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This paper presents a polynomial eigenvalue solution to predict the propagation

behaviors of elastic wave in piezoelectric shunting arrays. Based on the Bloch

theorem, one independent unit cell is selected to conduct the dynamic

characteristic analysis instead of infinity. The reduced form of the discretized

governing equations is first derived by the standard finite element procedures.

To facilitate the subsequent acquisition of dispersion relationship, the dynamic

stiffness matrix is then partitioned into a block matrix. Through applying the

periodic boundary conditions, a polynomial eigenvalue equation concerning

complex propagation constant is finally obtained. The wave propagation and

attenuation characteristics in arbitrary directions are investigated using the

above methodology. The results demonstrate that the present method can

provide very accurate and reliable solutions for wave propagation prediction of

piezoelectric shunting arrays.
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1 Introduction

Over the past several decades, the propagation of elastic waves including bulk waves

[1] and surface waves [2] in phononic crystals (PCs) has attracted a great deal of interest

[3, 4]. Due to the existence of band gaps, PCs have many potential applications, such as

elastic wave filters and vibration isolation. There are two main mechanisms for the

formation of band gaps, namely, Bragg scattering (BS) [5] and locally resonant (LR) [6].

Compared with the BS mechanism, the LR one allows the acquisition of low-frequency

band gaps with the structure of small dimensions. Hence, researchers prefer to use the LR

PCs for the reduction of vibration noise in practical engineering [7]. However, for the

traditional PCs, the non-adjustable characteristics of band gaps restrict their practical

application, especially for structures with variable working conditions. By combining the

piezoelectric shunt damping technology [8, 9] with PCs theory, piezoelectric shunt arrays

(PSA) which belong to a new type of PCs emerged. The tunable characteristics of shunt

circuits allow the band gaps to be adjusted over desired frequency range. However, due to

the existence of complex wave vectors caused by the piezoelectric shunt damping, it is not

an easy work to predict the band structures of PSA using the traditional numerical

approaches.
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The transfer matrix method [10, 11] is the first numerical

algorithm used in band structures simulation of PSA. Based on

this approach, Thorp [12] et al. studied the attenuation and

localization of elastic wave propagation in a piezoelectric

resistive-inductive-shunted rod. Airoldi and Ruzzene [13]

investigated the wave propagation characteristics of a periodic

beam with shunted piezoelectric patches. Wang [14] et al.

analyzed the vibration attenuation effects of piezoelectric

beams connected by an enhanced resonant shunting circuit.

However, this algorithm is restricted to one-dimensional

system, which is not suitable for practical engineering

applications. In order to obtain the two-dimensional band

structures of PSA, the enhanced plane wave expansion (PWE)

method [15] emerged. Lian [16] et al. analyzed the effect of circuit

parameters on the LR band gaps in a piezoelectric PC plate with

resonant shunting circuits. Chen [17] et al. studied the band gap

characteristics of piezoelectric metamaterial plate with interface

circuits. Compared with the conventional PWE, the enhanced

PWE can provide more accurate results and has a good

convergence. But it is difficult to predict the attenuation

degree of elastic waves due to the neglect of information on

amplitude attenuation in the wave vectors. With the rapid

development of computational mechanics, researchers have

gradually applied the finite element method for the prediction

of wave propagation and attenuation in PSA. Spadoni [18] et al.

analyzed the wave propagation and subsequent vibrations in

plates with periodic shunted piezoelectric patches. Gardonio [19]

et al. realized the effective control of bending vibration in thin

plate by self-tuning PSA. Although the propagation properties

can be obtained in some specific directions, these studies rarely

concern the arbitrarily oriented ones. By using the ‘fsolve’

function in Matlab, Chen [20] et al. predicted the propagation

behaviors of elastic wave in arbitrary directions in PSA. However,

several numerical defects still exist, for example, initial value

sensitivity and tendency to converge to wrong results. Later, Wen

[21] et al. proposed a wave field transformation method to

analyze the directionality of dispersion relationships when

elastic waves propagate in PSA. But this method suffers from

the complication formulations and the low computational

efficiency, which limits its practical application.

In order to facilitate the prediction of propagation

characteristics in arbitrary directions, developing a new

algorithm which can cure the above mentioned drawbacks

seems more feasible. In this work, we further present a

polynomial eigenvalue solution (PES) to predict the

propagation behaviors of elastic wave in PSA. As the structure

is periodic in the x-y plane, one independent unit cell is selected

for the dynamic characteristic analysis instead of infinity. Based

on the classic Kirchhoff hypothesis and standard finite element

procedures, rectangular element with corner nodes is first

employed to obtain the discretized system equations [22]. To

acquire the dispersion relationship conveniently, the dynamic

stiffness matrix is then partitioned into a block matrix. By

implementing the Bloch theorem, a polynomial eigenvalue

equation concerning complex propagation constants is further

obtained. Through a simple transformation, a linear eigenvalue

equation is finally derived, from which the dispersion

relationships of PSA can be easily derived. In order to

examine the performance of the proposed algorithm, the wave

propagation behaviors of a semi-covered piezoelectric periodic

plate connecting with a inductance-resistance circuit are in detail

studied. The results reveal that the present PES can provide very

accurate and reliable numerical predictions for the wave

propagation characteristics in arbitrary directions in PSA.

2 Methods

2.1 Theoretical basis

Consider a piezoelectric shunt system consisting of a host

plate and arrays of shunted piezoelectric patches, the periodic

plate behaves as a two-dimensional infinite waveguide

propagating transverse waves. Based on the Bloch theorem,

one independent unit cell is selected to conduct the dynamic

characteristic analysis, as illustrated in Figure 1A. The divided

regions of the unit cell contain two different structural types,

i.e., one is the single-layer plate without piezoelectric patches

attached, the other is a composite plate consisting of a host plate

and piezoelectric patches connecting with a circuit. Noteworthy,

the polarization directions of the piezoelectric patches are same.

As the existence of piezoelectric patches, the

electromechanical coupling effect needs to be considered for

the dynamic analysis of the unit cell. The stress-charge form of

the constitutive equations for a piezoelectric material can be

written as [23].

[ σp
De
] � [ cE −e

eT εs
][ εp

E
] (1)

where, σp and εp are the mechanical stress vector and the

mechanical strain vector, respectively; De and E represent the

electric displacement vector and the electric field vector on the

piezoelectric patches electrode, separately; εs is the permittivity

matrix; e denotes the matrix of piezoelectric stress constants; cE is

the stiffness matrix of piezoelectric material.

In order to obtain the subsequent discretized governing

equations, the energy functional of the whole unit cell is

presented. Here, only the energy functional of the composite

plate with piezoelectric patches attached is discussed. According

to the Lagrange’s equations, the energy functional L of the

composite plate can be described as

L � T − U + Ue (2)

where, T is the kinetic energy, U is the potential energy and Ue is

the electric energy, which can be expressed as
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T � 1
2
∫

Ωb

ρb _w
2dΩb + 1

2
∫

Ωp

ρp _w2dΩp (3)

U � 1
2
∫

Ωb

εTbσbdΩb + 1
2
∫

Ωp

εTpσpdΩp (4)

Ue � 1
2
∫

Ωp

ETDedΩp (5)

where, ρ is the density;w denotes the element displacement. Note

that, the subscript ‘b’ and ‘p’ represent the quantities

corresponding to host plate and piezoelectric shunting,

respectively.

To gain the wave propagation characteristics in the whole

PSA, the periodic boundary conditions need to be imposed. The

Bloch theorem explains this behavior, which can be described in

what follows. According to the lattice theory, the whole two-

dimensional lattice structure can be seen as the result of

translating the unit cell along the basis vectors α1 and α2 [24].

Let R(r) represent the displacement of a lattice point located at

the position r(x, y), which can be expressed as

R(r) � Re(iωt−k·r) (6)

in which, R is the amplitude of displacement vector and k is the

wave vector. The position of other ones based on this lattice point

can be given by

rn1 ,n2 � r + n1α1 + n2α2 (7)

where, the n1 and n2 are integers related to periodicity. Putting

μx � −k · α1 and μy � −k · α2, the displacement of lattice points

located at the position rn1 ,n2 can be given by

R(rn1 ,n2 ) � R(r)en1μx+n2μy (8)

2.2 Basic formulations of the PES

This section presents the basic formulations of PES for wave

propagation prediction of PSA in detail. To perform the

numerical investigation, both the finite element discretization

and the Bloch theorem are utilized, which will be detailedly

discussed in the following.

2.2.1 Finite element discretization
Based on the Bloch theorem, only one unit cell is selected for

the dynamic analysis. The composite plate structure, which is

used to represent the wave propagation characteristics, is shown

in Figure 1B. In order to implement the investigation, a set of

four-node rectangular elements with corner nodes [22] are first

adopted to discrete the problem domain. According to the

Kirchhoff hypothesis, the relationship between the vertical

deflection w and the rotation θx about x-axis, as well as the

rotation θy about y-axis, can be defined as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θx � zw

zy

θy � −zw
zx

(9)

Using the standard finite element procedure, the generalized

deflection w within an element can be interpolated using

w � Nue (10)

where, N is the element shape function; ue is the element

displacement vector that can be written as

ue � [ u1 u2 u3 u4 ]T (11)

in which, ui � {wi, θxi, θyi}(i � 1, 2, 3, 4) is the nodal

displacement vector.

To clearly illustrate Eq.10,N can be explicitly expressed using

N � [N1 N2 N3 N4 ] (12)
in which

Ni � 1
8
(1 + ξ0)(1 + η0)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 + ξ0 + η0 − ξ2 − η2

bηi(1 − η2)
−aξ i(1 − ξ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(i � 1, 2, 3, 4)

(13)
with

FIGURE 1
(A) The square unit cell; (B) Composite plate structure and rectangular element in x-y plane; (C) A typical mesh arrangement for the domain
discretization.
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{ ξ0 � ξξi,
η0 � ηηi,

ξ � (x − xc)/a
η � (y − yc)/b (14)

where, ξ and η are the normalized coordinates; xc and yc are the

coordinates of the centroid O; a and b are the half lengths of side;

the values of ξi and ηi can be found in Ref. [22].

Based on the relationship between stain and displacement,

the relevant strain vector related to the host plate and the

piezoelectric patches can be written as

ε � { εx εy γxy }T � zLw (15)

in which, L denotes the differential operator with the form of

L � { − z2

zx2
,− z2

zy2
,−2 z2

zxzy
}T

(16)

The stress-strain relationship for the host plate of PSA can be

written as

σb � Dεb (17)

where, the matrix D is the constitutive coefficient that can be

found in Ref. [22].

In order to represent the electromechanical coupling effect of

the piezoelectric shunt system, the potential degree of freedom

(DOF) should also be included in the kinetic analysis. Consider

the fact that the potential on the electrode of piezoelectric patch is

equal everywhere, a potential DOF φ namely the electric potential

difference is introduced for the whole unit cell, which can be

expressed as

φ � Ehp (18)

in which, E is the electric field intensity in z-axis direction; hp
denotes the thickness of piezoelectric patch.

According to the Hamilton principle, the energy functional L

in Eq. 2 should be at a minimum to reach equilibrium-stability

state. Substituting Eqs 1 and 10, 15, 17 and 18 into Eq. 2, the

discretized system equations for the dynamic characteristics of

unit cell corresponding to the PSA can then be derived as follows

[15, 25]

Muu€u + Kuuu + Kuφ φ � f (19)

Kφuu + Kφφ φ � q (20)

in which, u is the nodal displacements vector of the whole unit

cell; f is the system forces vector; q is the total charge; Muu, Kuu

and Kuφ are the assembled mass, stiffness and coupling matrices,

respectively. Kφu is the transpose matrix of Kuφ. Note that, Kφφ is

a scalar, which is opposite to the total capacitance of the

piezoelectric patches at constant strain.

Assuming that the displacement u is a small harmonic

perturbation which satisfies

u � ueiωt (21)

where, ω denotes the angular frequency; u represents the

amplitude of the displacement. Under the same hypothesis,

the relationship between the total charge q(ω) and the electric

potential difference φ(ω) can then be written as

q(ω) � φ(ω)
iωZ(ω) (22)

in which, Z(ω) is the complex impedance and i � ���−1√
. On its

substitution into Eq. 20, φ(ω) can be rewritten as

φ(ω) � [ 1
iωZ(ω) −Kφφ]−1Kφuu (23)

Substituting Eqs 21, 23 into Eq. 19, we can finally obtain

KD(ω) u � f (24)

where, KD(ω) is the dynamic stiffness matrix with the form of

KD(ω) � Kuu − ω2Muu + Kuφ[ 1
iωZ(ω) − Kφφ]−1Kφu (25)

2.2.2 Bloch analysis
To study the wave propagation behaviors of the whole PSA,

the periodic boundary conditions are introduced in this

subsection. As shown in Figure 1C, the nodal displacements u

and forces f have been divided according to their relative

positions in the unit cell, which can be expressed using

u � [ uI uB uT uL uR uLB uRB uLT u RT ]T (26)
f � [ 0 fB fT fL fR fLB fRB fLT f RT ]T (27)

Based on the periodic conditions and equilibrium conditions

[24], the Bloch boundary conditions can be written as

{ uT � eμyuB,uR � eμxuL

uLT � eμyuLB,uRB � eμxuLB, uRT � eμx+μyuLB
(28)

{ fB + e−μy fT � 0, fL + e−μx fR � 0
fLB + e−μx fRB + e−μy fLT + e−μx−μy fRT � 0

(29)

in which, (μx, μy) are propagation constants that are normally

complex numbers, i.e., μj � αj + iβj(j � x, y). The real part αj is
attenuation constant which indicates the amplitude decay of

elastic wave propagating from one unit cell to the next. The

imaginary part βj is phase constant which denotes the phase

change of elastic waves propagation.

Putting eμx � λx and eμy � λy, the matrix form of Eqs 28, 29

can be further expressed by

⎧⎨⎩ u � T(λx, λy) û
TT(1/λx, 1/λy) f � 0

(30)

in which

û � [ uI uB uL uLB ]T (31)
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T(λx, λy) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I 0 0 0 0 0 0 0 0
0 I Iλy 0 0 0 0 0 0
0 0 0 I Iλx 0 0 0 0
0 0 0 0 0 I Iλx Iλy Iλxλy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(32)

2.2.3 The acquirement of propagation constant
This subsection formulates a polynomial eigenvalue equation

to obtain the propagation constant on the basis of periodic

boundary conditions and dynamic equilibrium equation. To

facilitate the subsequent acquisition of propagation constant,

KD(ω) can be rewritten in the form of block matrix

KD(ω) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KII KIB KIT KIL KIR KILB KIRB KILT KIRT

KBI KBB KBT KBL KBR KBLB KBRB KBLT KBRT

KTI KTB KTT KTL KTR KTLB KTRB KTLT KTRT

KLI KLB KLT KLL KLR KLLB KLRB KLLT KLRT

KRI KRB KRT KRL KRR KRLB KRRB KRLT KRRT

KLBI KLBB KLBT KLBL KLBR KLBLB KLBRB KLBLT KLBRT

KRBI KRBB KRBT KRBL KRBR KRBLB KRBRB KRBLT KRBRT

KLTI KLTB KLTT KLTL KLTR KLTLB KLTRB KLTLT KLTRT

KRTI KRTB KRTT KRTL KRTR KRTLB KRTRB KRTLT KRTRT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(33)

Substituting Eqs. 30, 33 into Eq.24, a polynomial eigenvalue

equation, depending on ω, λx and λy, can be obtained and

expressed in the following form

[KD0 + KD1λx + KD2λy + KD3λ
2
x + KD4λ

2
y + KD5λxλy + KD6λ

2
xλy

+ KD7λxλ
2
y + KD8λ

2
xλ

2
y] û � 0

(34)
in which, the coefficient matrices are shown in Appendix A. It is

difficult to directly obtain λx and λy through a given ω as the

solution conditions of polynomial eigenvalue equation are not

satisfied [26]. Consider the fact that μx and μy can be represented

by wave vector k in x and y directions [27, 28], then we can get

μy
μx

� tan(θ) (35)

in which, θ is the wave propagation angle.

To make Eq. 34 solvable, the following two requirements

need to be satisfied: 1) the ratio μy/μx � m2/m1 is rational; 2) m2

and m1 are integers with no common divisor. Hence, the

propagation constants can be further expressed using μx �
m1δ and μy � m2δ where δ is the quantity without practical

meaning. By introducing τ � eδ , Eq. 34 can be rewritten as

[KD0 + KD1τ
m1 + KD2τ

m2 + KD3τ
2m1 + KD4τ

2m2 + KD5τ
m1+m2

+ KD6τ
2m1+m2 + KD7τ

m1+2m2 + KD8τ
2m1+2m2]u∧ � 0

(36)
Through a simple transformation process, Eq. 36 can be

further expressed using

[Q − τI]Û � 0 (37)
with

Q �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−K−1

DmKD(m−1) / −K−1
DmKD1 −K−1

DmKD0

I ..
.

1
I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (38)

Û �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τm−1û
..
.

τû
û

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (39)

in which, KDm ≠ 0 and m � 2m1 + 2m2

Obviously, Eq. 37 is a linear eigenvalue problem which is

easier to solve. When the propagation angular frequency ω and

the tangent value tan(θ) are given, δ can be easily derived. The

propagation constant μθ in arbitrary direction θ can be finally

calculated using

μθ � δ
�������
m2

1 +m2
2

√
(40)

It can be seen from Eq. 40 that μθ varies with the changes of δ,

m1 and m2. Therefore, when θ is determined, the relationship

between μθ and ω can be easily obtained to represent the

propagation behaviors of elastic wave.

3 Results

The present formulation has been coded using MATLAB

program. In what follows, a typical numerical example is

carefully studied to illustrate the accuracy and reliability of our

PES. In addition, thewave propagation and attenuation in arbitrary

directions are also investigated using the above methodology.

The host plate is epoxy with Young’s modulus E � 4.35GPa,

Poisson’s ratio υ � 0.37 and mass density ρb � 1180kg/m3. The

piezoelectric patch is PZT-5H. Table 1 and Table 2 list the related

material and geometric parameters used in this study.

Moreover, the shunt circuit is a serial resistive-inductive

network, hence the complex impedance Z becomes

Z(ω) � R + iωL (41)

where, the shunt resistance and inductance value are selected to

be 100Ω and 0.2H [20], respectively.

3.1 Accuracy of the PES

To implement this investigation, the problem domain is first

discretized using 16 four-node rectangular elements. As the

elastic wave can propagate in arbitrary directions, two

representative wave propagation angle, namely θ = 0 and θ =

π/4, are selected to study the wave propagation and attenuation

characteristics. Because the exact solutions are unknown for this

case, the numerical results verified by commercial software

ANSYS and experiment [20] are taken as the reference.
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The attenuation constant a and phase constant ß obtained

using both algorithms by varying the frequency from 0 Hz to

1,500 Hz are plotted in Figure 2. It can be observed that 1) For θ =

0, there are two band gaps in the considered frequency range. The

first band gap named the locally resonant gap is about

525 Hz–580 Hz, while the second one called the Bragg gap is

about 750 Hz–985 Hz. 2) For θ = π/4, only one band gap exists

which is about 527 Hz–582 Hz. 3) Whatever the wave

propagation angle is, the attenuation constant in the band gap

increases with the growth of frequency. However, it decreases

gradually after reaching the maximum at the center of frequency

range. 4) The maximum value of phase constant can only be π in

the considered frequency range. The Bloch theorem contributes

to this phenomenon. 5) For the ranges and widths of the band

gaps, together with the amplitude of the central band structures,

the PES can always give very accurate numerical predictions

compared with the reference. Therefore, the effectiveness and

accuracy of the present method is confirmed.

3.2 Convergence study

In order to further verify the reliability of our PES, the

convergence property of the present method is investigated in

this package. Differ from the previous subsection, two

representative directions, namely tan(θ) = 0.2 and tan(θ) = 1,

are studied in this part. The attenuation constants and phase

constants versus the increase of element number N are plotted in

Figure 3. It can be observed from these figures that 1) With the

increase of element number, the range and width of the band

gaps change very little. However, the attenuation constant near

the center of band gaps decreases continuously. 2) In the

direction of tan(θ) = 0.2, the phase constants obtained using

16, 64 and 144 elements are almost the same. Hence, very

accurate results can be obtained with few number of elements.

3) In the direction of tan(θ) = 1, the phase constants obtained

using 64 and 144 elements are slightly smaller than that obtained

using 16 elements. 4) The numerical results calculated using

64 and 144 elements are almost overlapped, whichmeans that the

present model could give very stable numerical predictions with a

coarse mesh discretization. Therefore, the convergence of the

present method is confirmed.

TABLE 1 Material parameters of the PZT-5H.

Density ρp(kg/m3)
sE11(m2/N) sE12(m2/N) d31(C/N) εT33(F/m)

7500 16.5 × 10−12 −4.78 × 10−12 −2.74 × 10−10 3.01 × 10−8

TABLE 2 Geometric parameters of the unit cell.

Length of
sidelb(mm)

Thickness
h(mm)

Lenth of
sidelp(mm)

Thicknesshp
(mm)

80 5 40 0.2

FIGURE 2
Variations in propagation constant with frequency at: (A) θ =
0; (B) θ = π/4.
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3.3 Directionality of the wave propagation
and attenuation

Based on the previous findings and discussion, it can be

found that the Bragg gap and the locally resonant gap differ from

each other greatly with the change of direction. In order to clearly

reveal the evolution of band gaps, the directionality of the wave

propagation and attenuation are further studied in this part.

According to the symmetry of square unit cell as shown in

Figure 1A, the propagation constant in arbitrary direction can be

obtained by sweeping θ from 0 to π/4, i. e

μθ � { μθ
μπ/2−θ

0≤ θ ≤ π/4
π/4< θ ≤ π/2

(42)

Therefore, the tangent value is taken from 0 to 1.

Figure 4A depicts the band gaps vary with tangent values, in

which the color spectra represents the magnitude of attenuation

constant. It can be seen from the figure that (1) A complete band gap

is first observed in the frequency range of 525–580 Hz. As locally

resonant gap is strongly related to the resonance of shunting circuits,

the bandwidth changes very little with direction. In other words, it is

a typically full band gap in all directions. 2) The frequency range of

Bragg gap increases with the growth of tangent value. However, due

to the frequency of lower boundary increases faster than that of

upper boundary, the band width decreases until it vanishes. The

Bragg gap is mainly induced by the impedance mismatch between

the piezoelectric patches and the substrate plate. With the wave

propagation angle θ increases, it gradually reaches impedance

matching. Hence, the Bragg gap is distinctly directional.

To further investigate the attenuation degree of elastic waves

in different directions, the attenuation constant obtained using

the present algorithm is also outlined in Figure 4B. Here, nine

different tangent values are considered, namely tan(θ) = 0, 0.125,

0.25, 0.375, 0.5, 0.625, 0.75, 0.875 and 1.0. It can be found that 1)

The amplitude of attenuation constant near the center of locally

FIGURE 3
Convergence of propagation constants with different amount of elements: (A) tan(θ) = 0.2; (B) tan(θ) = 1.
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resonant gap increases with the growth of tangent value.

However, it decreases quickly after reaching the maximum

when the tangent value is about 0.5. 2) The maximum of

attenuation constant within Bragg gap decreases with the

increase of tangent value. Combing with Figure 4A, when the

tangent value is about 0.9, it eventually equals zero.

Based on these preliminary findings, we can further conclude

that the PES can be seen a good choice for the prediction of wave

propagation and attenuation in arbitrary direction.

4 Conclusion

In this work, a polynomial eigenvalue solution is formulated for

predicting the propagation behaviors of elastic wave in arbitrary

directions in piezoelectric shunting arrays. Based on the Bloch

theorem, the wave propagation in PSA is evaluated through the

dynamic analysis of one unit cell. A typical square plate with

shunted piezoelectric patches is investigated in detail to study the

accuracy, convergence and effectiveness of PES. The results show

that the present method can provide very accurate numerical

solutions compared with the reference. Besides, the proposed

formulation can give very stable and convergent numerical

predictions with a coarse mesh discretization. The variations of

band gaps and attenuation constant with the wave propagation

angle are finally investigated, which can verify the effectiveness of

PES. Through the obtained results, the present algorithm is thus a

strong competitor to other solutions in the analysis of wave

propagation and attenuation in arbitrary directions in PSA.
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FIGURE 4
(A) Variation in band gaps with different tangent values; (B) Variations in attenuation constant with different tangent values.
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Appendix A

The coefficient matrices for any combination of λx and λy in

Eq. 34 are elaborated below.

KD0 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

KRTI KRTB KRTL KRTLB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.1)

KD1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
KTI KTB KTL KTLB

0 0 0 0
KLTI KLTB KRTR + KLTL KLTLB + KRTRB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.2)

KD2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
KRI KRB KRL KRLB

KRBI KRBB + KRTT KRBL KRBLB + KRTLT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.3)

KD3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 KTR KTRB

0 0 0 0
0 0 KLTR KLTRB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.4)

KD4 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 KRT 0 KRLT

0 KRBT 0 KRBLT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.5)

KD5 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
KII KIB KIL KILB

KBI KBB + KTT KBL KBLB + KTLT

KLI KLB KLL + KRR KLLB + KRRB

KLBI KLBB + KLTT KLBL + KRBR KLBLB + KRBRB + KLTLT + KRTRT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.6)

KD6 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 KIR KIRB

0 0 KBR KTRT + KBRB

0 0 KLR KLRB

0 0 KLBR KLBRB + KLTRT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.7)

KD7 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 KIT 0 KILT

0 KBT 0 KBLT

0 KLT 0 KLLT + KRRT

0 KLBT 0 KLBLT + KRBRT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.8)

KD8 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 KIRT

0 0 0 KBRT

0 0 0 KLRT

0 0 0 KLBRT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.9)
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