. Contrarily, report by Mark et al. showed

unchanged segmental dynamics in low MW polyisoprene

grafted nanoparticles suggesting MW dependence of the

segmental motion in OCNCs [43]. This MW dependence was

proven by us for two different MWs of polyisoprene grafted iron-

oxide nanoparticles [44]. We analyzed the QENS

(backscattering) and dielectric spectroscopy data using

relaxation time spectrum analysis and showed a distribution

of segmental relaxation times including both faster as well as

slower segments for grafted polymer (Figure 1). A difference in

the weighted contribution of these appears as the difference in

average segmental relaxation times. Mapesa et al. used the

distribution of relaxation times extracted from dielectric

spectroscopy to study the difference between polymethyl-

methacrylate filled with bare silica nanoparticles and

corresponding OCNC, for various nanoparticles loadings [45].

The OCNC showed wider distribution of relaxation times

especially extended to faster times. They also attributed the

increase in segmental dynamics to the increase in molar

volume due to increasing interphase between the nanoparticle

and polymer. This generates higher packing frustration in OCNC

interphase and hence local density fluctuation. The location

dependent density of grafted and ungrafted polymers was

studied by Power et. al using MD simulations [46]. They

found maximum density of polymer segments near the

nanoparticle surface, especially for grafted polymers, which

gradually decreases to bulk values toward the chain ends. This

is in line with the speculations based on QENS [44]. Therefore,

the role of interface is crucial in deciding the OCNC properties.

Dukes et. al. discussed the conformational changes of the

polymers grafted on spherical nanoparticles obtained by dynamic

light scattering (DLS) [47]. At low grafting density, negligible

interactions with the adjacent grafts are present. A mushroom

like conformation is assumed with brush height (h) proportional

to the radius of gyration (Rg) of the polymer i.e., h ∝ 2Rg. At

moderate grafting densities, the neighboring grafts start to

interpenetrate therefore, known as semidilute polymer brushes

(SDPB). In this regime, h ∝ Nσ1/3lo5/3, where N is degree of

polymerization, σ is the grafting density and lo is the monomer

length. Polymer chains with much higher grafting densities are

known as concentrated polymer brushes (CPB) where, h ∝
Nσ1/3lo2. Simulations have confirmed the transition from

mushroom to brush like polymer conformation with

increasing grafting density [10]. However, this transition was

not observed for small nanoparticles. Wei et. al. performed SANS

and neutron spin echo (NSE) experiments on polymethyl-

acrylate grafted silica nanoparticles in solvent with different

parts of polymer labelled with hydrogen and deuterium in

different samples [48]. They showed that in OCNC, the

interfacial region near the particle surface consists of stretched

chain segments, hence representing the CPB region. However,

the segments away from the particle are SDPB. The impact on the

dynamics of different segments is also studied. NSE data showed

that the segments near the core are slower than those away from

the particle due to strong confinement.

The presence of an interfacial layer exhibiting substantial

differences than the bulk polymer has been well reported [42–44,

49]. Holt et. al. compared the dynamics of interfacial layer for the

poly (2-vinylpyridine) (P2VP) with different MW in OCNC with

the physically adsorbed polymer nanoparticles using SAXS,

differential scanning calorimetry and dielectric spectroscopy

[50]. For low polymer MW, they found negligible difference

in the decelerated dynamics of two nanocomposites. Interfacial

model calculations show that the volume of interface includes the

entire polymer. Similar dynamics is also observed for the high

MW. However, for intermediate MW, the grafted polymer shows

slower and more heterogenous dynamics as compared to the

composites with ungrafted polymers. Using self-consistent field

theory calculations, they showed that these trends could be

related to the chain stretching in the interfacial region giving

rise to slower dynamics, which is prominent in OCNC at

intermediate MW. In a different publication, the same group

reported that contrary to segmental motion, the β relaxation in

P2VP, which corresponds to rotational relaxation of pyridine

side groups, becomes faster in composites than the pure polymer

[51]. The fastest dynamics exhibited by the OCNCs is

counterintuitively accompanied by an increase in glass

transition temperature (Tg) and decrease in segmental

mobility. This is despite the fact that OCNC have largest free

volume available leading to decrease in polymer density. They

conclude that while the interfacial chain stretching leads to

slower segmental dynamics, the secondary relaxation is

controlled by density changes. This also reflects in weaker

mechanical properties of OCNC as compared to the pure

polymer and polymer adsorbed nanocomposites. Other than

the relaxation time scales, the amplitudes of the relaxation are

also affected by the presence of interfacial layer [52].

Miller et. al performed core-modified dissipative particle

dynamics simulations on OCNC to analyze the effect of

grafting on polymer conformation and relaxation [53]. They

found an increase in the Rg of polymers after grafting. The

confinement effects induced by grafting were characterized by

confinement parameter ξ* = 1/Rg0
��

σ
√

, where σ is the grafting

density, Rg0 is the radius of gyration for ungrafted chain. ξ* <
1 represents highly confined chains. They showed that the

relaxation time (τ1) of grafted chains scales as τ1 ∝ (ξ*)−β
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where β > 1 and its values increases from pure composites melt to

dispersion in solvent. Importantly, for confinement length ξ* < 1,

the grafted chains relax following the Rouse mechanism in both

melt and solution state. Agarwal et. al. employed dielectric

spectroscopy to study the chain end-to-end relaxation in

densely grafted polyisoprene-silica OCNC [54]. They reported

an entanglement like confinement effect in grafted polymers even

below their entanglement MW. These are attributed to the

constraints imposed by neighboring grafts. The grafted chains

relax by arm retraction and then remain in frustrated state due to

long diffusion time of nanoparticles.

At length scales on the order of 100 nm to microns, glass like

behavior of the OCNC is observed [1, 55, 56]. Wen et. al. using

rheology and time concentration superposition showed that the

grafted nanoparticles exhibit soft glass like characteristics where

the particles perform in-cage rattling like motion [55]. At longer

times, they observed the escape of grafted particles from the cage

leading to fluid like response [3, 57–59]. These jamming-unjamming

transitions are also observed at time scales on the order of 100 s using

X-ray photon correlation spectroscopy (XPCS) [60]. The toughness of

nanocomposites is related to this glassy response. Liu et. al. showed

that the cage strength increases with equilibration of the

nanocomposites systems whereas, decreases with increase in

temperature [61]. Using SAXS they showed two types of

interaction between the nanoparticles: 1. Repulsive interactions

between the grafted particles and 2. Entropic attractions between

the particle cores created by the grafted polymer.

Nanocomposites have tendency to assemble in different

structural forms, from string to well-developed lattices [16,

62–70]. Other than the regular lattice packing of grafted

nanoparticles, it is shown by Akcora et. al. that polymer

grafted spherical nanoparticles also exhibit tendency to

assemble into anisotropic structures when dispersed in free

polymer [71]. This self-assembly is governed by the

aggregation forces between the nanoparticle core, competing

with the entropy of grafted chains [72]. The self-assembly of

polymer grafted nanoparticles in solution has been studied by

Bachhar et. al. using theoretical model based on the Daoud and

Cotton theory for star polymers [73, 74]. They looked at the effect

of polydispersity in the nanoparticle core size and showed that

the distribution in the core size controls the self-assembly,

overriding the effect of grafted chain dispersity. This led to a

conclusion that in order to control the assembly of polymer

grafted nanoparticles, tuning the nanoparticle size distribution

must be the focus of synthetic efforts.

3 Properties

OCNCs exhibit significantly enhanced properties like

viscoelasticity, crystallization, gas transport etc. than polymers

or nanoparticle reinforced ungrafted polymer. We discuss some

of these extensively reported properties here.

3.1 Viscoelasticity

OCNC in general exhibit higher viscosity and moduli as

compared to the nanoparticle dispersed polymer or neat

polymer in the low frequency range [1, 59, 75–78]

Hattemer and Arya used course grain MD simulations to

probe the origin of higher moduli in OCNC as compared

to the particle dispersed nanocomposites [79]. They showed

that the existence of grafts introduces additional distortion of

the shear field in polymer leading to higher modulus. The low

frequency higher modulus is also affected by the slower

relaxation of the grafted chains. The higher moduli are

captured using a phenomenological model based on the

Rouse formulation. Sakib et. al. conducted rheology

experiments along with DSC to show the shift of

viscoelastic response in OCNC towards lower frequencies

as compared to the neat polymer [57]. This is attributed to

an increase in Tg due to the space filling constraint of grafted

polymer similar to that reported by Kim et. al. [41, 80].

Whereas, the plateau modulus of grafted chains, which is

related to the entanglements decreases for lower MW grafts

and increases for high MW grafts. The explanation of this

effect has been given as a decrease in the effective

entanglement density in shorter chain due to lesser

penetration of the nanoparticle core into the polymer of

neighboring particles. For larger chains, the nanoparticle

core also participates in entanglement, generating higher

entanglement density. Chen et. al. investigated the

viscoelastic properties of OCNC in terms of the variation

in composite toughness with polymer MW [60]. The

toughness of polymethylacrylate grafted SiO2 nanoparticles

exhibits a peak in molecular weights in Laser-induced

projectile impact testing. Combination of entanglement and

particle jamming controls this behavior [58, 61]. XPCS and

QENS are used to relate the toughness of OCNC to the

segmental relaxations and the colloidal flow.

3.2 Polymer crystallization

Where presence of nanoparticle provides a nucleation site

for the polymer, the existence of grafting impedes the

formation of folded chain crystals [81, 82]. Kim et. al.

showed that the polymer grafted on nanoparticles

crystallizes in contrasting manners at different length

scales. While at nanometer scale helical structures are

abundantly present, at length scales greater than the

nanoparticle size, the overall crystallinity is lower than the

pure polymer, indicating restricted formation of crystalline

domains [83]. They claim that the polymer chains crystallize

into extended chain crystals due to crowding and therefore,

the spherulites are not formed in the polymer brush on

particle surface. However, Zhao et. al. reported the
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formation of spherulites even in case of densely grafted

nanoparticles [84]. They advocated the formation of

extended chain crystals for OCNC with high grafting

densities. Employing Avrami analysis, they showed that

with increase in the grafting density, the crystallization

kinetics becomes faster. They attribute this to the ease of

nucleation provided by the presence of nanoparticle surface.

Wen et. al. found that for shorter grafted chains of

methoxypolyethylene glycol, the confinement effects are

stronger than longer chains [85]. For low grafting densities,

the crystallinity and crystallization temperature decrease

indicating resistance in crystallization. They obtained an

Avrami index = 1 for low grafting density OCNC

suggesting confined crystallization due to nucleation

barrier. This effect is observed because of the enhanced

interaction of grafted polymer with nanoparticle surface at

low grafting densities.

3.3 Other transport properties

Polymer nanocomposites show suitable transport

properties for various applications [86]. A series of papers

have been published on significant enhancement in CO2 vs.

CH4 separation for polymethacrylate grafted nanoparticles as

compared to neat polymer membranes [5, 42, 87–90]. It is

shown that by varying the MW and grafting density of the

polymer, selectivity and gas permeability can be tuned. The

gas diffusivity increases with increasing MW till a maximum

and then decreases. Detailed study of the OCNCmembranes is

carried out using QENS, SAXS, MD simulations and

theoretical models. It is shown that the increase in local

free volume (decreased density) of the grafted polymer as

compared to the neat polymer gives way for the enhanced gas

transport. Midya et. al. presented a two phase model for the

grafted polymer chains around the nanoparticles [88]. They

showed that there exist two regions of polymer segments; near

the particle surface segments are stretched (known as dry

layer) and do not interpenetrate with the segments of adjacent

particles whereas, away from the surface interpenetration

among the polymer segments from different particles takes

place (Figure 2). The stretching leads to a decrease in the local

friction and hence faster segmental mobility [90]. This creates

pathways for the gas transport.

OCNC also show outstanding ion transport in energy storage

devices therefore, becoming potential candidates for the solid-

state electrolytes [6]. These findings are supported by the tunable

mechanical and ion conducting properties of OCNC leading to

enhanced device stability. Grabowski et. al. showed that for

supercapacitors, while the dispersion and dielectric breakdown

remains similar in blended nanoparticle-polymer system and

OCNC [91], the charge/discharge efficiency and the energy

storage capacity of the hairy nanoparticle systems is

substantial greater than the conventional nanocomposites.

FIGURE 2
Schematic for the two-phase model of polymer grafted nanoparticle showing dry zone and interpenetrated zone. Reprinted with permission
from Bilchak CR, Jhalaria M, Adhikari S, Midya J, Huang Y, Abbas Z, Nikoubashman A, Benicewicz BC, Rubinstein M, Kumar SK. Understanding Gas
Transport in Polymer-Grafted Nanoparticle Assemblies. Macromolecules (2022) 55:3011–3019. [89] Copyright 2022 American Chemical Society.
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Polymer grafted nanocomposite with or without free

polymer or solvent present plenty of opportunities in

various applications. However, the precise origin of the

properties of these materials is still an emerging field.

While the fundamental knowledge of OCNC physics is

important for optimization and tunability of properties, it

is also crucial for understanding the complex behavior of

polymers and their derivatives.
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