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Based on the time-dependent density functional theory, we theoretically

investigate the influence of mechanical strains on the high-order harmonic

generation (HHG) in the monolayer hexagonal boron nitride (hBN) crystal. We

show that mechanical strains can largely modify the band structure and

facilitate the harmonic emission. Compared to uniaxial strains, we find that

biaxial strains may enhance the HHG yield significantly, and the HHG

spectroscopy generated by a linearly polarized laser is closely related to the

symmetry of the deformed hBN. Moreover, when driven by a circularly

polarized laser, we find that the appearance of the 3n-order harmonics

manifests the restoration of the three-fold rotational symmetry. Our results

will be useful in controlling the HHG spectroscopy and probing lattice

deformations in crystals.
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1 Introduction

Since the high-order harmonic generation (HHG) from the bulk ZnO was first

observed in 2010 [1], much attention has been paid to the HHG from crystalline solids,

which may provide a direct access to high-efficiency and high-stability light sources [2].

State-of-the-art experiments have recorded HHG in various condensed-matter systems

[3–7], providing a great opportunity to all-optically image the electronic structure and

ultrafast processes [5], such as valance charge imaging [4], energy band reconstruction [3,

8], Berry curvature measurement [6, 9], lattice symmetry probe [9–11] and transition

moment visualization [12]. Due to the complicated interaction between solids and the

intense laser field, the HHG mechanism from solids can not be sufficiently explained by

the atomic three-step model [13]. At a basic level, interband and intraband transitions

were demonstrated to be critical for solid HHG [14]. Up-to-now, the coupling mechanism

between interband and intraband processes has not been fully understood, and more

importantly, a general rule to manipulate the solid-state harmonics has not yet been

proposed.
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Among various solid-state materials, the ability to

continuously tune the electronic structure is one of the most

attractive properties of two-dimensional (2D) materials. The

atomic thickness of 2D materials makes their electronic and

optical properties very sensitive to external perturbations [15].

The HHG from 2D materials brings some distinctive features.

For example, it has been demonstrated both experimentally [6]

and theoretically [16] that the HHG from the isolated monolayer

MoS2 is more efficient than that from its bulk forms. Also, it is

found that the even-order HHG in the monolayer MoS2 is

predominantly polarized perpendicular to the pump field,

which is caused by the intraband anomalous transverse

current arising from the Berry curvature of the material [6].

The HHG in the monolayer graphene shows an anomalous

dependence on the laser ellipticity [7]. The monolayer hBN

can generate bulk-like harmonics when it is driven by an in-

plane polarized laser field, and atomic-like harmonics when

driven by an out-of-plane polarized pulse [15–17]. In

addition, Yu et al. [17] investigated the double-plateau

structure of the HHG spectrum in the bilayer hBN crystal

with the driven laser pulse at grazing incidence. They found

that the photon energy of the second plateau far beyond atomic-

like harmonics can be well explained by the inclusion of

backscattering of ionized electrons.

In addition to modulate laser parameters, tailoring the

electronic structure of solid-state materials has also been

proven to be a powerful way to control the HHG. For

example, this can be achieved by doping [18, 19] or growing

nanostructures on the surface [20, 21], lowering the

dimensionality of the material [6, 16], and changing the layer

stack [16, 22, 23]. It is worth mentioning that the mechanical

engineering is one of the most commonly used methods to tune

the lattice deformation, band gap and the carrier effective mass,

providing an effective way to change the transition temperature

of the ferromagnetic-paramagnetic [24, 25], metal-insulator [26]

and superconductor [27, 28]. Interestingly, the semiconductor-

metal transition in the thin film MoTe2 can be realized at room

temperature by applying tensile strains [29, 30].

Strain engineering, as a traditional low-cost route to

manipulate the electronic structure, has been widely used in

material sciences. By imposing strains, e.g., stretching or

compressing the lattice structure, the device performance as

well as optical properties can be effectively regulated [31, 32].

Therefore, it does stand to reason that tailoring the HHG from

solid-state materials can also be achieved by applying strains. So

far, to the best of our knowledge, controlling the HHG from 2D

materials via strains remains seldom explored. Recently, Guan

et al. demonstrated the high sensitivity of HHG by applying

uniaxial strains in the monolayer MoS2 and showed strong

correlations between intraband and interband contributions

[33]. Generally speaking, by exerting biaxial stretching strains,

the harmonic efficiency can be facilitated due to the downshifting

energy level of the conduction band [34]. Besides, Qin et al. [35]

showed that, under biaxial and uniaxial strains, the harmonic

intensity in the zero-gap monolayer silicene can be significantly

enhanced up to an order of magnitude.

As a prototype of 2Dmaterials, the hBN attracts great interest

due to its outstanding optical and structural performances, e.g., a

wide band gap, excellent structrual stability [36], hardly damaged

under radiations [15], and strong exciton coincidences [37]. The

hBN relevant materials have been demonstrated to be a

promising candidate for the HHG, such as Graphene/hBN

heterostructures [22], hBN stacking forms [16] and hole-

defect hBN structures [19]. More importantly, ab initio

calculations showed that the exertion of strains can effectively

tune the bandgap structure of the monolayer hBN, and with a

certain large lateral deformation, the single-layer hBN may be

turned from insulator to semiconductor [38].

In this paper, we focus on the stretching effect on the HHG.

As an example, we theoretically investigate the HHG from the

monolayer hBN crystal within the time-dependent density

functional theory (TDDFT). Compared to the previous

research, we systematically study the influence of uniaxial and

biaxial strains along the zigzag direction and the armchair

direction on HHG from the monolayer hBN crystal. To

launch a more convincing dynamics, we compute the initial

ground-state density for each stretching geometry. For the

nonlinear HHG response, we consider two kinds of laser

fields, i.e., the linearly polarized and the counter-rotating

bicircular pulses.

This paper is organized as follows: In Section 2, we introduce

the framework of the TDDFT method and numerical details. In

Section 3, we discuss the strained band structure and the HHG in

the monolayer hBN. Finally, in Section 4, we summarize and

discuss the prospects of our results.

2 Method

The electron dynamics of the monolayer hBN is investigated

by solving the following time-dependent Kohn–Sham (KS)

equations (atomic units is adopted and the spin notation is

omitted hereafter) [39, 40],

iZ
z

zt
ψi r, t( ) � −∇

2

2
+ VH ρ r, t( )[ ] + Vext r, t( ) + Vxc ρ r, t( )[ ]( )ψi r, t( ), (1)

where ψi are KS orbitals and the subscript i corresponds to both a

band and a k-point index. The KS effective potential consists of

three parts: the classical Hartree potential VH, the electronic

exchange-correlation (xc) potential Vxc, and the external

potential Vext that contains the incident laser field and the

electron-ion Coulomb potential. The total density ρ(r, t) is

defined by summing up all the orbital densities,

ρ r, t( ) � ∑
i

|ψi r, t( )|2. (2)
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The microscopic electric current density j(r, t) is computed from

time-evolved KS orbitals:

j r, t( ) � −e∑
i

Re ψp
i r, t( ) −iZ∇ + e

c
A t( )( )ψi r, t( )[ ]. (3)

Then, the HHG spectrum is obtained from the total time-

dependent electronic current j(r, t) by the following Fourier

transform,

Y ω( ) � FT
z

zt
∫

Ω
j r, t( )d3r[ ]∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

, (4)

where Ω is the volume of the computational box.

In the present work, we consider both uniaxial and biaxial

stretching strains applied to the monolayer hBN crystal. For

strained geometries, we optimize lattice parameters of the

monolayer hBN by using the Vienna ab intio Software

Package (VASP) [41, 42]. The projected augmented wave [43,

44] pseudopotentials are employed with a cutoff energy of 500 eV

for the plane-wave basis, and the xc functional is treated with the

generalized gradient approximation of the

Perdew–Burke–Ernzerhof (PBE) functional. The ground-state

structural optimizations are carried out using a cubic cell

which contains four atoms, i.e., two boron atoms and two

nitrogen atoms, as shown in Figure 1A. The corresponding

Brillouin zone (BZ) integrations are approximated by

adopting the special k-point sampling of the Monhkorst-Pack

scheme with a size of 28 × 16 points. The uniaxial deformations

are imposed by stretching the crystal lattice on either the x

[εuni.(x)] or the y [εuni.(y)] direction, and the biaxial deformations

are applied in both the x and the y directions (εbi.). Due to the

Poisson effect [45, 46], the lattice tends to be compressed along

the direction perpendicular to the uniaxial stretching direction.

Therefore, during the optimization, when the uniaxial strain

[εuni.(x) or εuni.(y)] is applied, the x (or y)-direction lattice

parameter Lx (or Ly) in the cubic cell is fixed, and the Ly (or

Lx) is obtained by theminimum process that the system relaxes to

its lowest energy state. For the symmetric strain distribution

(εbi.), we scale both the Lx and Ly by the same ratio. Here,

stretching percents in the range from 0 to 6% are considered,

where ε = 0 manifests a strain-free operation, and ε > 0

corresponds to a stretching operation.

After the lattice parameter optimization, the corresponding

simplified two-atom primitive cell framed by the thin black solid

lines in Figure 1A is used for ground-state calculations and time-

dependent propagations, which is performed within OCTOPUS

package [47, 48]. In all the calculations, nuclei are fixed, so that

the energy transfer from electrons to ions is not considered. The

lattice parameter of the primitive cell for the unstrained

monolayer hBN is 4.73 a0. The length of the simulation box

in the out-of-plane direction is 66 a0. A complex absorbing

boundary condition [49] is employed to prevent the possible

electronic wave-packet reflection, and the width of the absorbing

boundary is 3 a0 laying on the edges of the computational box. All

the physical quantities are discretized in a three-dimensional box

with a uniform grid size of 0.33 a0. We employ a local-density

approximation (LDA) [50] for the electronic exchange-

correlation, and Hartwigsen-Goedecker-Hutter (HGH)

pseudopotentials [51] for core-electron potentials. The 2D BZ

is sampled by a 44 × 44 Monkhorst–Pack k-point mesh for self-

FIGURE 1
(A) Schematic diagram of the strain-free monolayer hBN. The primitive (hexagonal) cell and cubic unit cell are framed by solid and dashed lines.
(B) The first Brillouin zone of the strain-freemonolayer hBN and the corresponding high symmetric points Γ, K, M, R, and S in the reciprocal space. (C)
The band structure of the strain-free monolayer hBN.
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consistent converged calculations. The monolayer hBN is

exposed to a linearly or a counter-rotating bichromatic

circularly polarized mid-infrared laser field, polarized along

the in-plane direction. The laser-matter interaction is

described in the velocity gauge with the vector potential A(t)

given by,

A t( ) � A1 t( ) + A2 t( )
� ∑2

i�1
Ai0f t( ) 1�����

1 + ϵ2i
√ cos ωit( )êx⎡⎢⎢⎢⎢⎢⎢⎢⎣

±
ϵi�����

1 + ϵ2i
√ sin ωit( )êy⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(5)

where Ai0 is the peak vector potential. ϵi and ωi are the ellipticity

and the frequency of the ith pulse, respectively. The laser pulse

envelope f(t) is a sin-square profile. For the linearly polarized

laser, A20 and ϵi are set to be zero. For the bichromatic circularly

polarized field, A10 = A20, ϵi = 1 and ω2 = 2ω1. The “±” in Eq. 5 is

used to distinguish a circularly polarized field with the left-

handed ( + ) or the right-handed ( − ) rotation. Both kinds of

laser pulses share the same pulse length, and contain 8 cycles of

the fundamental pulse. The electric field E(t) relates to theA(t) by

E(t) � −1
c

z
ztA(t). The total energy of the incident laser field in

the current work always remains the same as the fundamental

linearly polarized pulse with a peak laser intensity of 1012 W/cm2.

3 Results and discussion

The strain-free monolayer hBN is a direct-gap insulator with

a hexagonal lattice. The top view of the crystal structure is shown

in Figure 1A. Figures 1B,C show the first BZ and the band

structure, respectively. The minimum direct band gap is located

at K point with a magnitude of ~ 4.5 eV, in good agreement with

other calculations [38, 52]. For the strain-free hBN, the energy at

the high symmetry points of S and M in the band structure is

degenerate, as well as the R and K points.

By taking the lattice structure of the strain-free monolayer

hBN as a reference, the symmetry of the reciprocal space will be

changed under different strain strengths. In Figures 2A–C, we

show electronic band structures of the monolayer hBN that

under different stretching percents. We find that the band

structure strongly depends on the strength and direction of

the applied strains, and the band energies shift when strains

are applied. For the cases of εuni.(x) and εbi., the top of the valence

FIGURE 2
The band structures of the monolayer hBN with the uniaxial strain along (A) the x direction, (B) the y direction, and (C) the biaxial strain along
both the x and y directions. The blue andmagenta curves are for ε= 0 and ε= 6%, respectively. ε= 0 is the strain-free case. The corresponding strain-
dependent direct and indirect band gap in the monolayer hBN are shown in (D) − (F).
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band (VB) and the bottom of the conduction band (CB) locate at

K point, and the increase of the stretching percent always results

in the decrease of the direct bandgap. For the εuni.(y) case, the

monolayer hBN has a direct bandgap under small strains.

However, its bandgap turns into indirect for larger stretching

magnitude. Biaxial strains usually modify the bandgap more

seriously than uniaxial strains. For instance, when εuni.(x) = 6%

(or εuni.(y) = 6%), the direct bandgap at K point decreases to ~ 4.3

eV, while when εbi. = 6%, the direct band gap decreases to 4.1 eV.

The shifting trend of the bandgap under strains in this work

agrees with that in Ref. [38].

To explain the strain effect on the HHG, we first study the

HHG spectra of the monolayer hBN crystal under different

strains, driven by a linearly polarized laser pulse. Our results

show that the distortion of the band structure alters significantly

the in-plane harmonic emission. Since the phonon effect is not

considered in the present work, the electronic indirect transition

may not contribute to the harmonic generation. Figure 3A shows

the total HHG intensity in the monolayer hBN under stretching

strain values of ε = 0 and ε = 6%. Compared with the strain-free

case, both uniaxial and biaxial strains lead to the enhancement of

the HHG intensity. The strain-dependent excited electron

number (Nexc) of the monolayer hBN after the laser field ends

is shown in Figure 3B. The Nexc is larger under the biaxial

stretching, and the corresponding HHG intensity is slightly

stronger than that in the uniaxial strain cases. This may be

attributed to the fact that reducing the bandgap makes electrons

easier transfer from the VB to the CB. This finding is in consistent

with the strain-controlled HHG mechanism in silicene, in which

both the intraband and the interband HHG can be enhanced due

to the increase of electronic population in the CB [35].

To explain the strained HHG mechanism, we plotted the

time-frequency HHG with stretching strains in Figure 4. We find

that the strained HHG mechanism is closely related to the

symmetry of the monolayer hBN. For the strain-free hBN, it

has the reflection symmetry with respect to the B-N bond, and

the three-fold rotation symmetry with respective to the center of

the hexagonal lattice [53]. However, when applied stretching

strains, some symmetries are destroyed, resulting in a concert

change in the HHG spectra. Specifically, under uniaxial

stretching along the x or the y direction, the three-fold

rotation symmetry is broken, while the reflection symmetry in

the x direction is preserved. This gives rise to different HHG

mechanisms that only odd harmonics are found in the x direction

and only even harmonics are found in the y direction. Besides, we

demonstrate that high harmonics are emitted as discrete bursts in

phase concerted with the change of vector potentials, and

magenta lines in Figure 4 stand for the absolute value of the

vector potentials. This suggests that the electronic interband

transition is the dominant mechanism for the stretching-

strained harmonic emission [54].

To further investigate the energy transfer from the laser field

to the strained monolayer hBN, Figure 5A shows the energy

absorption per atom at different laser rotation angles that defined

as the angle between the laser polarization and the x direction.

The laser field is initially polarized in the x direction, and then

rotates counterclockwise, as shown in the insert in Figure 5A.

The energy absorption is an effective representation to clarify

the laser-matter energy connection. The energy transfer function

W in the unit cell volume of Ω can be defined as

W � Ω∫tend

−∞
dt′E t′( ) · j t′( ), (6)

where tend is the moment that the laser pulse ends. In Figure 5A,

for the strain-free case,W vibrates with a period of ~ 60 degrees,

indicating a high anisotropy of the monolayer hBN. Maximum

FIGURE 3
(A) The total HHG spectra in themonolayer hBNwith the stretching percent of ε = 6% under the linear pulse polarized along the x direction. The
laser wavelength is 1,600 nm with a peak intensity of 1012 W/cm2. The gray solid line is for the HHG spectra in the strain-free case. (B) The strain-
dependent excited electron number after the laser ends for different strains strengths.
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values of W are found when the laser polarization is parallel to

the B-N bond (30°, 90°, 150°), and minimal values are identified

when the laser polarization is paralled to either the B-B or the

N-N bond (0°, 60°, 120°, 180°). When the lattice structure is

stretched along the y direction, the original hexagonal geometry

is lost. Therefore, the B-B (or N-N) distance in the x direction is

slightly compressed and the B-N bond in the y direction is

stretched. Interestingly, we find that W is larger under

εuni.(y) = 6% than the strain-free case when the laser is

polarized around the 0° angle, and becomes smaller when the

laser is polarized around the 90° angle. This demonstrates that the

anisotropy is greatly enhanced in the stretching case. Neufeld

et al. also found that the harmonic yield in the plateau region

oscillates periodically in accordance with the instantaneous

structural changes in the lattice, and the dominant HHG

contribution arises when the laser polarization is parallel to

the compressed B-N bond [55].

The high-energy harmonics around the cutoff region are

sensitive to the interatomic distance and electronegativity [4], in

other words, it can be used to reconstruct the geometric

symmetry of the material. To this end, we study the (15th-

22nd)-integrated HHG yield. As shown in Figures 5B,C, triangle

symbols represent the composed HHG yield parallel to the

polarization direction and circle symbols represent the yield

component perpendicular to the polarization direction. It can

be seen that the total harmonic yield is in consistent with the

change of the energy absorption in Figure 5A. For both the ε = 0

and εuni.(y) = 6%, the parallel contribution to the total HHG yield

is dominant. The weak perpendicular component of HHG is

generally attributed to the Berry curvature. In addition,

contributions of orientation-dependent HHG yield from the

parallel and the perpendicular configuration are opposite to

each other. A more detailed analysis of the selection rule for

the strain-free monolayer hBN can be found in our previous

paper [53].

Figure 6 shows the non-perturbative anisotropy map of

the HHG from the monolayer hBN obtained via rotating the

polarization of the linearly polarized driving field. We analyze

the two polarization components of the harmonics,

i.e., perpendicular and parallel to the linearly polarized

laser field. For the ε = 0 and the εuni.(y) = 6% cases, the

crystal symmetry is quite different. The parallel and the

perpendicular HHG components reflect the symmetry of

the hexagonal layered structure. Compared with the parallel

component, the weak HHG perpendicular component is

dominated by the even harmonics, as shown in Figure 6B.

When the laser polarization is in the B-B (or N-N) direction,

pure odd harmonics are embodied in the parallel component

and pure even harmonics in the perpendicular component.

The perpendicular harmonic component is forbidden when

FIGURE 4
The time-frequency logarithmic intensity of x-polarized harmonics under different stretching percents, radiated by a linear polarized laser pulse
along the x direction: (A) strain-free; only uniaxial stretching imposed along (B) the x direction with εuni.(x)= 6% and (C) the y direction with εuni.(y)= 6%;
(D) biaxial stretching with εbi. = 6%.

Frontiers in Physics frontiersin.org06

Kong et al. 10.3389/fphy.2022.1032671

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1032671


the laser is polarized along the B-N bond. For the εuni.(y) = 6%

case, the breaking of the three-fold rotation symmetry is

reflected by the perpendicular HHG spectrogram, e.g., the

mirror symmetry with respect to the B-N bond is broken at 30°

and 150°. Therefore, the HHG perpendicular component is

strictly forbidden when the laser is polarized in the y direction,

and the odd harmonic yield in Figure 6D is higher than that in

Figure 6B. One has demonstrated that the polarization

properties of the solid-state HHG are largely governed by

the crystal symmetry by comparing the experimental

measurements with the theoretical results [56]. The similar

odd/even order contrast has been reported for many other

crystals, such as the monolayer MoS2 [6], the bulk ZnO [56],

α-quartz crystals [9, 57], etc. These results show that the

polarization-dependent harmonics provide a powerful way

to probe the crystal spatial symmetry.

For the HHG selection rule, it has been proven that the

HHG emission must obey the same symmetry owned by the

target system and the driving field [58, 59]. Therefore, if the

incident laser field has the three-fold rotation symmetry as

same as the monolayer hBN lattice, the 3n-order harmonics

should be missing. According to this, we investigate the

harmonic generation in the monolayer hBN under εuni.(y)
stretching driven by a bichromatic counter-rotating

circularly polarized laser pulse. Such a laser pulse is a

combination of a circularly polarized fundamental field of

frequency ω1 (1,600 nm) and its counter-rotating second

harmonic ω2 (800 nm), which exhibits a three-fold rosette

pattern as shown in the insert of Figure 7. The intensity of

both two single circularly polarized pluses is set to be I1 = I2 =

5 × 1011 W/cm2. For the strain-free case, governed by the

selection rule, it is obvious that the 3nth harmonics are

forbidden. However, as the uniaxial stretching percent

increases, the forbidden 3nth harmonics gradually restore.

In this case, the uniaxial stretching breaks the three-fold

rotation symmetry, and the selection rule is replaced by

selection deviations [60]. Comparing with the results of

εuni.(y) = 3% and εuni.(y) = 6%, one can find that a larger

FIGURE 5
(A) The calculated energy absorption per atom of the monolayer hBN as a function of the laser rotation angle under stretching percents of ε = 0
and εuni.(y) = 6%. The inset shows the angle of the laser in-plane polarization. The laser field is first polarized in the x direction and then rotated
counterclockwise. The harmonic yield as a function of the laser rotation for cases of ε = 0 (B) and εuni.(y) = 6% (C). The HHG yield component that
parallel or perpendicular to the linearly polarized field is denoted by circle and triangle symbols, respectively. Cubic symbols are the total
harmonic yield.

Frontiers in Physics frontiersin.org07

Kong et al. 10.3389/fphy.2022.1032671

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1032671


stretching percent gives rise to a stronger 3nth harmonic

signal. This suggests that exerting a stronger external

perturbation may result in a larger deviation, and such a

signal is useful to reconstruct the lattice deformation.

4 Conclusion

In conclusion, we have studied the strain-dependent HHG in

the monolayer hBN crystal within the TDDFT. The monolayer

hBN is exposed to an intense linearly polarized or a counter-

rotating bichromatic circularly polarized mid-infrared laser field.

To ensure the structural stability of the hBN crystal, stretching

percents are limited in the range of 0–6%. Using the strain-free

monolayer hBN as a reference, we studied band structures and

the resulting HHG under two typical kinds of strains, i.e., the

uniaxial and the biaxial stretching strains. We find the band

structure is sensitive to the structural deformation modulated by

strains. For both the uniaxial and biaxial cases, the interband

dynamics is the dominant mechanism in the strained monolayer

hBN. By rotating the laser polarization direction, the HHG

spectra from the strained monolayer hBN exhibit some special

features compared with that from the strain-free case. The results

show that the anisotropy of HHG spectra is closely related to the

structural symmetry of the strained hBN. Furthermore, when

exposed to a bichromatic counter-rotating circularly polarized

laser pulse, the restoration of 3nth harmonics is a potential probe

to reconstruct the lattice deformation. Therefore, our work

provides a useful way to control the HHG by applying

FIGURE 6
Logarithmic colormap for the polarization-dependent harmonic intensity in the monolayer hBN. Left panels: the HHG in the strain-free
monolayer hBN for the (A) parallel and (B) the perpendicular components. Right panels: The HHG in the stretching monolayer hBN with εuni.(y) = 6%
for the (C) parallel and (D) the perpendicular components.

FIGURE 7
The HHG in the stretching and strain-free monolayer hBN
driven by a two-color counter-rotated circularly polarized laser
pulse. The insert is the Lissajous curve of the applied laser field.
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mechanical strains, and the results may be heuristic to enhance

the optoelectronic efficiency of solid-state nano-devices.
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