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Optimal navigation in complex environments is a problem with multiple

applications ranging from designing efficient search strategies to engineering

microscopic cargo delivery. When motion happens in presence of strong

external forces, route optimization is particularly important as active particles

may encounter trapping regions that would substantially slow down their

progress. Here, considering a self-propelled agent moving at a constant

speed, we study the efficiency of Zermelo’s classical solution for navigation

in a sinusoidal potential landscape. Investigating both cases of motion on the

plane and on curved surfaces, we focus on the regime where the external force

exceeds self-propulsion in finite regions. There, we show that, despite the fact

that most trajectories following the trivial policy of going straight get arrested,

the Zermelo policy allows for a comprehensive exploration of the environment.

However, our results also indicate an increased sensitivity of the Zermelo

strategy to initial conditions, which limits its robustness and long-time

efficiency, particularly in presence of fluctuations. These results suggest an

interesting trade-off between exploration efficiency and stability for the design

of control strategies to be implemented in real systems.
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1 Introduction

Determining the optimal way to navigate in a complex environment is a central

problem for living organisms constantly searching for food, breeding partners, or escaping

predators [1–3]. On the other hand, optimal navigation has important engineering

applications such as route planning [4, 5], environment monitoring [6], or due to

recent advances in the design of microswimmers [7, 8], even targeted microscopic

cargo delivery [9, 10]. Optimal search strategies, for example, often consist of

intermittent stochastic processes alternating between ballistic moving and diffusive

searching phases [11–13]. Efficiently moving, for example, by minimizing travel time

or energy consumption, is thus a crucial aspect of target search optimization. In absence of

external influence from the environment, the natural moving strategy is to follow straight

trajectories. This trivial straight policy (SP), however, becomes disadvantageous when

motion happens on a rugged landscape or in presence of advection by a flow field.
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Optimizing the motion, moreover, becomes especially important

if the external influence of the environment is sufficiently strong

to forbid certain routes or induce trapping.

Mathematically, the problem of optimal navigation is

addressed by optimal control theory [14–16]. Given a set of

deterministic differential equations ruling the dynamics of

interest and a cost function to minimize, the optimal strategy

is obtained by applying Pontryagin’s maximum principle [17].

The minimal travel time problem with stationary environmental

conditions and constant self-propulsion speed, such that the

agent navigates adjusting its direction of motion, is known as the

Zermelo problem [18]. Its generalization to self-propelled

motion on curved manifolds was, moreover, carried out in

Ref. [19], where it was shown that the optimal paths

correspond to the geodesics of a Randers metric [20–22]. The

navigation strategies obtained by solving the Zermelo problem

and its generalizations have been mostly theoretically studied for

simple configurations and in the regime where the self-

propulsion force is always greater than the external force [19,

23–26] (see, however, Ref. [27]).

Here, we revisit the problem of optimal navigation

considering self-propelled agents moving in a two-

dimensional sinusoidal potential landscape and evaluate the

SP and Zermelo policy’s (ZP) ability to efficiently explore

space in presence of a strong force field influencing the

motion. Given a point-to-point navigation problem, the

performance of ZP is usually measured in terms of the travel

time taken by the particle with the appropriate initial self-

propulsion orientation to reach its assigned target. An

alternative—and more general—approach consists of

considering a distribution of initial orientations and analyzing

the isochrone curves [19], here defined as the set of space points

with equal travel time. Indeed, as the isochrones essentially

delimit the potentially explored region up to some time, they

provide quantitative information on how for uncontrolled initial

orientations the optimal trajectories will manage to explore the

surrounding space on average.

Performing extensive numerical simulations, our results

reveal that, as expected, in a deterministic setting, ZP

systematically performs better than SP over all the available

parameter space. The differences between the two policies are,

moreover, particularly striking in the regime of large external

force. Although, in this case, a significant proportion of

trajectories following SP get arrested, thus strongly restricting

the amount of space that can be visited, ZP manages to sustain

ergodic exploration as long as there exist available routes. As our

analysis shows, ZP’s good performance stems from its ability to

circumvent regions with a strong force field opposing themotion.

On the other hand, we also show that in the presence of strong

external forces, the dynamics produced by ZP are generally

chaotic, which leads to an increased sensitivity to initial

conditions and limits its long-time efficiency. When the

dynamics are subject to fluctuations, ZP then becomes

disadvantageous as it leads most of the trajectories to be

deflected toward trapping regions. In contrast, SP exhibits

performances that are robust to the presence of fluctuations.

Finally, considering a navigation setup on a curved sinusoidal

surface, we show that these conclusions remain valid in presence

of finite space curvature.

2 Methods

We study the overdamped motion of a self-propelled particle

moving on the plane at constant speed v0 in presence of an

externally applied stationary force field f. The position r � xx̂ +
yŷ of the particle thus obeys

_r � v0ê θ( ) + μf r( ), (1)
where μ is mobility—which hereafter we set to unity—and ê(θ)
denotes the unit vector oriented along the direction defined by

the angle θ. In order to study the efficiency of the navigation

protocols under a possibly motion-limiting force field, we,

moreover, consider a potential force f(r) = −∇U(r) with

U r( ) � u

4
sin kx( ) + sin ky( )[ ], (2)

where u and k = π/(2ℓ) are parameters that set the strength and

periodicity of the potential. The potential U consists of a square

lattice of local minima and maxima, and the resulting force field

is pictured in Figure 1. Rescaling space and time, respectively,

with ℓ and ℓ/v0, the dynamics of (1) depends on a single control

parameter γ ≡ πu/(8v0) which measures the relative strength of

the force with respect to self-propulsion.

The value of γ defines several dynamical regimes for the self-

propelled motion. Indeed, for γ< 1/
�
2

√
, the self-propulsion speed

overcomes the strength of the external force over all the space,

such that the particles can, in principle, travel everywhere

without restriction. In the following, we refer to this case as

the weak force regime. On the contrary, the condition γ > 1

defines a trapping regime where the self-propelled particles are

not able to escape local minima of the potential. Lastly, in the

intermediate confining regime 1/
�
2

√
< γ< 1, the strength of the

external drive is larger than that of self-propulsion only in

disconnected regions between which the particles can travel

almost freely.

To fully characterize the dynamics, we must specify an

update rule for the self-propulsion orientation θ. The most

straightforward choice for such a navigation policy is to pick

an orientation θ0 at time t = 0 and keep it forever. This choice

corresponds to the trivial straight policy which we expect to be

sub-optimal as for large values of γ, it does not allow the particles

to avoid trapping regions of the potential. On the other hand,

applying variational calculus in order to minimize the integral

costT ≡ ∫t

0
dt′, we obtain the Zermelo policy that corresponds to

the following dynamical equation for the orientation [17, 18].
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_θ � sin2 θ zxfy − cos2 θ zyfx + sin θ cos θ zxfx − zyfy( ), (3)

and which ensures minimal travel time as the particles travel

across the potential. The extension of ZP to curved geometries via

a mapping to Randers spaces is discussed in detail in Section 2.1.

All results presented were obtained from numerical

simulations performed by means of a fourth-order

Runge–Kutta method with a time step dt = 10−3. We checked

that decreasing the value of dt did not qualitatively affect the

results. For all policies, the isochrones were calculated simulating

multiple trajectories with initial orientation θ0 uniformly

distributed on the circle. The corresponding angular

resolution δθ0 was taken between 10−4 for SP and 10−6 for ZP.

When specified, data fits were performed via the FindFit routine

of Mathematica [28].

3 Results

3.1 Isochrones analysis on the plane

In this section, we analyze the performances of ZP and SP for

space exploration in the three dynamical regimes defined by the

value of the parameter γ.

3.1.1 Short-time behavior of the isochrones
Figure 1A shows typical isochrones obtained in 2Dwith both ZP

and SP. These curves can be viewed as the front of active particles

propagating away from the departure point. They correspond to

relatively short times as their overall surface extends to only a few

periods of potential. Starting from a local maximum of the potential

(upper row in Figure 1A), the isochrones are initially isotropic (pink

curves) and at later times deform into a cross-like shape (blue curves)

due to the local structure of the force field. In contrast, taking a saddle

point as the initial condition (lower row in Figure 1A), the isochrones

naturally elongate in the directions along which the force points away

from the initial position. Although the shapes of the isochrones at

later times resemble that of their counterpart originating from the

local maximum, they still carry the signature of the initial anisotropy.

Figure 1, moreover, shows that, contrary to SP, the ZP isochrones

develop self-crossing points in regions of strong and unfavorable

force (i.e., pointing towards the departure position). As pictured in

Figure 1B, these self-crossings form because trajectories starting with

neighboring initial orientations cross each other. As we will discuss,

these crossings are essential for ZP to be able to explore regions of

space which would be unreachable otherwise.

The rest of this section is devoted to the characterization of

the long-time isochrone properties. Despite the quantitative

shape differences observed for different starting points, we

FIGURE 1
Short-time isochrones in the confining regime. (A) Each panel shows two exemplary short-time isochrones at times t = 1 and t = 9 for a relative
force strength γ = 0.79. The top and bottom rows correspond, respectively, to a departure point located at a local maximum or a saddle point of the
potential (2), leading to different symmetries of the isochrones. Contrary to SP (right column), ZP (left column) exhibits characteristic self-crossings
which allow trajectories to circumvent otherwise inaccessible regions of space. In all panels, the colormap indicates the intensity of the external
force field, and the gray arrows indicate its direction. Panel (B) shows zooms of the region indicated by the black square in (A). These three snapshots
at different times show the formation of a self-intersection and two cusps in the ZP isochrone starting from a local maximum. The color code along
the curve stands for the initial orientation of the trajectory as indicated by the color wheel.
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show in the Supplementary Material that the long-time

properties of the isochrones remain qualitatively independent

of the starting position. We, therefore, restrict the following

analysis to the case where the isochrones are initialized at a

local maximum of the potential, corresponding to the upper row

of Figure 1A.

3.1.2 Isochrone areas and exploration
performances

The first quantity of interest to measure the ability of the policies

to efficiently explore the surrounding space is the isochrone area A.

Figure 2A shows the scaling of A versus t2. In absence of an external

drive (γ = 0), SP and ZP are strictly equivalent as the fastest way to

travel between two points is to join them via a straight line. Therefore,

in this limit, isochrones expand isotropically along all directions and

A ~ t2 up to a constant prefactor. This behavior, moreover, remains

qualitatively valid throughout the weak force regime as the measured

exponent α defined from the long-time scaling A ~ t2α takes values

close to 1 (Figure 2B). To measure the isochrone anisotropy, we,

moreover, define the fractional area ϕ as the ratio between the areaA

and that of the smallest disk containing the isochrone. For γ = 0,

isochrones are perfect circles such that ϕ= 1. Figure 2C shows that for

γ< 1/
�
2

√
(in the weak force regime), ϕ oscillates due to the local force

field structure, but takes a well-defined average value < 1. This value
is systematically larger for ZP than for SP, indicating that isochrones

associated with the former are more isotropic (more details in

the SM).

For 1/
�
2

√
< γ< 1, the dynamics (1–3) is in the confining regime,

meaning that the amplitude of the force field overcomes that of the

self-propulsion in certain regions of space. As a consequence, for SP,

the exponent α exhibits a sudden decrease from 1 to ≈ 1
2 at γ ≈ 1/

�
2

√
(Figure 2B). This behavior is due to the fact that in this regime, only

trajectories startingwith θ0 close to amultiple of π2 manage to progress

away from the departure point after some time, while the others stop

as the force created by the potential balances the self-propulsion.

Consequently, the isochrones only grow along the horizontal and

vertical axis, resulting in an increasingly strong anisotropy (see the

inset of Figure 2C). In this context, it is natural to expect that the

isochrone area grows linearly in time, resulting in an exponent α � 1
2.

This behavior is reminiscent of that of the initial spreading of the

particle distribution in an infinite-horizon Lorentz gas [29]. These

observations are, moreover, confirmed by the behavior of the

fractional area ϕ which is found to approach zero as ϕ ~ 1/t.

Hence, in confining environments, SP generally allows exploring

only a limited portion of the space.

For ZP, on the contrary, the situation is remarkably different.

Indeed, in this case, area A keeps growing almost as t2, such that the

best fits of the exponents α provide values close to 1 even for γ ≳ 0.8

(see Figures 2A,B). Similar to the weak force regime, ZP ϕ oscillates

around a well-defined value ≳ 0.8 even when the potential strongly

constrains the dynamics (see Figure 2C and SM). The amplitude of

fractional area oscillations, moreover, grows with γ as a result of the

increasing influence of the potential landscape. Therefore, and

contrary to SP, the ZP isochrones manage to entirely explore the

space despite the presence of stopping points in the force field

(compare, in particular, the two insets of Figure 2C and see the

Supplementary Movie S1).

This remarkable feature, however, becomes harder to observe as

γ approaches 1. Indeed, as we will describe for ZP, the isochrone

boundaries become sharper as γ grows, such that resolving them

requires a rapidly increasing resolution. The limit γ → 1 is thus

numerically intractable, but we expect the aforementioned

conclusions to hold qualitatively until the trapping regime occurs

at γ = 1, where the particles cannot travel further than a potential

period regardless of the policy employed.

3.1.3 Robustness and sensitivity to initial
conditions

Interestingly, ZP manages to sustain ergodic exploration of

space even in the presence of a strongly confining force field. As

we show now, this feat comes at the price of ZP being much more

sensitive to the chosen initial orientation than SP.

FIGURE 2
Isochrone area analysis in the 2D periodic potential. (A) Isochrone area as a function of squared time for ZP and SP and two values of the relative
force strength γ, respectively, in the weak force and confining regimes. (B) Best fit of the exponent α (defined in the main text) showing different
scalings between SP and ZP in the confining regime. (C) Fractional area covered by the isochrones as a function of time; the legend is the same as (A).
The insets show the outer boundary of the isochrones (yellow region) enclosed in the corresponding bounding disk (purple) for both policies at
t = 20 and γ = 0.79.
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Figure 3A shows color maps of the distance reached by

trajectories as a function of their initial orientation θ0 and

time. In the weak force regime, isochrones grow nearly

isotropically such that the distance reached by a trajectory

after a certain time weakly depends on θ0 (upper row of

Figure 3A). On the contrary, in the confining regime, the

potential landscape draws escape routes—corresponding to the

parameters considered here to θ0 being a multiple of π—along

which the self-propelled particles travel significantly faster (lower

row of Figure 3A). Surprisingly, although ZP is globally better at

exploring space, its escape routes are substantially narrower than

that of SP. Therefore, considering a uniform distribution of initial

orientations, ZP counter-intuitively leads to a lower proportion

of trajectories that manage to reach a given distance from the

departure point than SP.

We now quantify the sensitivity to the initial orientation with

the mean spatial angular separation

ε t( ) ≡ 〈arccos r t|θ0( ) · r t|θ0 + δθ0( )
r t|θ0( )r t|θ0 + δθ0( )[ ]〉θ0, (4)

where r(t|θ0) denotes the position at time t of the particle given

the initial orientation θ0 (taking the departure point for origin),

and r(t|θ0) is the associated distance, while δθ0 in Eq. 4

corresponds to the angular resolution of θ0. Figures 3B,D

show that for γ ≳ 0.2, the mean separation ε(t) grows

exponentially at large t for ZP over a time range that

increases as δθ0 → 0. In contrast, for SP, ε(t) converges to a

finite value, such that over long times, the isochrones take a scale-

invariant form. Based on these observations, we may define a

generalized Lyapunov exponent λε ≡ ln [ε(t)]/t from a long-time

scaling of ε(t). While λSPε � 0 over the whole available range of γ,

λZPε > 0 for γ ≳ 0.2 indicates that for sufficiently strong forces, the

dynamical system formed by Eqs 1–3 is chaotic. Similar chaotic

behavior of ZP was actually reported for navigation in turbulent

flows [27].

We now build further insight from the analysis of outer

isochrones, which we define as the minimal set of points that

draw the boundary of the region enclosed by the isochrones (see,

e.g., the dashed green lines in Figure 1A). We show in Figure 3C

that the number of trajectories Nout(t) remaining on the outer

envelope of the isochrones is found to decay exponentially fast in

time for ZP while staying constant for SP. The exponential decay

of Nout(t) for ZP is explained by the increasing number of self-

crossings of the isochrones with time (see Figure 3E) which leads

a large part of the trajectories to quit the boundary. We thus

define from the long-time regime a second exponent λN ≡ − ln

[Nout(t)]/t such that, in agreement with the analysis of the angular

FIGURE 3
Sensitivity of the navigation policies to the initial orientation. (A) Color maps of the distance from the starting point as a function of the initial
angle θ0 and time t for both ZP (left column) and SP (right column) in two different regimes: weak force (γ=0.49, top row) and confining potential (γ=
0.79, bottom row). (B) Scaling with a time of the mean angular separation ε defined in Eq. 4 for SP (blue circles) and ZP (orange triangles) at γ = 0.79.
Opaque and semi-transparent symbols, respectively, correspond to an initial orientation resolution of δθ0 = 10−6 and δθ0 = 10−5. (C) Number of
trajectories located on the outer isochrone as a function of time; the legend and parameters are the same as those in (B). (D) Best fits of the two sets
of exponents obtained from the exponential scalings of ε and Nout [see (B) and (C)] for ZP as a function of γ. (E) Example of long-time isochrones (t =
20) in the confining regime (γ = 0.79) for the two policies. In both cases, the blue curve represents the entire isochrone, while the area highlighted in
yellow is the region enclosed by the outer boundary. The complexity of the ZP isochrone is consistent with its larger sensitivity to the initial self-
propulsion orientation.
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separation ε, λSPN � 0 for all values of γ, while λZPN > 0 for γ large

enough. As shown in Figure 3D, λZPε ≈ λZPN in the weak force

regime, but the exponents depart from each other when

approaching the confining regime. Namely, although λZPε is

maximal at γ ≈ 0.6 and starts to decay when entering the

confining regime, λZPN increases almost linearly with γ up to

the trapping regime at γ = 1. This difference in behaviors is well

understood from the fact that the average in Eq. 4 is taken over all

trajectories, including those that remain inside of the envelope

formed by the outer isochrone, while Nout(t) only gets

contributions from the most quickly diverging trajectories.

The multiple crossings observed on the ZP isochrones allow

the trajectories to circumvent regions which are inaccessible

when approached by facing the external force. Therefore, as

long as γ < 1, ZP shall, in principle, ensure total coverage of space

despite the presence of strong external force, in contrast with SP

for which space exploration becomes quickly limited. However,

due to the exponential decrease of the number of trajectories at

the isochrones boundaries with time, the maximum area that can

be spanned by ZP grows with the total number of trajectoriesN as

Amax ~ ln2N, which limits the numerical exploration of the long-

time regime as γ approaches 1. In practical situations, these

results, moreover, suggest that for strong forces, ZP is less reliable

than SP, as its sensitivity to initial conditions can easily lead

trajectories to depart from the predetermined route, which we

now illustrate by including noise in the dynamics.

3.1.4 Effect of fluctuations on the navigation
performances

The increased sensitivity of ZP to the initial particle

orientation described previously raises the question of the

impact of noise on exploration performances. Fluctuations are

a particularly important feature of the motion of swimmers

evolving at the microscopic scale. They can arise due to

thermal noise, but also due to fluctuations in the processes

generating self-propulsion. Here, we model such fluctuations

as uncorrelated Gaussian white noises affecting the position r and
orientation θ of the particle. Details on the implementation of the

stochastic dynamics can be found in the SM. Our simulations,

moreover, indicate that both sources of noise (translational and

rotational) have a similar effect on the dynamics, such that we

focus here on rotational noise and denote the corresponding

diffusion coefficient Dr.

Considering the weak force regime, we find that the

performances of both policies do not change significantly with

respect to the noiseless case (data not shown). Conversely, in the

confining regime, the presence of rotational noise strongly

impairs the ZP’s ability to explore the surroundings. This

feature is clear from the behavior of the noise-averaged

isochrone (Figure 4A) whose area stops growing as soon as

trajectories reach the local minima of the potential (see the

green curve in Figure 4B). We thus conclude that for large

enough γ, the ZP escape routes identified in Figure 3A are

unstable, while the potential local minima act as attractors of

the dynamics. Trajectories initially on the escape routes,

therefore, deviate (on average) because of fluctuations and end

up at the potential minima where they get stuck. This effect is,

moreover, enhanced by the chaos of the ZP dynamics

characterized previously, such that we expect it to be present

for arbitrary weak noise. As a consequence, Figure 4C shows that

the mean distance reached by ZP trajectories is bounded for all

initial orientations, leading to a disappearance of the escape

routes. In contrast, we find that the properties of the SP

isochrones are barely affected by noise, proving it to be a

more robust strategy than ZP in presence of strong external

forces.

FIGURE 4
(A) Comparison between the noiseless (blue curve) and noise-averaged (red curve) isochrones at time t = 9. Color gradient indicates the
intensity of the external force field, and the gray arrows in its direction. (B) Area enclosed by the isochrones as a function of squared time for both ZP
and SP with and without rotational noise. (C) Color maps of the average distance from the starting point as a function of the initial orientation θ0 and
time t for both ZP (left column) and SP (right column) in presence of rotational noise. All data shown in (A–C) are averaged over 102 independent
trajectories with a resolution δθ0 = 10−2. The relative force strength here is set to γ = 0.79 (confining regime) and the rotational diffusion coefficient is
equal to Dr = 0.01.
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3.2 Navigation on curved surfaces

3.2.1 Optimal trajectories and Randers geodesics
In a number of situations, self-navigating agents move on

non-Euclidean spaces including planes above the Earth [30, 31]

or migrating cells [32, 33]. As the presence of a nonzero curvature

locally leads to a stretching or compressing of distances, one

naturally expects it to affect optimal navigation strategies. In this

section, building on the results of Ref. [19], we consider the

optimal navigation problem on a two-dimensional curved

surface in the presence of strong external forces.

Such a surface embedded in a three-dimensional Euclidean

space (x̂, ŷ, ẑ) can be locally described using the Monge

representation [34] by a height function z(x, y) such that the

position vector on the surface satisfies

r(x, y) � xx̂ + yŷ + z(x, y)ẑ. Any vector tangential to the

surface can then be expressed in the (nonorthogonal) local

basis (t̂1, t̂2) where [35].

t̂1 � x̂ + zxz( )ẑ���������
1 + zxz( )2

√ , t̂2 �
ŷ + zyz( )ẑ���������
1 + zyz( )2√ ,

while the metric tensor h(x, y) describing the local geometry of

the surface is obtained from this parametrization as

h x, y( ) � 1 + zxz( )2 zxz( ) zyz( )
zxz( ) zyz( ) 1 + zyz( )2⎛⎝ ⎞⎠. (5)

The metric tensor is, in particular, useful to work with vectors

tangential to the surface whose components are expressed in

the Cartesian orthogonal basis (x̂, ŷ). Indeed, given two

tangential vectors p and q, their scalar product is given by

p ·q ≡ hijp
jqi with i and j = x or y, and where hereafter

summation over repeated indices is assumed. In this

section, the components of a vector in (x̂, ŷ) are expressed

using upper indices, while the lower index notation is defined

by pi ≡ hijp
j.

Considering the dynamics (1), the optimal navigation policy

on curved surface minimizes, as for the motion on the plane, the

travel time cost function T � ∫t

0
dt′. In fact, we show in the SM

that this minimization problem can be mapped to finding the

geodesics of an asymmetric Finsler-type metric known as

Randers metric [20–22] which is described by a Lagrangian L
of the form

L ≡
�����
aij _r

i _rj
√

+ bi _r
i, (6)

where the parameters are defined as

aij ≡ λ hij + λfifj( ), bi ≡ − λfi, λ−1 ≡ v20 − f2,

with the metric tensor h defined in Eq. 5 and where f2 ≡f ·f. The
mapping, therefore, provides a geometric interpretation of the

optimal trajectory, which is obtained by integrating the

associated geodesic equation

€rk + Γkij _ri _rj � 0, (7)

FIGURE 5
Schematic representation of the wavy surface used to study the effect of space curvature on the active particle navigation in the same potential
landscape defined by Eq. 2. Two short-time RP isochrones (t = 1 and t = 9 corresponding to the magenta and blue curves, respectively) are shown
here for two different starting points (green dots): (A) maximum and (B) saddle point. The relative force strength here is fixed at γ = 0.79, while the
wave amplitude is set to Δ = 0.5. The most immediate effect of space curvature is to break the force field spatial symmetry. This is apparent by
comparing the 2D projection of the isochrone on the surface with its counterpart obtained from the planar simulations (Δ= 0, red curve). The former
is indeed clearly shorter along the direction of the wave. In both panels, the color gradient shows the intensity of the external force field, while the
gray arrows indicate its direction.
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where the coefficients Γkij are the so-called Christoffel symbols

[35] associated with the generalized metric tensor of the Randers

space gij ≡ 1
2

z2L2

z _riz _rj
(details in the SM). It was initially argued [19,

26] that the validity of the abovemapping was limited to the weak

force regime (v0 > f over the whole surface). Under such an

assumption, the Randers metric L is indeed both positively

definite and strongly convex. As detailed in the SM,

appropriately treating the limit f → v0, the Lagrangian L is

found to remain positively definite at arbitrary force strength

such that it can always be identified as a Randers metric. The

weak force constraint can therefore be relaxed and the solution

(6,7), which hereafter we refer to as the Randers policy (RP),

holds for any dynamical regime. Naturally, in flat spaces, Randers

geodesics correspond to the Zermelo trajectories studied in the

previous section.

In contrast with the planar case, following natural geodesics

on curved surfaces requires for the self-propelled agent to adjust

its direction of motion ê(θ). Namely, the policy generalizing SP

to curved spaces is based on the parallel transport equation (35).

_ek + γkij _r
iej � 0, (8)

which is to be integrated together with Eq. 1, and where the

coefficients γkij are the Christoffel symbols associated with the

metric tensor of the physical space h.

3.2.2 Optimal navigation on a wavy surface
As pictured in Figure 5, we consider a one-dimensional wave-

like perturbation of the 2D plane described by the height function

z (x, y) = Δ sin (kwx), where the parameters kw and Δ set the

period and amplitude of the wave (both in units of ℓ). As our

numerical results do not show significant variations with kw (not

shown), we set kw = k so as to match the period of the wave with

that of the potential (2).

A feature occurring in presence of nonzero space curvature is

that the local force field strength f �
������
hijfifj

√
depends on the

properties of the metric h, namely, here

f2 � fx2[1 + k2wΔ2 cos2(kwx)] + fy2
. In order to properly

distinguish between the effects of the local curvature and that

of the force amplitude, in the following, we rescale the force field

components in order to keep f independent of kw and Δ. It is
straightforward to show that for a general metric, an appropriate

rescaling corresponds to the following transformation to the

force field components:

fx ⟼
1���
hxx

√ fx − fyhxy��
h

√( ), fy ⟼ fy

���
hxx
h

√
,

where h stands as a shorthand notation for det h. For the

following analysis, we, moreover, focus on the most

interesting confining regime by fixing γ = 0.79, while the

performance of SP and RP will be assessed by varying the

wave amplitude Δ.

3.2.3 Properties of the isochrones in the
presence of space curvature

Figure 5 shows two short-time isochrones obtained from RP

trajectories starting from a local maximum and saddle point of

the potential. As shown from their projections on the plane, the

shape of the isochrones is not strongly influenced by the presence

of finite curvature. The curves are indeed not modified in the

direction transverse to that of the surface wave, while they appear

compressed along the wave direction. Here, the surface curvature

therefore essentially introduces a breaking of the discrete

rotational symmetry of the potential. Despite these

quantitative differences with the planar case, the qualitative

features of the RP isochrones such as the presence of self-

intersections are unchanged by the presence of space

curvature. As for the planar case, we did not find significant

variations in the isochrones properties with the departure point;

thus, in the following, we fix it to be a local maximum of the

potential.

FIGURE 6
Long-time properties of the isochrones in curved space. (A) Area covered by the RP isochrone vs. t2 on the oscillating surface with Δ = 0.9 (red
curve). The green curve shows the corresponding ZP isochrone at Δ = 0. The inset shows the value of the exponent α defined in the main text as a
function of the wave amplitude Δ for both SP and RP. (B)Comparison between the time evolution of the fractional area for RP at Δ= 0.9 and ZP. Both
curves oscillate around similar values ≈ .85. (C)Number of trajectoriesNout on the outer isochrone for both RP and ZP [legend is the same as (B)].
The inset shows the variation of the associated exponent with Δ. In all panels, the relative force strength is set to γ = 0.79 (confining regime).
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As shown in Figure 6, the presence of surface oscillations

does not qualitatively modify the isochrones properties for RP

and SP. Indeed, the exponent α ruling the long-time growth of

the isochrone area with time is, in both cases, constant upon

varying Δ, and takes values αRP ≈ 1 and αSP ≈ 1
2 (Figure 6A).

Moreover, the fractional area ϕ for RP oscillates around a well-

defined value ≈ 0.85 (Figure 6B), while it decays to zero at long

time for SP (not shown). Analogous to the planar case and in

contrast with SP, the optimized Randers policy allows the self-

propelled particles to make use of the potential landscape in

order to visit otherwise inaccessible regions, thus ensuring

ergodic spatial exploration even in the presence of potential

confinement. As the evaluation of geodesic distance is

generally computationally demanding, we characterize the

sensitivity of the policies via the scaling of the number of

trajectories Nout lying on the outer isochrone. Consistent with

the behavior of the isochrone area, our results indicate that Nout

decays exponentially with time for RP (Figure 6C) and remains

constant for SP. The corresponding exponent λN, moreover,

varies little with Δ, highlighting the robustness of the

isochrone properties with space curvature.

4 Discussion

We have shown that the long-time properties of isochrones

provide useful information about the efficiency of navigation

strategies for exploration. Our results reveal that for deterministic

dynamics in the presence of strong motion-limiting force, the

travel time minimizing strategies—ZP on the plane and RP in

curved space—surprisingly allow for ergodic exploration,

contrary to the trivial straight policy for which only a

restricted portion of space is visited. Isochrones of ZP and RP

are indeed nearly isotropic with a fractional area ϕ ≥ 0.80, while

those of SP extend only in specific directions corresponding to

escape routes drawn by the force-field landscape.

However, our results also indicate that ZP and RP lead to

chaotic dynamics, which manifests as an exponentially fast

divergence of trajectories whose number at the isochrone’s

outer boundaries also decays exponentially. The resulting

sensitivity to initial conditions is more pronounced in the

confining regime, where it becomes increasingly harder to

resolve the isochrones over a long time. This complexity is

however necessary to ensure full space coverage, as the only

option for the particles to reach certain regions of space—where

the external force is too strong—is to circumvent them. More

dramatically, ZP was found to be unstable in the presence of

fluctuations in the dynamics, as those lead to global trapping of

trajectories regardless of the initial condition. If fluctuations

cannot be neglected—as is often the case for the motion of

microscopic objects—ZP and, by extension, RP are thus poor

candidates for optimal navigation in the presence of strong

external forces. These results, moreover, counter-intuitively

suggest that even though they are designed to maximize the

effective speed of the particles, ZP and RP do not always

constitute good escape strategies. Indeed, compared to ZP or

RP, the trivial SP generally leads to a higher fraction of

trajectories reaching a certain distance from the starting point,

a difference that is even larger in presence of noise.

Our study demonstrates in particular that the chaos of ZP

and RP is closely linked to the presence of isochrone self-

crossings that occur in strong force regions. Inhibiting self-

crossings, thus, seems crucial in order to improve the stability

and robustness of the policies. A possibility could be to include an

additional cost in the derivation of ZP which would lead the

agents to reorient their self-propulsion when entering strong

force regions. It would, moreover, be interesting to compare ZP

and RP with reinforcement learning-based approaches [36–39],

which have already been shown to outperform ZP in the presence

of strong forces [27]. Finally, improvement of ZP and RP could

also be achieved by allowing for some degree of variation in the

particle’s self-propulsion speed. Such a feature indeed would

provide the particles with a mechanism to visit otherwise

inaccessible regions while inhibiting self-crossings at a

minimal energetic cost.

Although all the results presented here were obtained

with the sinusoidal potential (2), we expect our main

conclusions to hold in more general settings. Indeed, as

long as the potential is locally confining—the resulting

external force overcomes self-propulsion only in

disconnected regions—the ZP isochrones should always

exhibit self-crossings. Moreover, in the long-time regime

where their area is much larger than the scale associated

with the potential, it is natural to expect that the behavior of

the isochrones will remain qualitatively independent of the

details of the potential. To stress this idea, we provide the SM

simulation results obtained with a quasi-periodic potential in

the confining regime which show that all scaling laws and

measures of chaos reported for the sinusoidal potential

remain qualitatively unchanged.

As we considered deterministic dynamics for most of this

study, we did not discuss the trapping regime occurring for γ ≥ 1,

where the particles must rely on fluctuations to cross the

potential barrier. It has been argued that in the presence of

confinement induced, for example, by obstacles [40, 41] or high-

potential barriers [42, 43], efficient exploration strategies favor

diffusive over ballistic motion. However, in all these works, no

optimization policy making use of the environmental conditions

was considered. In light of the results reported here, notions of

stability could be a decisive factor in the design of navigation

strategies for ballistic exploration of rugged landscapes in order

to ensure reasonable performances.

More generally, our results highlight an emergent trade-off

between exploration efficiency and stability, which, depending on

the context and the desired task, must be taken into consideration

for the design of the corresponding navigation policy.
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