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Computed tomography-tunable diode laser absorption spectroscopy (CT-

TDLAS) has been widely used in the diagnosis of the combustion flow field.

Several optimized CT reconstruction algorithms such as iteration methods,

transformationmethods, and nonlinear least squares were applied. Considering

the industrial application background, the performances of algebraic iteration

reconstruction with the simultaneous algebra reconstruction technique (SART),

Tikhonov regularization, and least squares with the polynomial fitting method

were discussed in this study. For the mentioned algorithm, identical simulated

reconstruction parameters that contained 32-path laser structures, assumed

temperature distribution, and absorption databases were adopted to evaluate

the reconstruction performance including accuracy, efficiency, and

measurement of environment applicability. In this study, different CT

reconstruction algorithms were also used to calculate the temperature

distribution of the Bunsen burner flame. The different reconstruction results

were compared with thermocouple detection data. With the theoretically

simulated and experimental analysis, the least squares with the polynomial

fitting technique has advantages in reconstruction accuracy, calculation

efficiency, and laser path applicability for the measurement condition. It will

be helpful in enhancing CT-TDLAS technique development.
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Introduction

Combustion is the most widely used chemical phenomenon, which is accompanied by

a large amount of luminous heat. Since the industrial revolution, combustion has been

applied in transportation, power generation, metallurgy, and aerospace. With the

development of combustion research and application, the demands of combustion

mechanism optimization and efficiency improvement could not be satisfied by the

thermocouples and other traditional detection methods [1, 2]. A non-contract in situ
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testing technique that will not destroy the combustion flow field

is urgently needed, and it can obtain more different combustion

parameters at the same time. Spectral analysis technology can

perfectly satisfy all the aforementioned requirements, and it can

also reproduce the flow field information on the combustion

process as real as possible [3–9].

Tunable diode laser absorption spectroscopy (TDLAS) is one

of the spectral analysis technologies which can measure the

temperature and gas concentration parameters. TDLAS has

several advantages including high sensitivity, high noise

immunity, high repetition rate, and easy compatibility with

communication fiber optic components [10–12]. It means the

TDLAS system is easy to be integrated, and the cost is lower than

that of other spectral analysis technologies [13, 14]. However, the

most valuable superiority is that combined with computed

tomography (CT), CT-TDLAS can achieve 2D/3D

temperature and concentration distribution reconstruction

using multiple intersecting laser paths [15–17]. Thus, time-

resolved and in situ combustion temperature and gas

concentration information will be gathered at the same time

[18–20].

The accuracy of CT-TDLAS is decided by different CT

algorithms. Common CT algorithms are the projection

inversion method and the iterative method. Projection

inversion requires the projection direction covered at 360° or

at least 180°, and it needs a large number of laser paths, such as

FBP and FDDI [21–23]. Another projection inversion Abel

inversion [24, 25] is particularly aimed at an axisymmetric

distributed flow field. Although these inversion methods can

get quick, high accuracy, and high-resolution reconstruction

results, the optical path arrangement is difficult to fit with

large industrial field applications.

As for iterative methods, the inverse problem of CT-TDLAS

is solving an inherently ill-posed equation set with a severe rank

deficiency. It means the answers of the equation set are the

indefinite solution. If the iteration’s initial values are different, the

different reconstruction results can be acquired, which will cause

a serious error. This situation happens from time to time when

we use the iterative algorithm, such as ART and MART [26–28].

Commonly, the ill-posedness of CT-TDLAS ill-conditioned

equations can be reduced through an optimized laser path

design method in two steps. First, four or more laser

projection directions are applied in the measurement area.

Second, the weights of different laser paths within the same

mesh are corrected during iterative calculation [29]. However,

this method will decrease the initial reconstruction resolution

and needs a long iterative convergence time. Another solution is

choosing machine learning or neural networks to establish an a

priori model. After that, according to the computer training

results, an optimized initial value is obtained to shorten

reconstruction iterative steps, such as MBIR and PI-CNN-

aided TDLAS [30–33]. This method can eliminate noise

effects during measurement, but it needs a huge combustion

simulation database for sample training before it is applied in

new combustion environments.

Nowadays, regularization methods and least squares

methods are applied in CT reconstruction [34, 35]. The most

popular regularization method is Tikhonov regularization [25,

36], which adds a constant to the eigenvalue to improve the

stability of the matrix. Tikhonov regularization can get accurate

approximate solutions by matrix operations; thus, the calculation

speed is much faster than iterative methods. Hyperspectroscopy

[37, 38], as one of the least squares methods, considers extensive

different spectral line information to improve CT reconstruction

accuracy.

In this study, a CT algorithm named the polynomial fitting

technique, which was based on nonlinear least squares, has been

proposed and applied. First, the accuracy and the efficiency of

different CT algorithms were discussed, which contain SART,

Tikhonov regularization, and polynomial fitting with the same

laser path structure and without optimizing the initial value.

Second, Tikhonov regularization and the polynomial fitting

method were used to calculate the temperature of the Bunsen

burner flame. The simulation and experimental results of

different CT algorithms were compared to discuss the priority

of the polynomial fitting method.

CT algorithm

TDLAS is a spectral measurement method based on the

principle of photon energy selective absorption by gas

molecules. When the laser passes through the area to be

measured, the laser energy will be absorbed by the gas

molecules. The energy-changing relationship between the

initial laser and the absorbed laser can be expressed by

Beer–Lambert’s law, as shown in Eq. 1:

Iλ
Iλ,0

� exp{−Aλ} � exp
⎧⎨⎩ −∑

i

⎛⎝niL∑
j

Si,j(T)GVi,j(ni, T, P)⎞⎠⎫⎬⎭,

(1)
where λ—wavelength; Iλ,0—laser intensity without gas

absorption; Iλ—laser intensity after gas absorption;

Aλ—spectral integral; i—the type of measured gas;

j—absorption line of gas; ni—gas concentration;

Si,j(T) — absorption line intensity; T—temperature;

P—pressure; GVi,j—linear function; and L—laser path length.

The integral value of the linear function GVi,j in the entire

frequency domain is 1, so Eq. 1 can be transformed into Eq. 2

Aλ � ∫−ln( Iλ
Iλ,0

) � niLSi(T)P. (2)

Because the temperature, pressure, gas concentration, and

absorption path length are same at the same laser path, the

temperature can be obtained through the ratio of the absorption
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intensities between two different wavelength absorption lines, as

shown in Eq. 3. The concentration can be calculated by Eq. 4.

T �
hc
K (E2

″ − E1
″)

ln(A1
A2
) + ln(S2(T0)

S1(T0)) + hc
K
(E2

″−E1
″)

T0

, (3)

ni � Aλ

LSi(T)P, (4)

where T0—296K standard temperature; S (T0)—spectrum

intensity at the standard temperature; E″—low transition

energy state energy; h—Planck’s constant; K—Boltzmann

constant; c—speed of light; υ0—laser frequency; and spectral

line intensity S (T0) can be queried in the HITRAN database.

Simultaneous algebra reconstruction
technique (SART)

It can be considered that the temperature on each micro-

length part is uniform when laser paths are divided into infinite

micro-length parts. Thus, laser path absorption A can be

calculated by Beer–Lambert’s law, as shown in Eq. 5.

For different laser paths, the correction value is not

completely the same. Because when two or more laser paths

pass through a pixel grid at the same time, the same error

correction of the pixel grid will cause additional noise. More

iteration steps are needed to eliminate the noise effect to obtain

high-precision reconstruction results. The SART algorithm takes

into account the errors of all laser paths passing through the pixel

grid during the iterative calculation of each pixel grid. This

method can smooth out the influence of noise, and it can

obtain relatively ideal reconstruction results. The formula of

the SART is shown in Eq. 6:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aλ,1 � ∑
q

L1,qαλ,1,q � ∑
q

n1,qL1,qSλ(T1,q)GVλ(n1,q, T1,q, P),
Aλ,2 � ∑

q

L1,qαλ,2,q � ∑
q

n2,qL2,qSλ(T2,q)GVλ(n2,q, T2,q, P),
..
.

Aλ,p � ∑
q

Lp,qαλ,p,q � ∑
q

np,qLp,qSλ(Tp,q)GVλ(np,q, Tp,q, P),
(5)

where q—mesh grid; Lq—laser length; and αλ,q—absorption

coefficient.

αk+1
λ,q � αkλ,q +

ω∑m
p�1Lp,q

∑m
p�1

⎛⎜⎝Aλ,p −∑n
q�1αλ,qLp,q∑n

q�1Lp,q

⎞⎟⎠ × Lp,q, (6)

where m—number of all laser paths through the pixel grid and

the relaxation factor ω should be 0<ω ≤ 1.

Tikhonov regularization

Eq. 5 can be written in the matrix form as Eq. 7:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
L1,1 L1,2 / Lp,q

L1,1 L1,2 / Lp,q

..

. ..
.

1 ..
.

L1,1 L1,2 / Lp,q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
αλ,1,1
αλ,1,2
..
.

αλ,p,q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aλ,1

Aλ,2

..

.

Aλ,p+q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ or L · α � A. (7)

In the coefficient matrix L, there are lots of “0” because each

mesh grid only contains limited laser paths. Non-negative least

squares are directly used to solve Eq. 7, and unsatisfactory results

will be obtained. Tikhonov regularization adds a regularization

parameter η to improve the stability of the matrix, as shown in

Eq. 8:

α � argmin{‖Lα − A‖22 + η2‖α‖22}. (8)

For different regularization parameters η, αη is solved by Eq.

9. The L-curve method is used to find the fittest η, and αη is used

as the solution answer α.

αη � (LΤL + ηI)−1LΤA. (9)

Polynomial fitting method

In the combustion flow field, parameter distribution is

continuous. Taylor expansion can be carried out to

temperature and concentration distribution functions T (x,

y) and n (x, y), which are composed of a set of adaptation

coefficients ak,l and bk,l, as shown in Eqs. 10, 11.

T(x, y) � ∑m
k�0

∑k
l�0
bk−l,lxk−lyl � FT(bk,l), (10)

n(x, y) � ∑m
k�0

∑k
l�0
ak−l,lxk−lyl � Fn(ak,l). (11)

For a certain laser path p, all points (xp,1, yp,1), (xp,2, yp,2),

. . .. . . (xp,q, yp,q), respectively, are substituted into Eqs.

10, 11:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 xp,1 yp,1 x2

p,1

1 xp,2 yp,2 x2
p,2

..

. ..
. ..

. ..
.

1 xp,q yp,3 x2
p,q

xp,1yp,.1 y2
p,1 / xm

p,1

xp,2yp,2 y2
p,2 / xm

p,2

..

. ..
.

/ ..
.

xp,qyp,q y2
p,q / xm

p,q

/
/
/
/

ym
p,1

ym
p,2

..

.

ym
p,q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦•
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b0,1
b1,0
..
.

b0,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Tp,1

Tp,2

..

.

Tp,q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

Frontiers in Physics frontiersin.org03

Zhou et al. 10.3389/fphy.2022.1036179

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1036179


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 xp,1 yp,1 x2

p,1

1 xp,2 yp,2 x2
p,2

..

. ..
. ..

. ..
.

1 xp,q yp,3 x2
p,q

xp,1yp,.1 y2
p,1 / xm

p,1

xp,2yp,2 y2
p,2 / xm

p,2

..

. ..
.

/ ..
.

xp,qyp,q y2
p,q / xm

p,q

/
/
/
/

ym
p,1

ym
p,2

..

.

ym
p,q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦•
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a0,1
a1,0
..
.

a0,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
np,1
np,2

..

.

np,q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

According to Eqs. 5, 10, 11, the theoretical absorption

summation of the laser path from 1 to p can be calculated, as

shown in Eq. 14. Theoretical absorption summation is a function

that is only related to the set of adaptation coefficients ak,l and bk,l.

When the error between Atheory and Aexperiment is minimum

whose corresponding adaptation coefficients ak,l and bk,l are

the temperature and concentration distribution function

solution, respectively,

(Aλ,p)theory � ∑
q

Lp,qFn(ak,l)Sλ(FT(bk,l))GVλ(Fn(ak,l), FT(bk,l), P),
(14)

error � min
⎧⎪⎨⎪⎩∑

λ,p

(Aλ,p,theory − Aλ,p, exp eriment)2⎫⎪⎬⎪⎭. (15)

In Eqs 10, 11, segments in the laser path q are decided by the

initial CT resolution requirement, and the Taylor expansion

series m is decided by the number of laser paths p and

segments in the laser path q. Reconstruction accuracy can be

improved by increasing m, but the CT accuracy will decrease

when m is increased too much, which can cause overfitting. Like

the “L-Curve” method in Tikhonov regularization, different

Taylor expansion series “m” can be chosen for reconstruction

calculation, and a fittest “m” value with a minimum deviation will

be found. In this study, the value ofm is 12 and q is 40. In solving

Eq. 15, Levenberg–Marquardt, downhill simplex, and other

nonlinear least squares methods can be chosen. Because the

polynomial fitting temperature and concentration distribution

functions are directly acquired, the initial reconstruction

resolution of polynomial fitting is much higher than that of

other CT algorithms without post-interpolation.

Experiment system

In this study, a CT-TDLAS system with a Bunsen burner

flame was set up, and an x-y-z axis movable B-type thermocouple

probe (BM-100-100-110) was used to verify the accuracy of the

CT reconstruction algorithms. The laser wavelengths of H2O

absorption were 1388.139 nm, 1388.329 nm, 1388.454, and

1343.297 nm. The 1388-nm laser was mainly used in the

detection of temperatures within 1000 K. For higher

temperature situations, the 1343-nm laser signal should be

added to the analysis.

The CT-TDLAS system, as shown in Figure 1, consisted of

tunable diode lasers (NTT, NLK1E5GAAA, 1388 nm;

NLK1B5EAAA, 1343 nm), fiber coupler (SL&PS, SBC-3655-2-

50-2222-LLLL-1), laser driver (NTT, WL-100 -D-B-DFB-A),

single-mode jumpers (P-55-R-22-C-F-2), fiber splitter (PLC-

367020-0132-2), collimators (SL&PS, C-20-S-1-C-200-2-L-2-

M), detectors (SL&PS, PD-16-1), amplifier (SL&PS, A-34ch-

10 db-AC150DC2-IO1M50-SMAJ), AD unit (SL&PS, AD-

35ch-10MHz-12bit-I1M-BNC), and a customized 32-path

CT cell. The diameter of the CT measurement area was

60 mm. The customized 32-path CT cell was above the

Bunsen burner nozzle by 100 mm and had four projection

directions to increase the CT reconstruction accuracy, as

shown in Figure 2. The diameter of the B-type thermocouple

probe was 0.1 mm.

The flow rates of the Bunsen burner premixed gas

consisted of 3.0 L/min methane (CH4) and 3.0 L/min air.

During the combustion process, there was 35 L/min

compressed air surrounding the flame to make the premix

flame steady. In the CT-TDLAS experiment, the water vapor

mainly came from methane combustion. Some researchers

usually used flat burner flame to verify the 2D temperature

detection performance of the CT-TDLAS technique [15]. In

this study, different from the flat burner, the diameter of the

Bunsen burner nozzle was 10 mm, and the flame was difficult

to fill all the CT measurement areas. Therefore, the H2O

concentration of the laser path located at the CT

measurement edge area was extremely inadequate, and H2O

absorption was focused on the laser path that passed through

the center area. This phenomenon was harmful to CT

reconstruction accuracy. So the compressed air was fed into

a humidifier before being inserted into the surrounding area of

the Bunsen burner flame.

Before the CT-TDLAS experiment, steady flame

combustion must be confirmed. At the center of the CT

measurement area, five feature points were established in

this study. Feature point 1 was the measurement center

point. The other four feature points were, respectively,

located at the ±X axis and ±Y axis, and the distance was all

5 mm. During steady flame confirmation, the temperature of

five feature points was detected five times by the B-type

thermocouple, while the Bunsen burner flame was

rekindled 5 min each time. If the temperature was almost

the same within confirmation of five times, it can be

considered that the flame was in a steady combustion state.

When the flame was confirmed in the steady-combustion

state, the B-type thermocouple probe was used to detect the

temperature distribution of the center 40 mm × 40 mm area with

121 points, and the distance between each point was 4 mm. After

that, the CT-TDLAS system was applied to record the 32-path

1388-nm laser, 1343-nm laser, and coupled laser signal

information.
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Results and discussion

In this section, the simulate reconstruction accuracy of two

represented CT algorithms, SART and Tikhonov regularization,

was compared with the performance of the polynomial fitting

method. The reconstruction accuracy of the polynomial fitting

method was obviously better than that of SART and Tikhonov

regularization. SART and Tikhonov regularization had similar

reconstruction accuracy, but Tikhonov regularization had an

advantage in reconstruction efficiency. Thus, Tikhonov

regularization and the polynomial fitting method were applied

to the CT-TDLAS reconstruction of the Bunsen burner flame.

The thermocouple detection results at the same flame condition

were obtained to discuss the actual measurement accuracy of CT-

TDLAS with Tikhonov regularization and the polynomial fitting

method.

FIGURE 1
CT-TDLAS device connection.

FIGURE 2
CT-TDLAS experiment system.
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Simulation analysis of CT algorithms’
accuracy

To evaluate the accuracy and efficiency of CT reconstruction

with three different CT algorithms, a unimodal and center-

symmetric Cauchy–Lorentz temperature distribution was

assumed. The assumed area was a 60-mm square. The water

vapor concentration was 10%, and the maximum temperature in

the center was 1100 K. The expression and image of the temperature

distribution are shown in Eq. 16 and Figure 3, respectively. The

simulated CT-TDLAS laser path was a 16 × 16 orthogonal structure,

as shown in Figure 4. The distance between each laser path was

3.75 mm.

T � 800 × 13.52

13.52 + x2 + y2
+ 300. (16)

The polynomial fitting method could receive a high-

resolution reconstruction result. The CT reconstruction results

of SART, Tikhonov regularization, and the polynomial fitting

method are shown in Figure 5. The relaxation factor ω used in

SART was 0.1, and the initial value of the absorbance used by

each optical path during the iteration was set to 0. The resolutions

of reconstructed results by SART and Tikhonov regularization

were 16 × 16 pixels within a 60-mm square. This resolution was

the highest result for these two algorithms to achieve. The reason

was that each grid needed at least one laser path to go through.

The resolution of the polynomial fitting method was decided by

the Taylor expansion seriesm of the distribution function T (x,y).

In this simulate reconstruction, the polynomial fitting method

obtained a 39 × 39 pixel resolution result. It was obvious that the

polynomial fitting method had an advantage in initial

reconstruction resolution. Benefitting from this, integral

changes in the temperature gradient could be easily acquired.

The polynomial fitting method could receive a more accurate

reconstruction result. Because of the central symmetry of the

assumed temperature distribution, it was convenient to discuss

the accuracy by analyzing the temperature deviation on the path

“x = 0 mm”. As shown in Figure 6, the reconstruction results of

SART and Tikhonov regularization were almost the same. The

mean relative error and maximum relative error of SART were

4.17% and 5.61%, respectively, while the mean relative error and

maximum relative error of Tikhonov regularization were 4.22%

and 5.58%, respectively. The polynomial fitting method was

obviously much closer to the assumed distribution, and the

mean relative error and maximum relative error were 1.23%

and 1.63%, respectively, because the polynomial fitting method

considered more residual terms during the calculation process.

The polynomial fitting method had the advantage of high

resolution and reconstruction accuracy compared with the

traditional CT algorithms. It was more suitable for

complicated combustion flame detection.

Comparison of CT-TDLAS experimental
results using different CT algorithms

According to the previous discussion, SART and Tikhonov

regularization could get almost the same accuracy reconstruction

results through the orthogonal laser path structure, which was

easy to receive an ill-conditioned matrix with the ill-posed

solution. However, SART needed a correct each grid

absorption value individually during one iterative process, and

it costs hours to converge. Tikhonov regularization could quickly

FIGURE 3
Assumed center-symmetric Cauchy–Lorentz temperature
distribution.

FIGURE 4
16 × 16 orthogonal simulated laser path structure.

Frontiers in Physics frontiersin.org06

Zhou et al. 10.3389/fphy.2022.1036179

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1036179


get solutions by simple matrix operations. So Tikhonov

regularization and the polynomial fitting method were chosen

to restructure the Bunsen burn flame.

The polynomial fitting method had significant advantages

over actual flame detection. It got a clear and irregular

temperature distribution result. In actual flame detection, the

16 × 16 orthogonal laser structure was not satisfied. As shown in

Figure 1, the customized 32-path laser structure was divided into

four projection directions to reduce the ill-posedness of CT-

TDLAS ill-conditioned equations. Tikhonov regularization

needed to guarantee that there was at least one laser path

going through each grid. So the measurement area of the

CT cell was set to a 10 × 10 grid mesh. However, the

polynomial fitting method could still get a 39 × 39 pixel

result, while the number of laser paths was not changing. The

temperature distribution of the Bunsen burner flame has been

shown in Figure 7. Because of the resolution limitation, Tikhonov

regularization could only get a roughly presented temperature

distribution trend. It could not display detailed information such

as the gradient change of the flame temperature distribution. The

actual combustion was complicated; according to the

thermocouple result, the Bunsen burner flame section was not

a regular symmetrical appearance, which was related to factors

such as the horizontal inclination angle of the fixed Bunsen

burner and the premixed gas flow emitted by a nozzle. It would

enlarge the deviation when cubic spline interpolation is directly

used without any reference to the increasing resolution. The

polynomial fitting method could perfectly avoid these problems.

FIGURE 5
CT reconstruction results for assumed temperature distribution. (A) SART algorithm; (B) Tikhonov regularization; and (C) polynomial fitting
method.

FIGURE 6
Temperature deviation by three CT algorithms on the path “x = 0 mm”.
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In Figure 7C, more accurate and intuitive flame outline messages

could be obtained.

The accuracy of the polynomial fittingmethodwas convinced in

the Bunsen burner flame experiment. The temperature on the path

“Y = 0 mm” was compared, as shown in Figure 8. In the range

of −10 to 10 mm, combustion was stable at the flame center, so the

reconstruction results of the polynomial fitting method were

consistent with the thermocouple. However, in the range

of −20 to −10 mm and 10–20 mm, there was an obvious

deviation between the polynomial fitting method and the

thermocouple. In these areas, the unreacted methane gas and the

reaction intermediates of the flame all reacted with the oxygen in the

surrounding compressed air. The reaction process was complicated

in these areas. It was impossible to ensure that the flame was always

in the same combustion state during the thermocouple

measurement. The constant slight disturbance of the flame would

also cause deviation in the thermocouple reading. On the other

hand, thermocouples could only collect the heat flux from

convection and conduction. The heat radiation would be missed

during the detection process. These two factors caused the deviation

between the polynomial fitting method and the thermocouple.

However, the resolution of the thermocouple measurement

results was limited, and the best temperature detection range of

the B-type thermocouple was 600–1700°C. In Figure 8, the results of

CT-TDLAS with the polynomial fitting method and thermocouple

are similar in the temperature range of 900–2000 K. The deviation of

flame FWHM and peak temperature position between the

polynomial fitting method and thermocouple was acceptable

when the effect of calculation and experimental measurement

error was considered. The temperature distribution trends of

Tikhonov regularization and the polynomial fitting method

reconstruction results were consistent, but there was a difference

between the measurement center regions. This was due to the

insufficient number of pixel grids in Tikhonov regularization.

According to the aforementioned comparison results, it

could be considered that the polynomial fitting method could

accurately reconstruct the two-dimensional temperature

distribution of the combustion flame and displayed its

temperature gradient change. At the same time, its ability to

quickly complete reconstruction calculations had great

advantages and potential in the field of industrial online

measurement and diagnosis.

Conclusion

This study introduced two common CT algorithms of SART

and Tikhonov regularization and proposed a new CT algorithm: the

polynomial fitting method. First, compared to the accuracy and

efficiency of different CT algorithms by an assumed unimodal and

center-symmetric Cauchy–Lorentz temperature distribution and a

FIGURE 7
Temperature distribution of the Bunsen burner flame. (A) Thermocouple; (B) Tikhonov regularization; and (C) polynomial fitting method.

FIGURE 8
Temperature deviation on the path “Y = 0 mm.”
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16 × 16 orthogonal laser path structure, the comparison results

showed that SART and Tikhonov regularization could get almost

the same accuracy reconstruction results, while Tikhonov

regularization had a much higher computational efficiency. The

polynomial fitting method showed more accuracy and higher

resolution results. Second, a customized 32-path CT-TDLAS

system was built. A Bunsen burner flame temperature

distribution with 3.0L/min methane (CH4) and 3.0 L/min air was

reconstructed by the thermocouple, Tikhonov regularization, and

the polynomial fitting method. The results exhibited that the

polynomial fitting method could display detailed information

such as the temperature gradient change, and it could also

guarantee the reconstruction accuracy compared to the measured

results using the thermocouple. CT-TDLAS with the polynomial

fittingmethod had advantages in accuracy, reconstruction efficiency,

resolution, and the adaptability of the laser path arrangement to the

actual site environment. It was of great significance in the

development of CT-TDLAS combustion diagnosis in practical

industrial applications.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding author.

Author contributions

WZ was responsible for all aspects of the study. ZX

contributed to the CT-TDLAS experiment. WC was

responsible for conceptualization and funding acquisition. ZW

was responsible for CT reconstruction calculation and data

analysis. DC and JY guided this research, revised, and edited

the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors, and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

1. Radajewski M, Decker S, Krueger L. Direct temperature measurement via
thermocouples within an SPS/FAST graphite tool.Measurement (2019) 147:106863.
doi:10.1016/j.measurement.2019.106863

2. Harada T, Watanabe H, Suzuki Y, Kamata H, Matsushita Y, Aoki H, et al. A
numerical investigation of evaporation characteristics of a fuel droplet suspended
from a thermocouple. Int J Heat Mass Transfer (2011) 54:649–55. doi:10.1016/j.
ijheatmasstransfer.2010.08.021

3. Guo LB, Zhang D, Sun LX, Yao SC, Wang ZZ, et al. Development in the
application of laser-induced breakdown spectroscopy in recent years: A review.
Front Phys (Beijing) (2021) 16(2):22500. doi:10.1007/s11467-020-1007-z

4. Boeck LR, Mevel R, Fiala T, Hasslberger J, Sattelmayer T. High-speed OH-PLIF
imaging of deflagration-to-detonation transition in H2–air mixtures. Exp Fluids
(2016) 57:105. doi:10.1007/s00348-016-2191-z

5. Singh S, Musculus MP, Reitz RD. Mixing and flame structures inferred from
OH-PLIF for conventional and low-temperature diesel engine combustion.
Combustion and Flame (2009) 156:1898–908. doi:10.1016/j.combustflame.2009.
07.019

6. Ma YF, Lewicki R, Razeghi M, Tittel FK. QEPAS based ppb-level detection of
CO and N_2O using a high power CW DFB-QCL. Opt Express (2013) 21(1):
1008–1019. doi:10.1364/oe.21.001008

7. Qiao SD, Sampaolo A, Patimisco P, Spagnolo V, Ma YF. Ultra-highly
sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a
fiber-coupled multi-pass cell. Photoacoustics (2022) 27:100381. doi:10.1016/j.
pacs.2022.100381

8. Fu Y, Cao JC, Yamanouchi K, Xu HL. Air-laser-based standoff coherent
Raman spectrometer. Ultrafast Sci (2022) 2022:1–9. doi:10.34133/2022/
9867028

9. Zhang ZH, Zhang FB, Xu B, Xie H, Fu B, Lu X, et al. High-sensitivity gas
detection with air-lasing-assisted coherent Raman spectroscopy. Ultrafast Sci
(2022) 2022:1–8. doi:10.34133/2022/9761458

10. Deng BT, Sima C, Xiao YF, Wang X, Ai Y, Li T, et al. Modified laser scanning
technique in wavelength modulation spectroscopy for advanced TDLAS gas
sensing. Opt Lasers Eng (2022) 151:106906. doi:10.1016/j.optlaseng.2021.106906

11. Weng WB, Larsson J, Bood J, Alden M, Li Z. Quantitative hydrogen chloride
detection in combustion environments using tunable diode laser absorption
spectroscopy with comprehensive investigation of hot water interference. Appl
Spectrosc (2022) 76(2):207–15. doi:10.1177/00037028211060866

12. Yang XY, Peng ZM, Ding YJ, Du Y. Temperature and OH concentration
measurements by ultraviolet broadband absorption of OH(X) in laminar methane/
air premixed flames. Fuel (2021) 288:119666. doi:10.1016/j.fuel.2020.119666

13. Liu XN, Ma YF. Tunable diode laser absorption spectroscopy based
temperature measurement with a single diode laser near 1.4 μm. Sensors (2022)
22:6095. doi:10.3390/s22166095

14. Liang TT, Qiao SD, Liu X, Ma YF. Highly sensitive hydrogen sensing based on
tunable diode laser absorption spectroscopy with a 2.1 μm diode laser.
Chemosensors (2022) 10:321. doi:10.3390/chemosensors10080321

15. Sun PS, Zhang ZR, Li Z, Guo Q, Dong F. A study of two dimensional
tomography reconstruction of temperature and gas concentration in a combustion
field using TDLAS. Appl Sci (Basel) (2017) 7(10):990. doi:10.3390/app7100990

16. Xia HH, Kan RF, Liu JG, Xu ZY, He YB. Analysis of algebraic reconstruction
technique for accurate imaging of gas temperature and concentration based on
tunable diode laser absorption spectroscopy. Chin Phys B (2016) 25(6):064205.
doi:10.1088/1674-1056/25/6/064205

17. Liu C, Xu LJ, Chen JL, Cao Z, Lin Y, Cai W. Development of a fan-beam
TDLAS-based tomographic sensor for rapid imaging of temperature and gas
concentration. Opt Express (2015) 23(17):22494. doi:10.1364/oe.23.022494

18. Kamimoto T, Deguchi Y, Zhang N, Nakao R, Takagi T, Zhang JZ. Real-time
2D concentration measurement of CH4 in oscillating flames using CT tunable diode
laser absorption spectroscopy. J Appl Nonlinear Dyn (2015) 4(3):295–303. doi:10.
5890/jand.2015.09.009

Frontiers in Physics frontiersin.org09

Zhou et al. 10.3389/fphy.2022.1036179

https://doi.org/10.1016/j.measurement.2019.106863
https://doi.org/10.1016/j.ijheatmasstransfer.2010.08.021
https://doi.org/10.1016/j.ijheatmasstransfer.2010.08.021
https://doi.org/10.1007/s11467-020-1007-z
https://doi.org/10.1007/s00348-016-2191-z
https://doi.org/10.1016/j.combustflame.2009.07.019
https://doi.org/10.1016/j.combustflame.2009.07.019
https://doi.org/10.1364/oe.21.001008
https://doi.org/10.1016/j.pacs.2022.100381
https://doi.org/10.1016/j.pacs.2022.100381
https://doi.org/10.34133/2022/9867028
https://doi.org/10.34133/2022/9867028
https://doi.org/10.34133/2022/9761458
https://doi.org/10.1016/j.optlaseng.2021.106906
https://doi.org/10.1177/00037028211060866
https://doi.org/10.1016/j.fuel.2020.119666
https://doi.org/10.3390/s22166095
https://doi.org/10.3390/chemosensors10080321
https://doi.org/10.3390/app7100990
https://doi.org/10.1088/1674-1056/25/6/064205
https://doi.org/10.1364/oe.23.022494
https://doi.org/10.5890/jand.2015.09.009
https://doi.org/10.5890/jand.2015.09.009
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1036179


19. Deguchi Y, Kamimoto T, Kiyota Y. Time resolved 2D concentration and
temperature measurement using CT tunable laser absorption spectroscopy.
Flow Meas Instrumentation (2015) 46:312–8. doi:10.1016/j.flowmeasinst.2015.
06.025

20. Wang ZZ, Zhou WZ, Kamimoto T, Deguchi Y, Yan J, Yao S, et al. Two-
dimensional temperature measurement in a high-temperature and high-
pressure combustor using computed tomography tunable diode laser
absorption spectroscopy (CT-TDLAS) with a wide-scanning laser at
1335–1375 nm. Appl Spectrosc (2020) 14(2):210–22. doi:10.1177/
0003702819888214

21. Xia HH, Kan RF, Xu ZY, Liu J, He Y, Yang C, et al. Measurements of
axisymmetric temperature and H2O concentration distributions on a circular
flat flame burner based on tunable diode laser absorption tomography. In:
International Symposium on Hyperspectral Remote Sensing Applications/
International Symposium on Environmental Monitoring and Safety Testing
Technology; 9-11 May 2016; Beijing, China. Proc.SPIE (2016). p. 10156.

22. Han Y, Ye JC. Framing U-net via deep convolutional framelets: Application to
sparse-view CT. IEEE Trans Med Imaging (2018) 37:1418–29. doi:10.1109/tmi.
2018.2823768

23. Choo JY, Goo JM, Lee CH, Park CM, Park SJ, Shim MS. Quantitative analysis
of emphysema and airway measurements according to iterative reconstruction
algorithms: Comparison of filtered back projection, adaptive statistical iterative
reconstruction and model-based iterative reconstruction. Eur Radiol (2014) 24(4):
799–806. doi:10.1007/s00330-013-3078-5

24. Zhang GY, Wang GQ, Huang Y, Liu X. Reconstruction and simulation of
temperature and CO2 concentration in an axisymmetric flame based on TDLAS.
Optik (2018) 170:166–77. doi:10.1016/j.ijleo.2018.05.123

25. Guha A, Schoegl I. Tomographic laser absorption spectroscopy using
Tikhonov regularization. Appl Opt (2015) 53(34):8095–8103. doi:10.1364/ao.53.
008095

26. Choi DW, Jeon MG, Cho GR, Kamimoto T, Deguchi Y, Doh DH.
Performance improvements in temperature reconstructions of 2-D tunable
diode laser absorption spectroscopy (TDLAS). J Therm Sci (2016) 25(1):84–9.
doi:10.1007/s11630-016-0837-z

27. Peng D, Jin Y, Zhai C, Yang J. Numerical simulations to improve the
performance of tunable diode laser absorption tomography in a harsh
combustion environment. Spectrosc Lett (2018) 51(1):7–16. doi:10.1080/
00387010.2017.1399424

28. Shao J, Wang LM, Ying CF. Numerical investigation of the two-dimensional
gas temperature distribution based on tunable diode laser absorption spectroscopy.
Optica Applicata (2015) 45(2):183–198. doi:10.5277/oa150205

29. Busa KM, McDaniel JC, Brown MS. Implementation of maximum-likelihood
expectation-maximization algorithm for tomographic reconstruction of TDLAT
measurements. In: 52nd AIAA Aerospace Sciences Meeting; 2014, January 13-17;
National Harbor, MD, USA. American Institute of Aeronautics and Astronautics
(2014). p. 1–15.

30. Nadir Z, Brown MS, Comer ML, Bouman CA. A model-based iterative
reconstruction approach to tunable diode laser absorption tomography. IEEE Trans
Comput Imaging (2017) 3(4):876–90. doi:10.1109/tci.2017.2690143

31. Si J, Fu G, Zhang R, Rui Z, Godwin E, Liu C, et al. A quality-hierarchical
temperature imaging network for TDLAS tomography. IEEE Transcations
Instrumentation Meas (2022) 71:4500710. doi:10.1109/TIM.2022.3144211

32. Huang A, Cao Z, Wang CR, Wen J, Lu F, Xu L. An FPGA-based on-chip
neural network for TDLAS tomography in dynamic flames. IEEE Trans Instrum
Meas (2021) 70:4506911–11. doi:10.1109/tim.2021.3115210

33. Chen P, Kan LL, Song XM, Wang X, Jiang C. Application of VMD and
Mahalanobis distance combination algorithm in TDLAS methane gas detection.
Optik (2021) 728:166114. doi:10.1016/j.ijleo.2020.166114

34. Zhang S, Xia YS, Zou CZ. An adaptive regularization method for low-dose CT
reconstruction from CT transmission data in Poisson-Gaussian noise. Optik (2019)
188:172–86. doi:10.1016/j.ijleo.2019.04.005

35. Gonzales B, Lalush D. Full-spectrum CT reconstruction using a weighted least
squares algorithm with an energy-Axis penalty. IEEE Trans Med Imaging (2011)
30(2):173–83. doi:10.1109/tmi.2010.2048120

36. Liu C, Xu LJ, Cao Z. Measurement of nonuniform temperature and
concentration distributions by combining line-of-sight tunable diode laser
absorption spectroscopy with regularization methods. Appl Opt (2013) 52(20):
4827–4842. doi:10.1364/ao.52.004827

37. CaiWW, Kaminski CF. Multiplexed absorption tomography with calibration-
free wavelength modulation spectroscopy. Appl Phys Lett (2014) 104(15):154106.
doi:10.1063/1.4871976

38. Ma L, Cai WW, Caswell AW, Kraetschmer T, Sanders ST, Roy S, et al.
Tomographic imaging of temperature and chemical species based on hyperspectral
absorption spectroscopy. Opt Express (2009) 17(10):8602–8613. doi:10.1364/oe.17.
008602

Frontiers in Physics frontiersin.org10

Zhou et al. 10.3389/fphy.2022.1036179

https://doi.org/10.1016/j.flowmeasinst.2015.06.025
https://doi.org/10.1016/j.flowmeasinst.2015.06.025
https://doi.org/10.1177/0003702819888214
https://doi.org/10.1177/0003702819888214
https://doi.org/10.1109/tmi.2018.2823768
https://doi.org/10.1109/tmi.2018.2823768
https://doi.org/10.1007/s00330-013-3078-5
https://doi.org/10.1016/j.ijleo.2018.05.123
https://doi.org/10.1364/ao.53.008095
https://doi.org/10.1364/ao.53.008095
https://doi.org/10.1007/s11630-016-0837-z
https://doi.org/10.1080/00387010.2017.1399424
https://doi.org/10.1080/00387010.2017.1399424
https://doi.org/10.5277/oa150205
https://doi.org/10.1109/tci.2017.2690143
https://doi.org/10.1109/TIM.2022.3144211
https://doi.org/10.1109/tim.2021.3115210
https://doi.org/10.1016/j.ijleo.2020.166114
https://doi.org/10.1016/j.ijleo.2019.04.005
https://doi.org/10.1109/tmi.2010.2048120
https://doi.org/10.1364/ao.52.004827
https://doi.org/10.1063/1.4871976
https://doi.org/10.1364/oe.17.008602
https://doi.org/10.1364/oe.17.008602
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1036179

	Optimized CT-TDLAS reconstruction performance evaluation of least squares with the polynomial-fitting method
	Introduction
	CT algorithm
	Simultaneous algebra reconstruction technique (SART)
	Tikhonov regularization
	Polynomial fitting method

	Experiment system
	Results and discussion
	Simulation analysis of CT algorithms’ accuracy
	Comparison of CT-TDLAS experimental results using different CT algorithms

	Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


