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This paper supplements the article (Eur. Phys. J. C 76: 246, 2016) by extending

somemore newwormhole solutions in the background of Finslerian geometry.

Here, we present six more solutions by considering i) a linear equation of state

(EoS) pr=ωρ and three different shape functions, ii) a linear relationship between

radial and tangential pressure as pt = npr with two different redshift functions

and iii) a specific density profile with a linear equation of state pr = ωρ. It is found

that all thesewormholes are violating null energy condition (NEC) signifying that

the throats are opened by exotic matters. Since the equation of state

parameters, ω or ωr = pr/ρ for all the solutions are < − 1, the corresponding

exoticmatter is none other than the phantom energy. Further, the two solutions

in Case ii) are not asymptotically flat since limr→∞[b(r)/r]K0. To make it

asymptotically flat we matched it with the Schwarzschild vacuum.
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1 Introduction

Two distinct spacetimes are possible to be connected through a shortcut, which

arises due to the hypothetical topological behavior of spacetime, popularly known as

“wormhole”. It is interesting to note that in their work Fuller and Wheeler [1], first

coined the term wormhole and provided due credit toWeyl [2] for the fundamental idea

of the possibility of non-simply connected spacetime. However, according to few

researchers, the study of the wormhole was actually initiated by Flamm [3]. Later

an important study by Einstein and Rosen revealed the wormhole geometry popularly

known as the Einstein-Rosen bridge where they investigated the non-singular

coordinate patches of the Reissner-Nordström and the Schwarzschild solutions.

Clearly, these two fundamental ideas of wormholes are completely different from

each other. The wormholes, which are offspring of the eternal black hole solution, are

not suitable for transferring information, and they are actually non-traversable in their

nature. On the other hand, the idea of a wormhole due to the non-simply connected

nature of spacetime as endorsed by Weyl predicts the presence of electromagnetic field
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lines without a source, which actually possible to be used as a

classical communication channel.

With the proposal of the idea of a wormhole, researchers

showed great curiosity about whether it is possible to construct a

sustainable wormhole, the topological tunnel of space, and

whether will it be consistent with the laws of physics. In

1962 in his seminal work Wheeler [4] predicted the Reissner-

Nordström and Kerr wormhole geometries in the form of

quantum foam at the Planck scale. In the further study by

Hawking [7] these wormholes have been featured as

“Euclidean wormholes” which are not traversable. With the

suitable choice of topology this wormhole geometry which is

described by the Schwarzschild metric [4], contains the horizon

and it is impossible to traverse through them as its throat

squeezes very quickly [5]. Hence, it is obvious to consider the

presence of non-zero stress and energy to support the

configuration of the wormhole throat [6]. This endorses the

presence of the material near the throat that must have a radial

tension greater than its mass-energy density which property has

not been seen so far in any material. In their detailed study,

Morris et al. [8] successfully explained static and spherically

symmetric traversable wormholes which support the presence of

such exotic matter that violates the energy conditions.

Immediately questions arise such as i) Is it admissible by

quantum field theory to consider such type of stress-energy

tensor to maintain a two-way traversable wormhole? ii)

Whether is it possible to form a wormhole that arises due to

the non-simply connected nature of spacetime as it is not the

usual case of spatial sections of the wormhole? These questions

should be answered as the laws of physics must be consistent with

the physics of traversable wormholes. In fact, a traversable

wormhole may act like a “time machine”, which in that case

may violate the causality [9].

In their studies, different researchers have confirmed that it is

necessary to consider exotic matter around the throat of the static

wormhole configurations, which also guarantees the violation of

the null energy condition (NEC). Although an important letter

by Visser et al. [10] reveals that though it is essential to violate

averaged null energy condition (ANEC), but it is enough to have

the presence of ANEC-violating matter infinitesimally small. It is

worth mentioning that the solutions of the static configuration of

wormholes are studied in literature [10–16] must be consistent

with some property to be traversable. However, to understand the

extensive delineation of the physical aspects of wormholes, we

suggest readers to study different wormhole configurations such

as rotating wormholes [17, 18], dynamical wormholes [19, 20],

wormholes with a cosmological constant Λ [21, 22], etc. Matters

violating the energy conditions can be categorized by the

equation of state parameter ω = p/ρ. The strong energy

condition demands ω ≥ −1/3 for normal fluids and becomes

exotic fluids (dark energy) if ω < − 1/3. The cosmological

constant corresponds to ω = −1, phantom ω < − 1 and

quintessence −1 < ω < − 1/3. Since opening the throat of a

wormhole requires the violation of null energy condition, i.e.

ρ+p < 0 demands ω < − 1, the throat can be open either by

phantom energy or cosmological constant. Many authors

presented wormhole solutions supported by exotic matters in

GR and modified gravity [23–27].

Investigation of the different properties of spacetime in more

generalized theories of gravity has attracted much attention

among scientists in recent days. Interestingly, most of the

articles are concerned with the geometrical aspect of the field

equation. Also, recent observational evidence has triggered the

search for a more generalized form of gravitational theory

compared to general relativity (GR). In fact, with the

advancements of quantum gravity research, many

investigations came up with the idea that GR is actually

embedded in some more generalized form of the gravity field.

Besides the astrophysical significance, there are many possible

applications of spacetime in ADS/CFT correspondence, string

theory, induced gravity, and de Sitter gauge theory [28, 29].

Importantly based on the following reasons, it is suitable to

choose Finsler geometry over GR are given by i) the geometry

is dependent on the dynamics as well as the position of the

system, and no quadratic restrictions are required to bound

the length element in Finsler geometry [30]. The measurement

of time between two events that appeared to an observer is

actually the same as the distance between two events that

occurred in the world line of the same observer. ii) The

measurement depends on the tangent bundle of a

homogeneous function which results that the arcs

depending on length as well as velocity. iii) Also, one can

easily resolve by considering F(x, y) � �������
gμ]yμy]√

in

Riemannian manifold (M, gμ](x)) the present Finsler space

which is quadratic in terms of yθ and yϕ. In fact, the covariant

derivative of the Riemannian space is possible to be used in

this present case as it is a semi-definite Finsler space. Hence,

the Bianchi identity in this Finsler space is the same as found

in the Riemannian space. The gravitational field equations are

found as the present Finsler space reduces into the

Riemannian space.

A detailed study of Einstein’s gravity in the framework of

Finslerian geometry is found in the literature [31–34]. Also, in

several recent articles [35–42] researchers have studied

anisotropy of the Universe and the violation of Lorentzian

invariance in Finsler geometry. Further, in the framework of

Finsler geometry Minguzzi [43] has studied the singularity

theorem and the Raychaudhuri equation. In their important

study, Stavrinos and Alexious [44] have studied scalar-tensor

theory and the generalized form of Raychaudhuri equation in

the Finsler-Rander spacetime. Aazami and Javaloyes [45] have

studied Penrose’s singularity theorem in Finslerian geometry.

Rahaman et al. [46] and Chowdhuri et al. [47] have presented

an important study on the compact stars model in Finsler

spacetime. On the other hand, the investigation made by Li

[48] provides the eigenfunction of the Finslerian Laplacian
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operator and also features Finslerian Reissner-Nordström

solution for vacuum. Li and Chang [49] also presented the

exact vacuum solution in Finsler spacetime. Other traversable

wormholes are also presented by many authors in various

modified gravity theories [50, 51]. €Ovgün and Sakalli

presented a thin shell wormhole solution using Visser cut

and paste technique [52], gravitino and vector particles as

Hawking radiation from the traversable Lorentzian

wormholes [53, 54], the deflection angle of light by

wormholes [55]. A model of cosmic springs in Finslerian

geometries was also presented by Lake [56].

2 Finslerian geometry and wormhole
field equations

The Finslerian geometry is constructed from Finsler

structure F which is defined as [57]

x, μy( ) � μF x, y( ) ∀ μ> 0. (1)

Here x ∈ M represents position and y = dx/dt, the velocity. The

metric describing Finslerian geometry is given as [58]

gμ] ≡
z

zyμ

z

zy]

1
2
F2( ). (2)

The geodesic equation in the Finsler manifold is expressed

as [58]

d2xμ

dτ2
+ 2Gμ � 0, (3)

where Gμ is called the geodesic spray coefficients defined as [58]

Gμ � 1
4
gμ] z2F2

zxλzy] yλ − zF2

zx]( ). (4)

The Ricci scalar in Finsler geometry is written as [58]

R ≡ Rμ
μ �

1
F2

2
zGμ

zxμ
− yλ z2Gμ

zxλzyμ
( +2Gλ z2Gμ

zxλzyμ
− zGμ

zyλ

zGλ

zyμ
) (5)

Rμ
] �

1
F2

Rμ
λ]ρy

λyρ. (6)

Here Rμ
λ]ρ depends on connection and Rμ

] depends only on

the Finsler structure F.

Due to Birkhoff’s theorem, it is well-known that most of

static vacuum solutions are reducible to the Schwarzschild’s

form, hence we will assume the Finsler structure in the

similar form

F2 � B r( )ytyt − A r( )yryr − r2 �F
2
θ,ϕ, yθ , yϕ( ). (7)

The Finsler metric is given below

gμ] � diag B,−A,−r2 �gij( ), (8)
gμ] � diag B−1,−A−1,−r2 �gij( ), (9)

Where �gij are derived from �F2 and (θ, ϕ) ≡ (i, j). The components

of the geodesic spray coefficient become

Gt � B′
2B

ytyr, (10)

Gr � A′
4A

yryr + B′
4A

ytyt − r

2A
�F
2
, (11)

Gθ � 1
r
yθyr + �G

θ
, (12)

Gϕ � 1
r
yϕyr + �G

ϕ
, (13)

Where the prime represents differentiation with respect to r and

the �G is the geodesic spray coefficients derived by �F. Substituting

(Eq. 10)-(Eq. 13) to (Eq. 5) we the expression of Ricci scalar as

F2R � B″
2A

− B′
4A

A′
A

+ B′
B

( ) + B′
rA

[ ]ytyt

+ −B″
2B

+ B′
4B

A′
A

+ B′
B

( ) + A′
rA

[ ]yryr

+ �R − 1
A
+ r

2A
A′
A

− B′
B

( )[ ]�F2
, (14)

where �R denotes the Ricci scalar correspond to �F.

Akbar-Zadeh [59] first introduced the notion of Ricci tensor

in the Finsler geometry as

Rμ] � z2

zyμzy]

1
2
F2R( ). (15)

The scalar curvature in the Finsler geometry is defined as

S � gμ]Rμ]. Now the modified Einstein’s tensor is given by

(See Appendix A)

Gμ] ≡ Rμ] − 1
2
gμ]S. (16)

The covariant conservation of Gμ] in Finsler geometry

i.e., Gμ
];μ � 0 was proved by Chang and Li [37].

Now we can write the components of Einstein’s tensor in

Finsler geometry as

Gt
t �

A′
rA2

− 1
r2A

+ λ

r2
, (17)

Gr
r � − B′

rAB
− 1
r2A

+ λ

r2
, (18)

Gθ
θ � Gϕ

ϕ � − B″
2AB

− B′
2rAB

+ A′
2rA2

+ B′
4AB

A′
A

+ B′
B

( ). (19)

Finally, we can write the field equations in Finsler

spacetime as

Gμ
] � 8πFT

μ
] , (20)

with Tμ
] is the energy-momentum tensor and 4πF is expressing

the volume of �F in the field equation.

Assuming a matter distribution with anisotropic pressure,

the form of the energy-momentum tensor can be written as
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Tμ
ξ � ρvμvξ + prχξχ

μ + pt vμvξ − χξχ
μ + gμ

ξ( ) , (21)

where vμvμ = −χμχμ = 1, pr and pt denote radial and transverse

pressures, respectively. ρ is the density of the fluid distribution, vμ is the

four velocity, and χμ is the unit space-like vector in the radial direction.

By using the energy-momentum tensor in (Eq. 21) along with

the field Eq. 20 we get.

8πFρ � A′
2A2

− 1
r2A

+ λ

r2
, (22)

8πFpr � B′
rAB

+ 1
r2A

− λ

r2
, (23)

8πFpt � B″
2AB

+ B′
2rAB

− A′
2rA2

− B′
4AB

A′
A

+ B′
B

( ), (24)

With λ, the constant flag curvature. Now the Finsler form of the

Morris-Thorne [6] wormhole geometry can be written as

F2 � −e2f r( )ytyt + yryr

1 − b
r

+ r2 �F
2
θ,ϕ, yθ , yϕ( ), (25)

where yi = di/dτ. And the 2-surface �F2 is taken as

�F
2 � yθyθ + f θ, ϕ( ) yϕyϕ (26)

with the corresponding metric �gij � diag(1, f(θ,ϕ)). To get

vanishing off-diagonal components of F2R in (Eq. 14) the

function f (θ, ϕ) = f(θ) and one of the possible choice that

preserves the spherical symmetry is f(θ) � sin2( �
λ

√
θ). Hence,

the final form of the Finsler-Morris-Thorne wormhole geometry

can be written as

F2 � −e2f r( )ytyt + yryr

1 − b
r

+ r2 yθyθ + sin2
�
λ

√
θ( ) yϕyϕ( ) (27)

The Finslerian field (Eq. 22, Eq. 24) reduce to

8πFρ � b′ + λ − 1
r2

, (28)

8πFpr � 1 − b

r
( ) 2f′

r
+ 1
r2

( ) − λ

r2
, (29)

8πFpt � 1 − b

r
[ ] f″ + f′

r
+ f′2[ ] − b′

r
− b

r2
[ ] f′

2
+ 1
2r

[ ]. (30)

Here, b(r) and f(r) are shape-function and redshift

functions respectively. To solve the above field equations,

we need extra information to integrate further. To solve the

above field equations we will adopt few techniques

i.e., assuming specific equation of state, well-known

wormhole shape function and redshift function or

assuming pr & pt relationship.

3 Finslerian wormholes with linear
equation of state

In these cases, we will assume a linear equation of state of

the form pr = ωρ along with a specific choice of shape

functions.

3.1 Model I: b(r) � a(r/a)n

Considering this shape function along with the linear EoS,

the field equations can be integrated to yield the red-shift

function as

FIGURE 1
Variation of b, b−2, b/r and b′(r) for model I with a = 3, λ = 1.2, ω = −2 and n = 0.4.
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f r( ) � A + 1
2 n − 1( ) [log r( ) n λω + λ − 1( ) + 1{ } − λ ω + 1( ){

+ n − 1( )ω}log r − a
r

a
( )n{ }]. (31)

Here A is the constant of integration. Therefore, the density

and pressure take the forms

8πFρ � n r/a( )n−1 + λ − 1
r2

, (32)

8πFpr � ω

r2
n

r

a
( )n−1

+ λ − 1[ ], (33)

8πFpt � 1

4r3 r − a r/a( )n[ ] a2 n nω2 − n − 3( )ω + 1{ } r

a
( )2n[

+ ar
r

a
( )n

λ − 1( ) ω + 1( ){
+2n2ω + n 2λω2 + 3λω + λ − 2ω2 − 5ω − 1( )}
+ λ − 1( )2r2 ω + 1( )2]. (34)

The rest of the quantities can be calculated from the above

physical quantities. The quantity a is the throat radius of the

wormhole. The variations of all these parameters can be shown in

Figures 1, 2. Now we can see that the throat is at a = 5 and is

asymptotically flat. Now, since NEC is violated, i.e. ρ+pr < 0, the

throat is supported by exotic matter or precisely by phantom

energy (ω < − 1). The revolution of the embedded surface can be

seen in Figure 3.

3.2 Model II: b(r) � a3c log(a/r) + a

For this shape function in the linear EoS, the field equations

lead to

f′ r( ) � a3c log a
r( ) − a3c ω + a + r λ − 1( ) ω + 1( )
2r r − a3c log a

r( ) − a( ) , (35)

which is not exactly integrable, however, one can always find the

related physical quantities as they are dependent only on their

derivatives. Here the physical parameters take the form

8πFρ � λr − a3c − r

r3
, (36)

8πFpr � ω λr − a3c − r( )
r3

, (37)

8πFpt � 1

4r3 r − a3c log
a

r
( ) − a( ) a6c2ω ω + 1( ) − a4 3cω + c( )[

− a3cr 2λω2 + 3λω + λ − 2ω2( − 5ω − 1)
− a3c log a

r
( ) a3 3cω + c( ) − r λ − 1( ) ω + 1( )[ ]

+ a r λ − 1( ) ω + 1( ) + λ − 1( )2r2 ω + 1( )2]. (38)

Now the energy conditions etc., can be calculated using the

above expressions. Further, the variations of these physical

parameters can be seen in Figures 4, 5. The throat radius is

found to be 2 km and is opened by phantom energy.

3.3 Model III: b(r) � ac(1 − a/r) + a

The solution, in this case, is found to be

f r( ) � D + −log r − a( ) c − 1( )ω + λ ω + 1( )[ ] + c λω + λ − ω( )[[
+ω]log r − ac( ) + c − 1( ) ω − 1( )log r( )]. (39)

Further, the physical quantities are found to be

8πFρ � a2c/r2 + λ − 1
r2

, (40)

8πFpr � ω a2c/r2 + λ − 1( )
r2

, (41)

8πFpt � 1

4r4 a − r( ) ac − r( ) a4c2 ω2 − 4ω − 1( ) + a3cr c + 1( ) 5ω + 1( )[
+2a2cr2ω × λω + λ − ω − 3( ) + a c + 1( ) λ − 1( )r3 ω + 1( )
+ λ − 1( )2r4 ω + 1( )2]. (42)

FIGURE 2
Variation of energy conditions and embedding diagram for the model I with a = 3, λ = 1.2, ω = −2 and n = 0.4.
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The variations of these physical quantities are given in

Figures 6, 7. Here also, the NEC is violated, and therefore the

WH throat is supported by the exotic matter which is found to be

phantom energy. The revolution of the embedded surface can be

seen in Figure 8.

4 Finslerian wormholes with pt = npr

Unlike the first method we have adopted above, we would

like to extend our investigation by assuming a linear relationship

between the tangential and radial pressure as pt = npr, where n

can be treated as an anisotropic parameter. To solve the field

equations, further we ansatz different forms of f(r).

4.1 Model IV: f(r) = c

For the initial assumptions pt = npr and f(r) = c, the resulting

solution is

b � r Hr2n − λ + 1( ), (43)

with H as the constant of integration. Here one can clearly see

that this solution is not asymptotically flat since

limr→∞[b(r)/r]K0. To make it asymptotically flat we must

match it with exterior Schwarzschild spacetime. The matching

equation can be written as

e2f R( ) � 1 − 2M
R

� 1 − b R( )
R

, (44)

where R is the surface when the two spacetimes meet. Using (Eq.

44), we get

b R( ) � R HR2n − λ + 1( ) � 2M (45)
R � 2M 1 − e2c( )−1, (46)

Which leads to a constraint on the constants H and c as

c � ln λ −H 2M 1 − e2c( )−1[ ]2n{ }1/2

. (47)

Now the density, pressures, and energy conditions are

given by

8πFρ � Hr2n + 2Hnr2n

r2
, (48)

FIGURE 3
Surface revolution of embedding diagram for model I.

FIGURE 4
Variation of b, b−2, b/r and b′(r) for model II with a = 2, λ = 1.2, ω = −2, c = −0.16.
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8πFpr � −Hr2n−2, (49)
8πFpt � −Hnr2n−2, (50)

8πF ρ + pr( ) � 2Hnr2n−2, (51)
8πF ρ + pt( ) � H n + 1( )r2n−2, (52)

8πF ρ + pr + 2pt( ) � 0. (53)

The variations of b(r), b′(r) and b(r) − r is given in Figure 9. The

variations of pr, pt, and energy density can be seen in Figure 10.

Here we can see that the throat radii are the same for all the EoS

parameters ω = −4.98, − 2.5, − 1.66, − 1.24. Again, the NEC is

violated, and the corresponding EoS parameter ωr = pr/ρ is less

than −1 thereby, the WH is supported by phantom energy. The

surface revolution of the embedded surface is shown in Figure 11.

4.2 Model V: f(r) � log(r/γ)
For this redshift function, one can find the solution as

b r( ) � Mr3n + λ − 3( )nr + r

1 − 3n
, (54)

FIGURE 5
Variation of energy conditions and embedding surface for model II with a = 2, λ = 1.2, ω = −2, c = −0.16.

FIGURE 6
Variation of b, b−2, b/r and b′(r) for model III with a = 1.5, λ = 1.2, ω = −2, c = 0.35.
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whereM is the constant of integration. Again, this solution is not

asymptotically flat due to limr→∞[b(r)/r]K0, so we have to

match this interior spacetime with exterior Schwarzschild

spacetime. Further, using (Eq. 44) we get

R � 32/3γ2 + �
33

√
a2/31

3 a1/31

(55)

b R( ) � 2M � R MR3n−1 + λ − 3( )n + 1
1 − 3n

[ ]. (56)

These above equations lead to a constraint given as

2M � 32/3γ2 + �
33

√
a2/31

3 a1/31

M
32/3γ2 + �

33
√

a2/31

3 a1/31

( )3n−1
+ λ − 3( )n + 1

1 − 3n
[ ],

(57)
where,

a1 �
������������
81γ4M2 − 3γ6

√
− 9γ2M. (58)

Now the density and pressure take form

8πFρ � λ + 3Mnr3n−1 + λ−3( )n+1
1−3n − 1

r2
, (59)

8πFpr � 1
r3

λr

3n − 1
− 3Mr3n( ), (60)

8πFpt � n

r3
λr

3n − 1
− 3Mr3n( ), (61)

And the energy conditions take the very simple forms

ρ + pr � 3M 3n2 − 4n + 1( )r3n + 2λnr
8πF 3n − 1( )r3 , (62)

ρ + pt � λ

8πFr2
, (63)

ρ + pr + 2pt � 4λnr − 3M 3n2 + 2n − 1( )r3n
8πF 3n − 1( )r3 . (64)

The variations of pressure, density, energy conditions, etc. are

shown in Figures 12, 13. Here one can observe that the throat

radius depends on the parameter n for which the rth is smaller

for n = −1 and larger for n = −0.07. Further, EoS parameter ω

also increases when n increases leading to more exotic matter

and thereby wider throat radius. Further, the violation of NEC

and ωr = pr/ρ < − 1 shows that the matter is exotic (phantom

energy).

FIGURE 7
Variation of energy conditions and embedding surface for model III with a = 1.5, λ = 1.2, ω = −2, c = 0.35.

FIGURE 8
Surface revolution of embedding diagram for model III.
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5 Finslerian wormholes with specific
density profile and a linear EoS
(model VI)

To find the third category of solutions, we will assume a

specific density profile with a linear equation of state of the form

ρ � c
a

r
( )α

, pr � ωρ. (65)

From the first relation with the field equation, we get

b r( ) � cr3

3 − α

a

r
( )α

+ F − λr + r, (66)

where F is the constant of integration. Since the expression of the

shape function doesn’t include ω, its throat will not be affected by

EoS parameter. And the linear EoS with the density profile after

using the field equations and the above b(r), we can find f′(r) as

FIGURE 9
Variation of b, b−2, b/r and b′(r) for model IV with H = 0.2, λ = 0.2.

FIGURE 10
Variation of energy conditions and embedding surface for model IV with H = 0.2, λ = 0.2.
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f′ r( ) � cr3 α − 3( )ω − 1[ ] a
r( )α + α − 3( )F

2r cr3 a
r[ )α − α − 3( )F + α − 3( )λr( ]. (67)

Which is not exactly integrable. Although, one can find the

physical parameters as

8πFρ � 1
r2

3cr2 a/r( )α
3 − α

− aαcr a/r( )α−1
3 − α

[ ], (68)

8πFpr � c ω
a

r
( )α

, (69)

8πFpt � c a/r( )α
4 cr3 a

r( )α − α − 3( )F + α − 3( )λr[ ] [cr3 α ω − 1( )ω − 3ω2 − 1( )
a

r
( )α

+ α − 3( )F 2α − 3( )ω + 1[ ] − 2 α2 − 5α + 6( )λrω]. (70)

Figure 14 shows the behavior of the shape function and its

related parameters. The trends of pressures, density and

energy conditions are given in Figure 15, which shows that

the NEC is again violated. The nature of the exotic matter can

be known if we see the EoS parameter ωr = pr/ρ. Here ω = −1.5,

i.e. less than −1, so again the exotic matter is phantom energy.

The rth depends on the parameter α, smaller values of α yields

narrower throats and vice versa.

6 Construction of embedding
diagrams

Considering a constant time slice i.e., yt = 0 and in the 2-

dimensional Finsler space �F2 if one chooses θ � (π/2 �
λ

√ ) (hence
yθ = dθ/dτ = 0), then [Eq. 27] reduces to

F2 � yryr

1 − b/r + r2yϕyϕ. (71)

If this Eq. 71 reduces to a 3-D cylindrical coordinate of the

form

F2 � yzyz + yryr + r2yϕyϕ, (72)

than by comparing (Eq. 71) and (Eq. 72), the form of z(r) can be

found as

FIGURE 11
Surface revolution of embedding diagram for model IV.

FIGURE 12
Variation of b, b−2, b/r and b′(r) for model V with λ = 3, γ = 1.5, M = 2.
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yryr

1 − b/r � yzyz + yryr or
1

1 − b/r � yzyz

yryr + 1 � dz/dτ
dr/dτ( )2

+ 1

0
dz

dr
( )2

+ 1 � 1 − b

r
( )−1

.

(73)

On simplifying (Eq. 73) we get

dz

dr
� ±

1���������
r/b r( ) − 1

√ or z r( ) � ±∫ dr���������
r/b r( ) − 1

√ . (74)

For model I, Eq. 74 is not integrable for the general case, however

integrable for a given value of n. Further, for model II

i.e., b(r) � a3c log(a/r) + a the embedding surface is not

integrable exactly, thereby we used numerical integration to

generate it. For model III the embedding surface can be

integrated exactly and is given by

z r( ) � 2ar����
r − a

√ �����
r − ac

√
�������������
r − a( ) r − ac( )

r2

√
c + 1( )log �����

r − ac
√([

+ ����
r − a

√ ) − �
c

√
tanh−1

�
c

√ ����
r − a

√�����
r − ac

√( )].

FIGURE 13
Variation of energy conditions and embedding surface for model V with λ = 3, γ = 1.5, M = 2.

FIGURE 14
Variation of b, b−2, b/r and b′(r) for model VI with c = 0.04, λ = 1.2, F = 1.5, a = 5, ω = −1.5.
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In a similar fashion, the embedding surface for model IV is

found to be

z r( ) � r

n + 1( ) �������
λ −Hr2n

√ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 − λn + n( )
��������
1 − Hr2n

λ

√
2
F1

1
2
,
1
2n
; 1(

+ 1
2n
;
Hr2n

λ
) +Hr2n − λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(75)

Again, due to the non-integrability of Eq. 74 for model V and

VI, we have used numerical integration to generate the 2-D

embedding surface.

7 Results and discussions

In this work, we have presented six new wormhole (WH)

solutions in Finslerian geometry. The first three models

assumed a linear EoS along with specific forms of the shape

function. The next two solutions were found by considering a

linear relation between pr and pt through a constant parameter

n. To close the system of equations, we have assumed two

different redshift functions. Here the throat radius of WH IV

depends on the redshift function only, however for the WH V,

the rth depends on the anisotropic parameter n, i.e., more

anisotropy makes the throat narrower and vice versa. Finally,

the last solution was obtained via a linear EoS and a specific

form of the density profile. In this case, the throat radius

depends on density-related α parameter, more the density

larger is the rth.

Next, we have determined all the embedded surfaces for each

WHs in 3D Euclidean space assuming an instant of time t =

constant and θ � (π/2 �
λ

√ ). Models I, III, and IV only have exactly

integrable embedding surfaces where we have also found their

surface revolutions. The rest of the three WHs i.e., Models II, V,

and VI were integrated numerically to generate the embedded

surfaces. It is found that all these WH models are supported by

exotic matter as the NEC is violated. The exact nature of these

exotic matters can be found by analyzing the EoS parameter. All

these cases yield ω = ωr = pr/ρ < − 1 implying that the matter is

simply phantom energy. It is also found that WHs III and IV were

asymptotically non-flat i.e., limr→∞[b/r]K0. This problem has

been resolved by matching the interior spacetime with the

Schwarzschild vacuum. Further, it is also to be noted that

Models I, II, III, and VI can have ω = −1 (cosmological

constant) with the flare-out conditions i.e., b (rth) = rth &

b′(rth) < 1 and b(r) < r for r > rth still holds. Overall, these new

WH solutions might represent traversable wormholes.
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FIGURE 15
Variation of energy conditions and embedding surface for model VI with c = 0.04, λ = 1.2, F = 1.5, a = 5, ω = −1.5.
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Appendix A: Derivation of Einstein-
Finsler field equation

Usually, the expression of the length for a curve in a

Finslerian metric geometry is

S γ[ ] � ∫ dτF x τ( ), _x τ( )( ). (A1)

Lorentzian metric gab defines the function F as F(x, _x) �
|gab(x) _xa _xb|1/2 with x and _x signify respectively the position

vector and tangent vector.

The Einstein-Finsler gravitational field equations are derived

by the calculus of variations and in the framework of the tangent

bundle of spacetime, i.e. can be derived from the action principle.

Here the action (integral of Lagrangian density over spacetime) is

defined as a union of the matter (SM) and the Einstein-Hilbert

(SEH) action that couples gravity to matter and is given by

S � kSEH + SM.

In the Finsler space (M,F ), the Einstein-Hilbert action could be

reckoned over the sphere bundle Σ as

SEH � ∫
Σ
d4x̂ d3 θ

��
g

√ ��
h

√
faby

ayb( )∣∣∣∣∣Σ. (A2)

The action, i.e. the integral of Lagrangian density is varied

with respect to F as all the quantities within the action are a

function of F (i.e., on of g). Here hab is the induced metric on Σ.
The dynamics of F are equivalent to the Einstein equations.

Now,

δSEH � ∫d4x̂ d3θ
��
g

√ ��
h

√ 1
2
fabg

abδgab + fRδRab + 1
2
fabh

abδhab − 2fRRab
δF
F( )yayb,

where fR = zf/zR and over the sphere bundle the function f =

faby
ayb [30]. Here,

��
g

√
and Rab do not depend on θ. Now, the

variation of habδhab is obtained as

habδhab � gab − yayb( )δgab − 6
δF
F .

The relation between δgab and δF
F is

δgab x̂( ) � 2gab
δF
F .

Using the above two equations, one can obtain finally

δSEH � ∫
Σ
d4x̂ d3θ

��
g

√ ��
h

√
2fgab − 6fab( )yaybδF

F .

In the Finslerian background the matter action for matter

fields ψi looks like (L is the Lagrangian density of the matter fields)

SM � ∫
Σ
d4x̂ d3θ

��
g

√ ��
h

√
L g,ψi( ).

Since L and g are independent on θ over the fiber coordinates

on the manifold M, the integration of the system yields the

standard matter action after dividing the volume of the three-

sphere.

According to Pfeifer and Wohlfarth [33], in the Finsler

background, the variation with respect to the Finsler function

yields the Energy-Momentum tensor of p-form fields on

Lorentzian metric spacetime as Tab as well as its trace

T � Tabgab � 4L + 2gab
zL
zgab

. Therefore, the variation with

respect to the Finsler function gives

δSM � ∫
Σ
d4x̂ d3θ

��
g

√ ��
h

√
12Tab − 2Tgab( )yaybδF

F .

Next taking the variation with respect to F in the combined

Einstein-Hilbert action with the matter yields

δS F ,ψi[ ] � kδSEH + δSM � ∫
Σ
d4x̂ d3θ

��
g

√ ��
h

√
k 2fgab − 6fab( )[

+ 12Tab − 2Tgab( )]yaybδF
F .

The structure of spacetime can be determined from the

following equation,

3f + R( )gab − 6fab[ ]yayb � −12Tab

k
yayb.

Here we have considered the vanishing Cartan tensor and for

that, the tensors in the bracket are y independent.

The second derivative of the above with respect to fiber

coordinates yields the Einstein-Finsler gravitational field

equations as

Rab − 1
2
S gab � 1

k
Tab.

Here we set the coupling constant k � c4

4πG.

To define the wormhole structure, we assume the Finsler

structure is of the form

F2 � B r( )ytyt − A r( )yryr − r2 �F
2
θ, ϕ, yθ , yϕ( ).

One can write the metric structure coefficient as

gμ] � z

zyμ

z

zy]

1
2
F2( ),

where (gμ]) = (gμ])−1. Remember that each gμ] is homogeneous of

degree zero in y.

For a non-vanishing vector y � yμ( z
zxμ)|p ∈ TpM, F

persuades an inner product on TpM that is given by

gy u, v( ) � gμ] x, y( )uμv], (A3)

where u � uμ( z
zxμ)|p, v � vμ( z

zxμ)|p ∈ TpM\{0}.
The Finsler metric are given below

gμ] � diag B,−A,−r2 �gij( ),
gμ] � diag B−1,−A−1,−r2 �gij( ),

where �gij are derived from �F2. In our study we have assumed

λ � Ric which represents the Ricci scalar, derived from �F2.
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