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The spin-valley-related electronic properties of quasi-one-dimensional

kagome lattices with intrinsic spin-orbit coupling are studied, based on the

tight-binding formalism. Three types of kagome-lattice nanoribbons along the

x-direction with various geometric boundaries are proposed, including two

symmetric nanoribbons and one asymmetric one. It is found that two

nonequivalent Dirac cones and helical edge states exist in all the three types

of kagome-lattice nanoribbons at 1/3 filling. Among them in the asymmetric

nanoribbon, the spin and valley are found to be locked to each other due to

inversion symmetry breaking, resulting in spin-valley polarized edge states.

Band structure and probability density of wave function show that the spin-up/-

down edge states locate at the K/K′ valley, with opposite propagation direction

at the upper and lower boundaries. Spin-resolved real-space local current

confirms the spin-valley polarized helical edge state in the asymmetric

nanoribbon. The device application of the asymmetric kagome-lattice

nanoribbon is worth further investigation.
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1 Introduction

Kagome lattice is a two-dimensional network of corner-sharing triangles. Due to its

special lattice geometric structure, an exotic band structure with flat band and Dirac cones

has been theoretically demonstrated [1–6], as well as unconventional magnetism [7–9],

Dirac metal [10] and quantum spin liquids [11, 12]. Experimentally, a lot of compounds

with kagome lattice have been synthesized and studied. Among them, AV3Sb5 (A = K, Rb,

Cs) is a novel superconductor coexisting with the charge density wave order [13–15], and

RMn6Sn6 (R = Y, Tb, Dy, Ho) is a ferrimagnetic metal with anomalous Hall effect [16–20].

Besides, a number of well-known kagome magnets with exotic phenomenon have been

reported to exhibit giant intrinsic anomalous Hall effect, such as ferromagnetic Fe3Sn2 with

bilayer Fe kagome lattice [21–23], ferromagnetic Weyl semimetal Co3Sn2S2 [24, 25], and

noncollinear antiferromagnet Mn3Sn [26]. The topological properties, like quantum Hall

effect and quantum spin Hall effect, magnetic order and flat band of the kagome lattice have
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also been studied theoretically in recent years based on tight-

binding model [1, 3, 27–33]. At 1/3 filling of kagome lattice, there

are two nonequivalent Dirac points locating at the corners of the

first Brillouin zone, and the system is a Dirac semi-metal. Similar

to the Kane-Mele model on honeycomb lattices, the spin-orbit

coupling (SOC) can open a non-trivial gap at the Dirac points and

drive the system to a topological phase [34]. One could expect

topological edge states at 1/3 filling of the kagome-lattice

nanoribbon, like those of silicene nanoribbon [35, 36]. At 2/

3 filling, the band crossing is quadratic and the instability

toward the insulating phase occurs at infinitesimal (repulsive)

interaction, making such system a promising candidate for a

2D topological insulator. Additionally, in the flat bands strong

Coulomb interaction leads to the anti-ferromagnetism and the

Wigner crystallization in these kagome systems.

Edge modes are very crucial to topological phases, and

employing the bulk-edge correspondence is a powerful tool to

determine the topology [37–40]. In graphene-like lattice, the edge

states of nanoribbons with diffrent boundaries have been widely

investigated, as well as their topological properties [35, 41, 42]. In

this work, we study the edge states in quasi-one-dimensional

kagome-lattice nanoribbons with intrinsic spin-orbit coupling via

tight-binding model. Due to the triangle structure of kagome lattice,

there are several geometric boundaries of kagome-lattice

nanoribbons [43]. Three types of kagome-lattice nanoribbons

along the x-direction with various boundaries are proposed and

studied, which contains two symmetric nanoribbons and an

asymmetric one. In the asymmetric nanoribbon, we find that the

spin and valley are locked to each other at 1/3 filling by inversion

symmetry breaking. Probability density of wave function and real-

space local current confirm such helical spin-valley polarized edge

states. The asymmetric kagome-lattice nanoribbon could have

device application potential of spin-valley polarized current,

where the selected current is both spin and valley dependent.

2 Model and methods

2.1 Tight-binding model

In this work, the tight-binding Hamiltonian for kagome

lattice considering both the nearest-neighbor and second-

nearest neighbor interactions can be written as [31].

H � −th ∑
〈i,j〉α

c†iαcjα + iλSO ∑
〈〈i,j〉〉αβ

]ijc†iασ
z
αβcjβ. (1)

In the first term, 〈i, j〉means the hopping interaction with strength

th occurring between the nearest neighbors, and c†iα(ciα) is the

creation (annihilation) operator with spin α at site i. For most

kagome materials, the hopping strength th varied from 0.07 to

0.1 eV [29, 44]. In this work, all the interaction parameters and

related numerical results are in units of th. The second term is the

SOC with strength λSO between the second-nearest-neighbor sites

〈〈i, j〉〉. ]ij = +1 (]ij = −1) if the SOC hopping is anticlockwise

(clockwise) with respect to the positive z axis, and the z component

of Pauli matrix σz. Most kagome materials are composed of heavy

atoms, which could lead to relatively large spin-orbit coupling. For

example, in Fe3Sn, the hopping parameter is th = 123 meV, and the

SOC strength λSO = 9.24 meV [44]. Here, the SOC strength is set to

be λSO = 0.1th, which is employed in most tight-bind studies and

can well fit the first-principles calculations [31, 34]. Although the

effects of second-nearest-neighbor hopping have been

demonstrated [45], we only consider the nearest-neighbor

hopping and second-nearest-neighbor SOC, which is widely

employed in tight-binding models.

As shown in Figure 1A, there are three sublattices (A, B and

C) in one unit cell, in momentum space the Hamiltonian turns to

be 3 × 3 matrix

Hk � −th
0 1 + e−ik2 1 + eik1

1 + eik2 0 1 + eik3

1 + e−ik1 1 + e−ik3 0

⎛⎜⎜⎝ ⎞⎟⎟⎠
± iλSO

0 ei k2−k3( ) ei k3−k1( )

ei k3−k2( ) 0 ei k1+k2( )

ei k1−k3( ) ei −k1−k2( ) 0

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(2)

with kn = k ·an. an are the unit lattice vectors with a the distance

between nearest-neighbor sites, a1 � ax̂ + 	
3

√
aŷ,

a2 � ax̂ + 	
3

√
aŷ, and a3 = a1 + a2. Here the + ( − ) sign of

the second term refers to spin-up (-down) electrons.

Accordingly, the Brillouin zone (BZ) is shown in Figure 1B,

with the reciprocal lattice vectors b1 � π/ak̂x + π/
	
3

√
ak̂y and

b2 � π/ak̂x − π/
	
3

√
ak̂y.

Figures 1C,D show the energy spectrum along the high-

symmetry lines in the BZ and the density of states (DOS) with

SOC strength λSO = 0 (dashed curves) and λSO = 0.1th (solid curves).

Without SOC, three doubly degenerate bands can be seen, which are

two pairs of dispersing bands with two Dirac cones at K and K′
points and, an additional flat band. Gaps open in the two dispersing

bands at the Dirac points and in the flat band at Γ point after

introducing SOC. This formation of a bulk gap at the Dirac points

induces a topological insulator phase in the kagome lattice system,

since the SOC breaks the spin symmetries and possesses a nontrivial

Z2 invariant [31]. When the two-dimensional kagome lattice is cut

into a quasi-one-dimensional nanoribbon along the x-direction, the

two nonequivalent Dirac points could be preserved according to the

BZ. One could expect the bulk-boundary correspondence and

gapless edge states of the kagome nanoribbon similar to the case

of silicene zigzag nanoribbon [35, 36].

2.2 Dc conductance and local current

The kagome-lattice nanoribbon can be viewed as a central

device connected with two semi-infinite electrodes. The retarded

Green’s function of the nanoribbon is obtained by

Gα(E) � [(E + i0+) −Hα − Σα
L − Σα

R]−1, where Σα
L and Σα

R are
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the spin-resolved self-energies of the semi-infinite left and right

leads for spin α. According to Landauer-Büttiker formalism, the

spin-resolved dc conductance is [46].

Gα E( ) � e2

h
Tr ΓαRGαΓαLGα†[ ], (3)

where h and e are Planck’s constant and electron charge,

respectively. ΓαL/R � i[Σα
L/R − Σα†

L/R] is the imaginary part of the

self-energy of the semi-infinite left/right lead. The spin-resolved

local current between site i and j in the real space of the present

nanoribbon is calculated by

Jαij E( ) � Hα
jiG<α

ij − G<α
ji H

αp
ij , (4)

with the lesser Green’s function [47, 48] G<α � −iGαΓαLGα†.

3 Results and discussion

The two-dimensional kagome lattice can be cut into

nanoribbons along the x-direction, with three different edge

structures (types I, II, and III), as shown in Figure 2. We

focus on the band structures at 1/3 filling of these

nanoribbons, with edge states at two nonequivalent Dirac

cones, K′ (kx ~ π/3a) and K (kx ~ 2π/3a) points. The type I

and type II kagome-lattice nanoribbons in Figures 2A,B are of

inversion symmetry with respect to a central point, while the type

III in Figure 2C is inversion asymmetric. The upper and lower

boundaries of type I are both formed by sublattice-B and

sublattice-C, and the upper and lower boundaries of type II

are both formed by sublattice-A. For the two-dimensional

kagome lattice, a spin-independent lattice dimerization term

was introduced to break the inversion symmetry [31]. As for

the quasi-one-dimensional kagome-lattice nanoribbons, the

inversion symmetry breaking is realized by composing

different types of edge structures here. It has a much more

significant effect on the edge state than that is induced by the

bulk lattice dimerization or defect. As shown in Figure 2C, the

upper boundary of type III is formed by sublattice-A, and the

lower one is formed by sublattice-B and sublattice-C. Two

symmetric nanoribbons have spin-degenerate band structure,

though the SOC breaks the SU(2) spin symmetry. When the

FIGURE 1
(A) Schematic of kagome lattice. The unit cell, formed by sublattice-A, B, and C, is indicated by red dashed hexagon, and a1 � ax̂ + 		

3
√

aŷ,
a2 � ax̂ + 		

3
√

aŷ are the unit lattice vectors with a the distance between nearest-neighbor sites. r is the position vector between nearest-neighbor
sites, and R is the one between second-nearest-neighbor sites. (B) The Brillouin zone (BZ) with high-symmetry points and the reciprocal lattice
vectors b1 � π/ak̂x + π/

		
3

√
ak̂y and b2 � π/ak̂x − π/

		
3

√
ak̂y . (C) Energy spectrum along the high-symmetry lines in the BZ and (D) the density of

states (DOS) with intrinsic spin-orbit coupling (SOC) strength λSO = 0 (dashed curves), λSO = 0.1th (solid curves).
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inversion symmetry and the SU(2) spin symmetry are broken

simultaneously in the asymmetric nanoribbon, spin-up and spin-

down band structures become nondegenerate, especially at 1/

3 filling.

Let us first check the edge states at 1/3 filling of symmetric

type I and type II nanoribbons, around E = −0.8th as labeled by

black stars in Figure 3(a1) and (b1), respectively. Figure 3(a2)

displays the probability density of the wave function of the three

sublattice for spin-up (blue curves) and spin-down (red curves)

edge states around K′ point, in the type I nanoribbon. One can

clearly see that the spin-up edge states are formed on the upper

boundary, while the spin-down ones are on the lower boundary.

Both the right-moving edge states at upper and lower boundaries

result from sublattice-B (blue star) and sublattice-C (green

square), consistent with its geometric structure of boundaries.

As shown in Figure 3(a3), the spin-up and spin-down edge states

around K point have a left-moving direction, and locate at the

opposite boundaries to the case of K′ point. The insets of

Figure 3(a2) and (a3) show the propagation directions of the

spin-degenerate helical edge modes, consisting of the counter

propagating states with opposite spins on each boundary.

Figure 3(b2/b3) shows the probability density of the wave

function of three sublattices for spin-up (blue curves) and spin-

down (red curves) edge states around K′/K point in the

nanoribbon of type II. Comparing to the nanoribbon of type I

around K′/K point, the spin-degenerate edge states have an

opposite propagating direction and edge distribution. The

left-/right-moving spin-up edge states are formed on the

lower/upper boundary, and the left-/right-moving spin-down

ones are at the upper/lower boundary. Sublattice-A (purple

circle) mainly contributes to the edge states of both two

boundaries. However, the sublattice-A at the boundaries is too

FIGURE 2
Three types of geometric edge structure for kagome-lattice nanoribbons along the x-direction and their band structures. The black dashed
lines indicate unit cells of the three nanoribbons, and the numbers are the atom sites in one unit cell. In the right panel of (A,B), the spin-degenerate
band structures are in black. In the right panel of (C), spin-up/-down band structures are in blue/red.
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sparse to form the edge states as shown in Figure 2B. Therefore,

sublattice-B and sublattice-C close to the boundaries also have

contributions, see the blue star and green square at boundary

sites. In spite of the different propagation direction and edge

distribution with nanoribbon of type I, one can find that the

kagome nanoribbon of type II also possesses helical edge modes

at 1/3 filling, as indicated in the insets of Figure 3(b2) and (b3).

Then we focus on the edge states at 1/3 filling of the type III

asymmetric nanoribbon in Figure 4A. One can see that the spin-

down edge states locate around the K′ point, and the spin-up

ones around the K point, which implies that the spin and valley

are locked to each other. Nevertheless, the spin-up and spin-

down electrons are still degenerate with respect to energy. Thus,

the spin-up and spin-down conductance of the nanoribbon are

merged with each other as shown in Figure 4B. Figure 4C shows

the probability density of the wave function for the edge states

labeled by black stars in Figure 4A. As shown, near the K′ point,
the spin-down edge states are formed on the two boundaries with

opposite propagating directions, namely the edge states are spin-

and valley-polarized simultaneously. Moreover, the edge states

FIGURE 3
(a1/b1) The band structure of type I and II kagome-latttice nanoribbons, and corresponding squared wave function (probability density of wave
function |Ψ|2) for three sublattices of the unit cell at 1/3 filling, at kx ~ π/3a (a2/b2) and kx ~ 2π/3a (a3/b3). Insets: the blue and red arrows denote the
propagation directions (L/R is short for left/right) of the opposite spins at the boundaries. The number of atom sites along the y-direction, namely the
width of the nanoribbons, is about 120.
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FIGURE 4
(A) The band structure and (B) conductance of kagome-latttice nanoribbons of Figure 2C at 1/3 filling, where the spin and valley are locked. (C/
D) Squaredwave function (probability density of wave function |Ψ|2) for three sublattice of the unit cell at K′/K point for spin-down/-up electrons. The
blue and red arrows denote the propagation directions of the opposite spins at the boundaries. The number of atom sites along the y-direction,
namely the width of the nanoribbons, is about 120.

FIGURE 5
The real-space distribution of spin-up (blue arrows) and spin-down (red arrows) local current at E = −0.8th of the three types for (A) type I, (B)
type II and (C) type III of kagome-lattice nanoribbns along the x-direction.
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with left-moving Fermi velocity v = zE/zk locate mainly at

sublattice-A on the upper boundary, while right-moving ones

at sublattice-B and sublattice-C on the lower boundary, as

indicated in the inset of Figure 4C. As for the edge states

around the K point, we show the probability density of the

wave function in Figure 4D. Similarly, the spin-up edge states are

locked to the K valley. The direction on the two boundaries are

opposite to that of the spin-down states, i.e., the left-moving spin-

down edge states locate at sublattice-B and sublattice-C on the

lower boundary while the right-moving ones mainly locate at

sublattice-A on the upper boundary. Note that in Figure 4A, the

left-/right-moving spin-down/-up edge states at K′/K point is

mainly contributed by sublattice-A on the upper boundary, while

the right-/left-moving spin-down/-up edge states at K′/K point is

contributed by sublattice-B and C on the lower boundary.

To illustrate the anisotropic helical edge modes in the

asymmetric kagome-lattice nanoribbon, we calculate the real-

space local current at 1/3 filling, which shows the intensity and

direction of current at each site. Figure 5 shows the spin-resolved

local current at E = −0.8th of the three types kagome-lattice

nanoribbons along the x-direction, consistent with the schematics

in the inset of Figures 3, 4. Note that only in the asymmetric

nanoribbon, the spin and valley are locked to each other as shown in

Figure 5C. The spin-up and spin-down local currents are locked to

the K and K′ valleys, respectively. For the right-moving modes, the

spin-up/-down local current flows along the upper/lower boundary

of the nanoribbon. On the other hand, the spin-up/-down local

current for the left-moving modes prefers to flow along the lower/

upper boundary. One can see that sublattice-A contributes to the

current on the upper boundary due to its outmost site on the edge,

while the sublattice-B and C not only have current contribution on

the lower boundary but also contribute on the upper boundary. This

could be owed to the direction of their connecting bonds, which is

parallel to the current and, is easy for the current flowing.

Interestingly, although the probability density of wave function of

sublattice-A on the edge of type II and type III is larger than that of

sublattice-B/C, the local current of sublattice-A contributes less than

sublattice-B and sublattice-C. This phenomena may stem from the

reflection of y-direction on the edge, which leads to large probability

density of sublattice-A. However, it does not contribute to the local

current in the x-direction transport. The spin-valley polarized edge

state could have potential applications for electron manipulating in

kagome-lattice nanodevice.

Finally, we study the size effect of the asymmetric type III

kagome-lattice nanoribbon on the band structure and edge states,

considering the device application based on the spin-valley

polarized transport. Figures 6A–C show the band structure of

the asymmetric type III kagome-lattice nanoribbons with atom

sites 3, 9 and 15. As shown, one can find that an observable band

gap is opened up at the K and K′ points when the nanoribbon is

FIGURE 6
Band structures of the asymmetric kagome-lattice nanoribbons with width, namely atom sites (A) 3, (B) 9, and (C) 15. (D) Bang gap versus
nanoribbon width.
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narrow. As the width of nanoribbon becomes wide, the gap is

narrowed down gradually. Figure 6D shows the band gap as a

function of nanoribbon width. According to the numerical

results, when the width rises to 40 atom sites, the band gap

could be vanishing zero. The gap opening in the narrow

nanoribbon could be owed to the coupling of the edge states

on the upper and lower boundaries via the tunnel effect. The

narrow nanoribbon might be tuned by exchange field or

photoirradiation to undergo topological phase transition, like

a spin-polarized quantum anomalous Hall insulator as the case in

honeycomb-lattices nanosystems [41, 49, 50].

4 Conclusion

In summary, we investigate the edge states of kagome-lattice

nanoribbons with three types of boundary structures along the x-

direction. Helical edge states can be observed in all the three types

of nanoribbons at 1/3 filling, according to the analyses of the band

structure and the probability density of wave function. Among

them in the asymmetric nanoribbon, spin-valley polarized edge

states induced by the asymmetric geometric structure are

demonstrated. The spin-up/-down edge states locate at the

K/K′ point with opposite propagation direction on the upper

and lower boundaries, revealed by spin-resolved probability

density of wave function and real-space local current. Such

spin-valley polarized helical edge states in the asymmetric

kagome-lattice nanoribbon could have application potential in

various kinds of spin valley valves and filters. Additionally, in

practical case, the effects of defect or disorder, and second-nearest-

neighbor hopping for kagome lattice are worth study in the future.
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