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The key thermodynamic characteristics of the pseudogap state in cuprate

superconductors are reviewed. These include YBa2Cu3O7−δ,

Y0.8Ca0.2Ba2Cu3O7−δ, YBa2Cu4O8, Bi2Sr2CaCu2O8+δ, La2−xSrxCuO4, and

Tl2Ba2CuO4. The electronic specific heat was extracted using a differential

technique, and the evolution of the specific-heat coefficient γ and electronic

entropy S as a function of temperature, doping, and magnetic field reveals a

canonical behavior summarized by the following. The normal-state gap which

opens in the pseudogap domain apparently remains open to the highest

temperatures investigated. The gap decreases in magnitude with increasing

doping and closes abruptly at a critical doping of p ≈ 0.19 holes/Cu,

independent of temperature. In this picture, the pseudogap is separated

from the pseudogap-free region of the phase diagram by a vertical line

similar to the vertical line separating the incoherent and coherent antinodal

quasiparticle states found in ARPES. The important role of fluctuations is evident

by a diverging enhancement of γ(T) on either side of Tc, and this enables

extraction of themean-field transition temperature Tmf
c >Tc, defining a crescent

of parapairing above Tc(p) which extends across the entire superconducting

phase diagram and which is quite distinct from pseudogap phenomenology.

The data are consistent with d-wave pairing and the BCS ratios are extracted,

revealing canonical near-weak-coupling behavior across the over-doped

region with a sudden suppression occurring at p ≈ 0.19 when the

pseudogap sets in.
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1 Introduction

The idea of a pseudogap in cuprates was suggested quite early by Friedel [1] to

describe the suppression of susceptibility across the under-doped regime. However, the

underlying physics of the pseudogap, observed in all hole-doped cuprates, still remains

unresolved despite more than a quarter of a century of detailed study. More concerning

still, there is still no agreement on the precise phase extent and phenomenology of the

pseudogap [2]. What perhaps is agreed is that it represents a partial gap in the electronic

density of states (DOS) which is asymmetric about EF as evidenced by its dramatic effect

on the thermoelectric power in under-doped cuprates [3]. Once, it was also generally

agreed to be associated with the under-doped side of the phase diagram but now,
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researchers often describe a T*(p) line as a line which extends

across the entire superconducting phase diagram, falling to zero

as Tc → 0 at the end of the superconducting dome [4]. It also

seems to be associated with a reconstruction of the Fermi surface

(FS) from a large hole-like FS on the over-doped side to

disconnected hole pockets on the under-doped side [3, 5, 6]

though there remain significant questions in this interpretation

especially for Tl2Ba2CuO6 [7].

The electronic specific heat between 0 and 300 K probes the

full spectrum of low-lying quasiparticle excitations over a Fermi

window extending up to 100 meV and thus encompasses both

the superconducting gap and the pseudogap. It is therefore an

excellent probe of the pseudogap, its phase extent and its relation,

or otherwise, to superconductivity. That is, provided it can be

measured. Unfortunately, the total specific heat also includes a

phonon contribution which, at temperatures of Tc and above, is

up to 100 fold larger than the electronic specific heat. However,

the extensive differential measurements and analysis of the late

John Loram have enabled this separation of electronic and

phonon terms [8], and it is these which we discuss here.

The technique is discussed elsewhere [9] but in short, the

specific heat of the sample is measured relative to a reference

sample which ideally is similar in structure and total number of

atoms. In all the following work discussed, the reference samples

were the samematerial as the samples but Zn substituted in order

to suppress superconductivity. Thus, for example, YBa2Cu3O7−δ

is measured relative to YBa2Cu3−yZnyO7−δ with y = 0.21. In this

way, the differential technique backs off most of the phonon

contribution to the total specific heat and the residual phonon

term is found to scale with the changing oxygen content, δ, thus

allowing the bare electronic term to be directly extracted. The

systems measured include YBa2Cu3O7−δ, Y0.8Ca0.2Ba2Cu3O7−δ,

YBa2Cu4O8, Bi2Sr2CaCu2O8+δ, La2−xSrxCuO4, and Tl2Ba2CuO4.

A key result is the observation of entropy suppression, precisely

mirroring the susceptibility suppression [1], that shows the

pseudogap to be a gap in the quasiparticle spectrum and not

just the spin spectrum [10, 11].

2Doping dependence of specific heat
and entropy

2.1 YBa2Cu3O7−δ and YBa2Cu4O8

The simplest and most ideal systems to study are

YBa2Cu3O7−δ (Y123) [8] and YBa2Cu4O8 (Y124) [12], the first

because it can be doped over a wide range in very small

increments and the second because it is perhaps the most

defect-free structure amongst the cuprates. Figure 1 shows the

temperature dependence of (a) the electronic specific heat

coefficient, γ ≡ CP/T, and (b) the electronic entropy,

S ≡ ∫T

0
γ dT, for both of these systems [12]. From here on, we

omit the identifier “electronic” as all the thermodynamic

functions quoted in the following are electronic and do not

include any phonon component. For Y123, we show the data

just for oxygen contents of 6.97 and 6.92, that is, nearly fully

oxygenated Y123. These plots capture the essential pseudogap

physics of the cuprates which will be seen to be canonical. Fully

oxygenated Y123 happens to lie just at the doping point where

the pseudogap closes, while Y124 is like under-doped Y123 in

which the pseudogap is present. Three key features can be

observed in these data:

(i) Fully oxygenated Y123 exhibits a large jump in γ at Tc

while, in Y124, the jump is strongly suppressed. This shows that

compared with Y123, the density of pairs in the Y124 condensate

FIGURE 1
Electronic thermodynamic functions (A) γ(T) and (B) S(T) for
YBa2Cu3O7−δ and YBa2Cu4O8 showing the canonical parallel
downward shift in S(T) due to the pseudogap, while γ(T) returns to
the same value at high T. The shaded regions in (A) between
the observed γ(T) and γn(T) illustrate the equal-area entropy-
balance rule, as discussed the text. The inserts in each panel show
the Fermi windows for each function overlaid on a gapped density
of states N(E). The blue, purple, and olive-green curves show the
Fermi windows for temperatures kBT = 0.1E*, 0.3E*, and 1.0E*,
respectively. For S(T), the window has a single peak and always
sees a gap at EF, so the entropy is always suppressed while the gap
remains. In contrast, for γ(T), the Fermi window is double peaked
about EF and so, at high enough temperature, the window does
not see the gap and γ(T) returns to its bare value.
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is strongly diminished by the removal of the antinodal states by

the pseudogap.

(ii) It is possible to infer the normal-state behavior in the

absence of superconductivity using the method of entropy balance,

or equal-area construction. Thus, in Figure 1A, the red dashed

curve is the normal-state specific-heat coefficient, γn(T),

corresponding to the solid red curve. The pink-shaded area

between the two curves must be the same above and below the

crossing point. There is some latitude in the construction, but it is

quite constrained as it must be continuous with the measured

behavior above Tc. For the fully oxygenated sample, γn(T) is

constant, reflecting a fairly flat DOS in the neighborhood of EF.

This reveals that there is no pseudogap present in fully oxygenated

Y123, but a small gap has already opened at oxygen 6.92 (red

dashed curve) as reflected by the low-temperature downturn. Now,

when we turn to Y124, the same construction (blue shading) shows

γn(T) (blue dashed curve) to be rather strongly suppressed at low-

T, thus highlighting a fully developed pseudogap in this more

under-doped sample. Even so, there remains a small but finite

residual γn at T = 0 and this reflects the Fermi arcs or pockets

present in the under-doped cuprates which have been revealed in

ARPES measurements on Bi2212 and La214 [13]. Integration of

γn(T) gives the normal-state entropy Sn(T) shown by the red and

black dashed curves in Figure 1B. The integrated area between

Sn(T) and S(T) gives the superconducting condensation energy,U0,

which will be discussed later.

(iii) Perhaps, most notably, the data show that the γ(T) curves

for Y123 and Y124 come together at high temperature, whereas

the S(T) curve for Y124 is displaced downward in parallel fashion

relative to that for Y123. This arises from the presence of the

pseudogap and its persistence to very high temperature. To see

this, the entropy for a weakly interacting Fermi liquid is

considered [14]:

Sn � −2kB ∫∞

−∞
f ln f( ) + 1 − f( )ln 1 − f( )[ ]N E( ) dE, (1)

where f(E) is the Fermi function and N(E) is the electronic DOS

for one spin direction. This is just a weighted integral of the DOS

with the “Fermi window” [f ln(f) + (1 − f) ln (1 − f)]. This Fermi

window for S(T) is shown as a function of E in the insert of

Figure 1B for three different temperatures. It is single peaked at

EF and so a gap at EF (illustrated by the triangular gap in the

figure) is always seen by the entropy, even at high T so long as the

gap remains. In contrast, for γ(T) ≡ zS/zT, the Fermi window is

necessarily double peaked about EF, and at high enough

temperature, it does not see the gap at EF. As a consequence,

γ(T) returns to its bare value, while S(T) is suppressed until, and

only if, the gap closes. The fact that S(T) remains suppressed in

Figure 1B shows that the gap persists to the highest temperature

investigated (nearly 400 K). The magnitude of the gap, E*, can be

read off from where the extrapolation of the high-T linear section

of S(T) intercepts the y-axis. For the triangular gap shown, the

intercept is 2 ln(2) kBN0E*VM, where VM is the molar volume. If

the DOS is non-zero at E = 0 with value N1, then the intercept is

2 ln(2) kB(N0 − N1)E*VM. As noted, such a finite value would

reflect the presence of a small Fermi surface (arcs or pockets)

[13], and this is confirmed by the non-zero value of γn (T = 0) for

both Y123 and Y124 seen in Figure 1.

2.2 Y0.8Ca0.2Ba2Cu3O7−δ

Ca doping in YBa2Cu3O7−δ allows this system to be

significantly over-doped at full oxygenation, with over-doped

Tc reduced to about 45 K. This means that much of the

superconducting phase diagram can be explored simply by

changing δ by annealing and quenching [11]. For a 6-g

sample, the mass change from deoxygenation is 144 mg, so δ

can be measured rather accurately and even more accurately

from the change in the residual phonon term of the specific heat.

This system also benefits from the fact that the van Hove

FIGURE 2
(A) Measured electronic specific heat coefficient, γ, for
Y0.8Ca0.2Ba2Cu3O7−δ reported by Loram et al. [11]; and (B) the
electronic entropy calculated from γ in (A) by integration. The
doping states span from under-doped p ≈ 0.07 to over-
doped p ≈ 0.23 in small steps of approximately 0.01.
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singularity (vHs) lies far below EF and is not traversed until

beyond the superconducting domain [15]. This is important as

the proximity of the vHs in other cuprates somewhat confuses

the interpretation of the entropy and its parallel shift at high T, as

we will see. Figure 2 shows (a) γ(T) and (b) S(T) for YBa2Cu3O7−δ

over a range of doping states spanning the under- and over-

doped regions [11].

The same features noted previously for YBa2Cu3O7−δ and

YBa2Cu4O8 are evident, but now, the systematic effect of doping

reveals a progressive reduction in the jump Δγ/γc with under-

doping and a progressive downward parallel shift in entropy at

high T, indicating a growing pseudogap with under-doping. At

the same time, the value of γ at high T remains essentially doping

independent. At no point does the entropy recover to its bare

value at high T, again showing that the pseudogap does not close

with increasing T. γ(T) exhibits a linear slope at low T, consistent

with d-wave pairing. In the under-doped region at low-T, these

curves stack on top of each other, while in the over-doped region,

they become increasingly steeper. This slope is proportional to 1/

Δ0, where Δ0 is the amplitude of the d-wave gap as T → 0.

Accordingly, it can be seen that the gap amplitude remains more

or less constant in the under-doped region and falls in the over-

doped region, just as found in systematic ARPES studies [16].

Values of Δ0 (divided by 2.5) obtained in this way are

summarized in Figure 3. The values of E* obtained from the

y-axis intercept of the high-T linear entropy are also plotted. E*

descends more or less linearly with doping, vanishing at p ≈ 0.19.

Additionally, at this critical doping level, the values of Δγ/γc
abruptly begin to fall as the pseudogap opens.

2.3 Fluctuations and mean-field Tc

Examination of the transition steps in γ(T) atTc shown in Figures

1, 2 reveals that these transitions are not completely abrupt but show

the effect of fluctuations above and below Tc. These arise because of

the low superfluid density found in the cuprates which results in

strong fluctuations in both amplitude and phase, setting in

simultaneously well above Tc [17]. As a consequence, Tc is

pushed significantly below its mean-field value, Tmf
c . These

perturbations to γ(T) near Tc can be analyzed to calculate Tmf
c ,

and the method is illustrated in Figure 4 [17].

Figure 4 shows the specific heat coefficient, γ(T), for

Y0.8Ca0.2Ba2Cu3O6.75. At this doping (p = 0.185), the

pseudogap has just closed and the normal-state specific-heat

coefficient γn(T) is essentially constant (dashed line). γmf
s is the

mean-field γ in the superconducting state deduced by entropy

FIGURE 3
Summary of extracted data for Y0.8Ca0.2Ba2Cu3O7−δ. The
Tc(p) phase curve; the ground-state superconducting energy gap,
Δ0(p); and pseudogap energy, E*(p), all expressed in temperature
units. The mean-field Tc, T

mf
c (p) obtained from the entropy-

balance analysis illustrated in Figure 4 is also shown. The false-
color map shows the condensation free energy BCS ratio,
ΔF/γnTmf 2

c which for a d-wave order parameter should be
0.17 at T = 0. It is close to that value for all p ≥ p* = 0.19, but falls
rapidly as the pseudogap opens for p < 0.19.

FIGURE 4
(A) Fluctuation analysis of the specific heat coefficient, γ(T),
for Y0.8Ca0.2Ba2Cu3O6.75 to determine the mean-field Tc value,
Tmf
c , showing the deduced MF coefficient γmf and the symmetric

fluctuation contribution (gray shading). By entropy balance,
the hatched area equals the shaded area under the fluctuation
term. (B) Solid curve: the SC energy gap Δ0 calculated using Eq. 2
and dashed curve: its MF value, Δmf

0 calculated from γmf in (A). (C)
Solid curve: the entropy difference ΔS = Ss − Sn calculated by
integrating (γ − γn) from (A); dashed curve ΔSmf calculated by
integrating (γmf − γn) from (A).
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balance, namely, the area abc equals the area cde. Additionally,

by entropy balance, the gray shaded area under the fluctuation

contribution must equal the hatched area which therefore

defines both Tmf
c and Δγmf. This illustrates the method for

extracting the mean-field parameters. For other doping states,

γn(T) is no longer flat but the same construction equally applies.

The values of Tmf
c for different oxygen contents are plotted [17]

in Figure 3 by the blue data points and error bars as annotated.

In the under-doped region, Tc is depressed below Tmf
c by up to

30 K. For Bi2212, the depression is higher still—up to 45 K. This

is quantitatively consistent with conclusions drawn from both

ARPES [18] and scanning tunneling spectroscopy

measurements [19]. In contrast, a fluctuation analysis of

intrinsic tunneling data in over-doped Bi2212 single crystals

suggests somewhat smaller depression of 7–13 K [20]. It is

notable that Tmf
c tracks Δ0/2.5 across the over-doped region,

that is, nearly equal to the weak-coupling mean-field BCS value

of Δ0/2.14.

By integrating γ(T) − γn(T) in Figure 4A, we obtain ΔS = Ss −

Sn and similarly for ΔSmf � ∫T

0
(γmf

s − γn)dT. Values of ΔS and

ΔSmf are plotted in Figure 4C by the solid and dashed curves,

respectively, where only every 4th data point is shown from the

experimental data. These may in turn be integrated to generate

the condensation free energies ΔF(T) and ΔFmf(T) [21]. The

former, ΔF(T), at T = 0 is the condensation internal energy, U0.

Finally, we wish to construct the BCS ratio U0/γT2
c , but as BCS is

a mean-field theory, the appropriate Tc to use is the mean-field

value which we have calculated. For d-wave weak-coupling

superconductivity, this ratio should be 0.17.

These integrals were evaluated for all the doping states and

the false-color plot in Figure 3 is ΔF/γTmf 2
c plotted as a function

of p and T. As shown previously [21], this BCS ratio sits close to

0.17 across the entire over-doped regime until p falls below p* ≈
0.19 when the pseudogap opens and the ratio falls abruptly as

spectral weight is removed by the pseudogap.

2.4 Pairing gap

Elsewhere [21], we have shown that starting from the BCS

Hamiltonian one can deduce

ζN 0( )Δ T( )2 � 2ΔF T( ) + TΔS T( )
≡ 2ΔU T( ) − TΔS T( ), (2)

where ζ = 1 for s-wave and 1/2 for d-wave and N (0) is obtained

from the usual expression for the Sommerfeld “constant”

γn �
2
3
π2k2BN0 1 + λ( ), (3)

where λ is the usual electron–boson coupling parameter in the

Eliashberg theory [22] and N0 is the bare band DOS, un-

renormalized by electron-boson or Coulomb effects. Thus, Eq. 2

expresses Δ(T) directly in terms of thermodynamic functions ΔF,

ΔS = Sn − Ss, and ΔU = Un − Us, which we have calculated. We do

not know the magnitude of λ in Eq. 3, so we relate N (0) to γn using

Eq. 3 with λ = 0 recognizing then that deduced values ofΔ(T) should
be larger by the factor

����
1 + λ

√
. In this way, we have evaluated Δ(T)

and Δmf(T), and these are plotted in Figure 4B.

Several points are worth noting: (i) first, Δmf(T) is found to

follow almost precisely the BCS d-wave temperature dependence.

This means that the cuprates are close to weak-coupling behavior

as we have previously deduced [17], thus justifying the basic

assumptions of our analysis. (ii) Second, with increasing

temperature, Δ(T) starts to fall below Δmf(T) at the onset of

SC fluctuations below Tc. At Tc, there is an inflection in Δ(T)
which then remains finite and falls only slowly to zero above Tc,

and indeed well aboveTmf
c . As it does, it becomes less well defined

due to the implicit square root in Eq. 2. So, the terminal point for

a finite non-zero gap is not sharply defined. (iii) Third, at Tc, the

coherent superconducting state vanishes and this finite residual

“gap” reflects a fluctuation-induced loss, above Tc, of spectral

weight in the DOS at EF—as described in figure 10.2 in Larkin

and Varlamov [23]. Here, it is only a partial gap but easily

distinguishable from the partial gap that is the

pseudogap. Similar results were also obtained for Bi2212, but

the fluctuation domain was found to extend somewhat higher

than in Y0.8Ca0.2Ba2Cu3O7−δ [21].

2.5 La2−xSrxCuO4

Turning now to La2−xSrxCuO4, we illustrate the complicating

role of a proximate vHs [24]. Figure 5 shows (a) γ(T) and (b) S(T)

for this system over a rather broad range of doping values

(annotated) [11], including some unpublished data. The most

extremely over-doped data (x = 0.30, 0.35, and 0.45) are depicted

by the dashed curves for ease of identification. As found for

Y0.8Ca0.2Ba2Cu3O7−δ, the γ(T) data come together at high

temperature, although the convergence seems slower because

of the broader doping range, and likewise the entropy curves,

S(T), remain spread out at high T as a set of parallel straight lines

which do not close at any temperature, consistent with a normal-

state gap which never closes at elevated temperature. But at what

doping level does the pseudogap finally close? The high-T linear

portion is linear to the origin just above x = p = 0.17, so this would

seem to be the general location of pcrit where the pseudogap

closes. But, above this doping level, the curves continue to spread

out in a parallel manner but now with negative curvature. This

arises from the close proximity of the vHs, observed in ARPES to

lie at x ≈ 0.21 [24]. The approach of the vHs is evident in γ(T)

from the peaks (arrowed in Figure 5A) which migrate

progressively toward T = 0 at the vHs crossing, which in these

polycrystalline samples lies at 0.23. It is also evident in S(T) by the

entropy rising to a maximum at x = 0.23 before falling again once

the vHs moves into the unoccupied states above EF. This peak

should not be confused with the peak expected from normal-state
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pair dissociation above Tc within the so-called “pairon”model [4]

of the pseudogap. Such a pair-dissociation peak would result in

S(T) curves recovering their bare values at high temperature,

which clearly they do not. It must be recalled that this peak is

absent in Y0.8Ca0.2Ba2Cu3O7−δ where the vHs is much further

removed below EF [15].

The vHs crossing point is easily identified in plots of γ(p, T)

vs p at fixed T (such as 40 or 50 K). This passes through a more or

less symmetric peak at x = 0.23 (as does the susceptibility [11]),

the location of the vHs. Zhong et al. have calculated γ(p, 0) vs p

from the ARPES-derived dispersion and the curves are essentially

identical to the experimental data described previously, except

theirs peak at x = 0.21. The small difference, 0.21 vs 0.23, for bulk

samples is probably attributable to the use of epitaxial thin films

in the former. This could, for example, be due to lattice strain or

incomplete oxygenation in the latter.

2.6 Bi2Sr2CaCu2O8+δ

Similar behavior is observed in Bi2212. Differential specific

heat measurements were carried out on three samples, namely,

pure, Pb-substituted to enable excess doping, and Y-substituted

to enable increased under-doping. Where the sample dopings

overlapped, the data were in remarkable agreement [11]. We

focus on the pure Bi2Sr2CaCu2O8+δ data which were fitted [25] in

the normal state using a rigid ARPES-derived anti-bonding band

dispersion reported by Kaminski et al. [26] together with the

standard non-interacting Fermion model, Eq. 1, for calculating

the entropy. The fits are excellent [25], but, for the sake of clarity

and because they are so instructive, we show here only the

calculated normal-state curves. Figure 6 shows these normal-

state fits for (a) γ(T) and (b) S(T) plotted for the different doping

FIGURE 5
Measured thermodynamic data for La2−xSrxCuO4. (A) γ(T) for
x ranging from 0.03 to 0.45 (see color-coded legend). Curves for
x = 0.30, 0.35, and 0.45 are dashed for ease of identification. The
peaks associated with the proximate van Hove singularity are
indicated by arrows. (B) The electronic entropy, S(T). Data partly
from [11].

FIGURE 6
(A)Normal-state values of γ(T) fitted to the experimental data
for Bi2212 [25] using the ARPES-derived dispersion of Kaminski
et al. [26] and evaluated below Tc by entropy balance. The peaks
associated with the proximate van Hove singularity are
indicated by arrows. (B) The normal-state electronic entropy
obtained by integrating γn(T) in (B). The different doping levels, p,
are given in the legend along with the energy difference, ΔEvHs, of
the vHs below EF in meV. The inset shows the dependence of the
vHs peak temperature on ΔEvHs.
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levels investigated ranging from p = 0.129 to 0.209 as annotated

in the legend. For Bi2212, the anti-bonding band vHs crossing

occurs at p ≈ 0.23 as was found in the ARPES study by Kaminski

et al. [26]. The fits of course quantify the separation, ΔEvHs, of the

vHs below EF. The legend includes ΔEvHs values for each doping

level.

The plots show, at high temperature, the same generic

convergence of γ(T), combined with a parallel shift of S(T)

that never closes. The entropy is linear to the origin at a

doping of 0.18 or 0.19. This is where the pseudogap closes.

Below this doping, the transition jump, Δγc, collapses rapidly

confirming the opening of the pseudogap. The opening of the

pseudogap is also seen in the onset of a suppression of γ(T) at low

T. However, like La214, at higher doping, the entropy curves

develop negative curvature and continue to shift to higher values

in a parallel manner. Again, this is due to the approaching vHs

which is seen more clearly in γ(T) by the local peaks which are

arrowed in the figure and which push to increasingly lower

temperature as the vHs is approached. The distance from the

vHs is given in terms of the peak location, Tpeak, by ΔvHs ≈
4.3kBTpeak as shown in the inset to Figure 6A.

3 Field-dependent specific heat

The field dependence of the specific heat provides important

additional information on the pseudogap. Crucially, the

difference in total specific heat in zero field to that in applied

field is free of any contribution from the phonon specific heat. A

potential criticism of the extraction of the electronic specific heat

from the much larger total specific heat in differential

measurements is the possible mischaracterization of the

residual phonon term. Differencing the field-dependent data

totally removes that uncertainty and we are left exclusively

with the bare electronic term. The use of differential

measurements only serves to greatly increase the accuracy of

the measurement of that field-dependent electronic term.

Furthermore, the field-dependent free energy enables the

superfluid density, λ(T)−2, to be extracted as follows. The change

of free energyΔF(H,T) = F(H,T) − F (0,T) can be analyzed in terms

of the London model for the field-dependent magnetization [27]:

μ0M H,T( ) � ϕ0

8πλ2
ln 2e2−2γE

H −Hc1

Hc2
( ), (4)

where γE is Euler’s constant (=0.5772). By integration with

respect to H, then assuming H ≫ Hc1, this yields:

ΔF H, T( ) � − ϕ0H

8πλ2 T( ) ln 2e1−2γE
H

Hc2
( ). (5)

Thus, by plotting ΔF(H, T)/H vs ln(H), one expects linear

behavior with slope proportional to the superfluid density,

ρs = λ−2, and x-axis intercept giving ln(Hc2). Most of our

samples are polycrystalline with near-random grain

orientation, and so this expression needs to be modified to

take into account anisotropy. Specifically, when the field is

applied at angle θ to the crystalline c-axis, λ−2 becomes

(λabλc)−1 ×
��������������
sin2 θ + γ2a cos

2 θ]
√

and Hc2(θ) becomes

Hc2‖ab/
��������������
sin2 θ + γ2a cos

2 θ]
√

, where γa is the anisotropy factor

γa = λc/λab = ξab/ξc. If we assume large anisotropy γa ≫ 1,

then we may replace both occurrences of H in Eq. 5 with

H cos θ and integrate 0 to π/2 to get the average response.

This integrates exactly, and by changingH to B, we finally obtain:

ΔF B, T( ) � −2
π

ϕ0BVM

8πμ0λ
2 T( ) ln 4e−2γE

B

Bc2
( ), (6)

where VM is the molar volume and ΔF is in units of J/mol. We

now apply this analysis to Bi2212.

FIGURE 7
(A) Electronic specific heat coefficient, γ(T), measured for
Bi2Sr2CaCu2O8+δ (Bi2212) for different doping levels, p, as
annotated in the legend in the lower panel. The legend shows p
and ΔEvHs values as in Figure 6(B). Panel (B) shows the
difference Δγ(13, T) = γ(13, T) − γ(0, T) between the specific heat
coefficient at 13 T and that at 0 T. It is noted that the peaks in both
γ(T) and Δγ [13] occurring at Tc remain of the same height above p*
and then fall rapidly for p < p* = 0.19 as the pseudogap opens.
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3.1 Bi2Sr2CaCu2O8+δ

Figure 7 shows (a) the experimental values of γ(T) for the same

range of doping states as shown in Figure 6B, and (b) the difference,

Δγ(13, T) = γ(13, T), − γ(0, T) in γ(T) at 13 T and that at 0 T. The

abrupt effect of the opening of the pseudogap can be seen in both

datasets by the collapse of the jump in γ at Tc starting at p = p* =

0.19. In the over-doped region above this doping level, the jump

remains constant in height for both. This clearly shows that the

sudden fall in Δγc at p* is not an artifact of the subtraction of the

phonon contribution but is fundamental to the electronic behavior.

Δγ(H,T) may be integrated to obtain the field-dependent

entropy and the free energy, ΔF(H, T), by integration again of the

entropy. We find it preferable to perform just a single integration

and obtain the free energy using the following generic

thermodynamic relation:

−ΔF H, T( ) � ∫T

τ
TΔγ H,T( ) dT − T ∫T

τ
Δγ H,T( ) dT, (7)

where the first term is the electronic internal energy, − ΔU(H, T),
and the second term is the electronic entropy term, TΔS(H, T).
Ideally, the integrals in Eq. 7 are from τ = Tc down to some value

of T < Tc. However, as noted, the cuprates are distinguished by

strong fluctuations over quite a broad range around Tc, and as a

consequence, the integrals must be performed from some

temperature, τ, well above Tc, sufficiently above the range of

superconducting fluctuations, where Δγ(H, τ), ΔF(H, τ), and
ΔS(H, τ) have fallen to zero.

In Figure 7B, we linearly extrapolate Δγ(13, T) to zero at T = 0

from 20 K, integrate as in Eq. 7 to obtain the field-dependent

state functions, and these are plotted in Figure 8.

It is interesting that the effect of superconducting

fluctuations in ΔU and TΔS extend to rather high

FIGURE 8
(A) Magnetic entropy, ΔS (13, T) = S (13, T) − S (0, T) obtained
by integrating Δγ(13, T) = γ(13, T) − γ(0, T) from Figure 7B; (B) the
magnetic free energy, ΔF (13,T) = F (13, T) − F (0, T), obtained using
Eq. 7, and its internal energy and entropy components ΔU (13, T)
(dashed curves) and − TΔS (13,T) (dash-dot curves) for
Bi2Sr2CaCu2O8+δ. The heavy solid curves highlight the data for the
highest doping level for ease of identification.

FIGURE 9
(A) Doping dependence of the jump in γ at Tc for three
different compositions of Bi2212 as annotated. The mean-field
value, Δγmf, obtained from a fluctuation analysis is also shown. (B)
Magnetic free energy, ΔF (13, T = 0) = F (13, 0) − F (0, 0), as a
function of doping and the resultant T = 0 superfluid density, λ−20
obtained using Eq. 6. (C) Doping dependence of derived critical
fields, Bc2, and the thermodynamic critical field, Bc.
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temperatures, while these largely cancel in ΔF and thus extend

over a much smaller range above Tc.

We use these data to calculate the superfluid density ρs ≡ λ−2ab at

T = 0 for each doping level, and these values are summarized in

Figure 9 along with the wider set of results obtained previously for

Bi2Sr2CaCu2O8+δ. In Figure 9A, we show values for the jump in γ at

Tc for three different compositions of Bi2212 as annotated:

Bi2.1Sr1.9CaCu2O8+δ, Bi2.1Sr1.9Ca0.85Y0.15Cu2O8+δ to extend to

lower doping, and Bi1.9Pb0.2Sr1.9CaCu2O8+δ to extend to higher

doping. The green stars are Δγmf obtained from the entropy-

balance analysis, while the orange data points are the magnetic

jump Δγ [13]. All reveal an essentially constant value above p*,

and all collapse abruptly as p falls below p* due to the opening of the

pseudogap. The value of Δγmf/γn at Tc is 1.15, not much above the

weak-coupling mean-field d-wave value of 0.95 and consistent with

(using a strong-coupling Padamsee calculation [14] for d-wave

superconductivity) a gap ratio of Δ0/kBTmf
c � 2.34, just a little

higher than the BCS weak-coupling ratio of 2.14.

Next, in Figure 9B, we show the calculated ground-state

values of λ−20 along withΔF [13] and the condensation free energy
ΔFns (0) at T = 0. The latter is, of course, identical to the

condensation internal energy, U0. Again, all parameters

remain rather constant on the over-doped side and then fall

abruptly starting at p*. This is crucially important because λ−20 is a

truly ground-state property. One prominent hypothesis for the

pseudogap is that it arises from incoherent pairing above Tc [4,

28]. But at T = 0, all thermal fluctuations are quenched so such a

model would mean the pseudogap is absent at T = 0. But the

superfluid density shows that the pseudogap is always present in

the ground state for p < p*.

Finally, in Figure 9C, we show the upper critical field Bc2
obtained from our field-dependent analysis using Eq. 6, as well as

the thermodynamic critical field Bc obtained from the values of

ΔFns shown in Figure 9B. Like all other thermodynamic

parameters, both collapse below p* as the pseudogap opens.

The maximum value of Bc2 = 105 T is reasonable and

consistent with other independent measures [29].

3.2 Superfluid density in the over-doped
region

Though the topic here is pseudogap thermodynamics,

applicable only to under- and optimally doped cuprates, it is

worth briefly refocusing on the superfluid density in the over-

doped region. It has long been realized that over-doped physics is

probably just as puzzling and unconventional as under-doped

physics, and this is no better highlighted than in the unusual

behavior of λ(0)−2 which has widely been reported to fall along

with Tc as doping increases toward the end of the

superconducting dome [30–32]. The fall-off in both Tc and

λ(0)−2 on both sides of the dome has come to be known as

the “boomerang effect” and λ(0)−2 was shown to reach a sharp

maximum at p* [32]. Renewed interest in this long-established

result came more recently with the highly detailed studies of

Božović et al. [33] on high-quality thin films of La2−xSrxCuO4

which showed a linear decline in λ(0)−2 with Tc across the entire

over-doped region. However, the just-discussed field-dependent

specific heat shows that for Bi2212, λ(0)−2 remains largely

constant in the over-doped region where p > p* (see

Figure 9B), along with all the other properties plotted in

Figure 9. Already, Tc has fallen from 92 K to 74 K with no

significant fall-off in superfluid density. This is reassuring

because, as shown previously, both Δγmf/γn and U0/γnT
mf 2
c

remain conventional (and close to their BCS ratios) in this

over-doped region. It would surely be highly anomalous for

λ−20 (p) to be exceptional in its collapse. Interestingly,

Dordovic and Homes [34] recently suggested that the

boomerang effect may not be present in bulk samples.

However, we note that the early muon spin relaxation studies

on λ−20 were in fact carried out on bulk samples. It is fair to say

this remains an open question but it seems at least that in Bi2212,

there is no observed suppression of superfluid density over nearly

half of the over-doped region. Additionally, ac-susceptibility

measurements on La2−xSrxCuO4 also showed no fall-off in λ−20
[35]. This remains a key point of investigation. It may well be that

cuprates display a conventional over-doped behavior in all

properties: λ−20 , Δγ, Δ0/kBTmf
c , and U0. If confirmed, this

would reflect a great simplification of cuprate-phase behavior.

4 Discussion

The previous results summarize some of the more significant

aspects of pseudogap thermodynamics. The key features are as

follows: (i) the suppressed entropy associated with the opening of

the pseudogap is never recovered at high temperature, thus

implying the gap does not close at high temperature; (ii) the

pseudogap closes abruptly at p = p* ≈ 0.19 holes/Cu, independent

of temperature; (iii) accordingly, the pseudogap closes on a

vertical line in the T-p phase diagram; (iv) this coincides with

the vertical line found in ARPES separating incoherent antinodal

(AN) states from coherent AN states [36]; (v) the pseudogap

energy scale descends more or less linearly with doping from the

scale of the nearest-neighbor exchange energy J at low doping to

zero at p* [11]; (vi) rather conventional behavior is found beyond

p* with the scaled ratios for the gap, the jump in γ and the

condensation energy lying close to near-weak-coupling values

and the superfluid density apparently remaining constant; (vii)

the residual γn(T = 0), obtained from entropy balance fits, is

qualitatively consistent with the presence of Fermi arcs or

pockets lying between the AN pseudogaps. In short, the

overall behavior is consistent with near-weak-coupling BCS-

like behavior in the over-doped region with an independent

but coexisting gap in the optimal and under-doped regions. This

gap remains of unknown origin but it seems clearly associated
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with short-range spin-singlet correlations deriving its

fundamental energy scale from J. One intriguing possibility is

that these correlations suppress a Kondo, or heavy Fermion-like,

build-up of spectral weight at the Fermi energy [37].

It is instructive to now place these findings in the context of

calculations and other spectroscopies.

4.1 Theory and calculations

Loram [38] has examined a simple BCS-like model with a

temperature-independent competing gap, E*, using an approach

similar to that of Bilbro and MacMillan [39] where the

superconducting gap and pseudogap are combined

quadratically. Thus, the order parameter Δ′ is given by

Δ′ � ����������
Δ2(T) − E*2

√
, where Δ(T) is the spectral

superconducting gap which must be distinguished in such a

model from the order parameter. E*(p) is taken to be a linearly

descending function of p. This model reproduces all of the

elements discussed previously—the parallel suppression of

entropy at a high temperature, combined with suppression of

the jump, Δγ at Tc. This was done for s-wave gaps, and so

superconductivity is suppressed when Δ(T) = E* and this then

defines the reduction of Tc with E*. For d-wave

superconductivity, because the pseudogap forms around the

antinodes leaving ungapped Fermi arcs or pockets, it is

possible for superconductivity to persist even for the values of

E* well exceeding Δ0. Loram’s s-wave calculations have been

extended to d-wave by Williams et al. [40].

As already noted, Storey et al. [25] have used the rigid tight-

binding model of Kaminski et al. [26] derived from ARPES

measurements on Bi2212 to calculate S(T) and γ(T) in both the

normal and superconducting states using a self-consistent solution

of the gap equation in the presence of a pseudogap with Fermi arcs.

The fitting parameters were E*, the height, ΔvHs, of the Fermi level

above the vHs and the length of the Fermi arc. The fits were

extremely faithful in the superconducting and normal states,

including the progression of the small local peak in γ(T) arising

from the nearby vHs. They reproduce the parallel shift in entropy

as the pseudogap widens. Of course, the pseudogap model was

necessarily somewhat arbitrary but these calculations were

extended [41] to the very specific Yang–Rice–Zhang (YRZ)

model of Fermi surface reconstruction [42] and shown to

accurately reproduce key observed thermodynamic features.

Two particular features of the YRZ model include (i) a very

asymmetric gap about EF which nicely accounts for the rapidly

growing thermopower, Σ(p, T), in the under-doped region [3, 43],

and (ii) the appearance of AN electron pockets in a small doping

range close to the reconstruction point. These were shown to

account for a double undulation of Σ(p,T) at low temperature

when p ≈ 0.175 [3].

Many authors have interpreted the distinctive phase behavior

of the cuprates in terms of a crossover from a Bose–Einstein

condensate (BEC) to a BCS condensate [28, 44, 45, 46, 47, 48]. In

this way, the pseudogap state is viewed as a (partially) paired state

which condenses to a coherent paired state at Tc [4]. This, of

course, explains amongst other things the reduced specific heat

jump in the under-doped region because it lacks the pairing

contribution which has already reduced the entropy from well

above Tc [48]. Many detailed theoretical studies have pursued

this line of thought. As noted, our principal objection lies in the

expectation that such models, in the ground state, lose all

memory of their precursor pairing state, where at T = 0, all

thermal fluctuation is quenched and all pairs are condensed. In

contrast, the experimental observation is that the pseudogap is

still present at T = 0. An equally compelling objection is found at

high temperature where, depending on the pair-binding energy,

pairs should dissociate thus recovering the “lost” entropy [4].

Such a recovery is not found in the experimental data. In the

context of BEC to BCS crossover, it was recently shown that the

phase diagram may exhibit multiple pseudogaps [49]. This is of

course quite possible, but we note that the previous

thermodynamic studies show no evidence of multiple

pseudogaps. One would expect to see closure of the smaller

pseudogap at some threshold temperature with associated partial

entropy recovery, prior to closure of the larger pseudogap at

higher temperature, thus completing the entropy recovery.

Multiple pseudogaps, if present, should also be seen in the c-

axis infrared conductivity, located at distinct frequencies. Only

two gaps are observed [50, 51]: the superconducting gap that

opens at Tc resulting in a downshift in spectral weight, and the

pseudogap, already present at 300 K, resulting in a canonical

upward shift in spectral weight.

4.2 Comparisonwith other spectroscopies

In view of the continuing divergence of opinion regarding

phenomenology, phase extent, and impact of the pseudogap, it is

important to consider the thermodynamic data alongside other

spectroscopies. Figure 10A shows our values of Δ0(p) and E*(p)

for Y0.8Ca0.2Ba2Cu3O7−δ derived from specific heat

measurements and compares these with those derived from

(b) ARPES, (c) infrared optics, and (d) intrinsic tunneling.

We now consider each of these spectroscopies in turn.

4.2.1 ARPES
ARPES measurements are mainly focused on Bi2212 (and, to

a lesser extent, Bi2201 and Bi2223) because of the cleavability of

these crystals. There are two key results from ARPES

measurements on the cuprates that we wish to focus on. First,

the observation of a very abrupt crossover at p = 0.19 from

incoherent AN states for p < 0.19 to coherent AN states for p >
0.19.We pointed this out long ago for 100 K data [53], but a more

recent study extending to room temperature showed this abrupt

crossover to occur at p = 0.19, independent of temperature [36],
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that is, following a vertical line coincident with our vertical T*(p)

line. We mention this because such a vertical T*(p) line is not

recognized in the research community. The ARPES result adds

credence to such a view.

The second important result from ARPES is the observation

that in the under-doped region, the pseudogap forms on the

Fermi surface around the AN location at temperatures well above

Tc, leaving Fermi arcs or pockets nearer the nodes on which the

superconducting gap opens at Tc. Some authors presume the AN

gap to be the pairing gap [28], but such a conclusion is difficult to

sustain in the light of ARPESmeasurements. For example, Vishik

et al. [16] in figure 3 (b1)−(b3) show the k-dependent gap around

the Fermi surface plotted as a function of (1/2)| cos kx − cos ky|.

For a pure, single d-wave gap, such a plot would be a straight line.

In their b1 and b2, the AN pseudogap is evident above Tc, much

larger than the superconducting gap, Δ(k), which appears on the

flanks of the pseudogap below Tc. Linear extrapolation of Δ(k)

gives an amplitude (projected to the AN) of 33 meV in b1 (p =

0.0.097), 31 meV in b2 (p = 0.0.14), and 28 meV in b3 (p =

0.0.205). The pseudogap amplitudes at the AN can also be read

off (and these do not change with the onset of superconductivity):

78 meV in figure 4(c) as in the reference (p = 0.0.076), 57 meV in

b1, and 45 meV in b2. These pseudogap amplitudes are plotted in

Figure 10B as blue squares, while the superconducting gap

amplitudes, Δ0, reported by Vishik are plotted as red squares.

The trends with doping are very similar to the gaps inferred from

specific heat. Curiously, the Δ0 amplitudes reported in Ref. [16]

are larger than the extrapolated values noted above. The red

dashed curve reflects these latter values. There is even better

agreement with the specific heat values, and we recall that Δ0

determined from specific heat must yet be enhanced by the factor

(1 + λ). (We note in passing that Figure 3 (b3) of Ref. [16] seems

to suggest the persistence of the pseudogap at a doping of p =

0.205 as the blue data points at 82 K suggest a Fermi arc and a

FIGURE 10
Doping-dependent values of Δ0(p) (red symbols) and E*(p) (blue symbols) for (A) Y0.8Ca0.2Ba2Cu3O7−δ derived from our specific heat
measurements, (B) for Bi2212 derived fromARPESmeasurements [16], (C) for RBa2Cu3O7−δ obtained from c-axis infraredmeasurements [52, 50], and
(D) for Bi2212 from intrinsic tunneling measurements: squares [52] and open squares [20]. The solid curves and lines are guides to the eye. In panel
(B), the red dashed curve represents the line of the Vishik data when we linearly extrapolate the pairing gap to the AN.
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small AN gap above Tc. But this is just 2K above Tc = 80 K and is

almost certainly the pairing gap which persists above Tc, as

clearly shown by Kondo et al. [18]. The pairing gap in the

near-node region does not persist far above Tc, while the AN

pairing gap extends much further).

So we conclude from ARPES that the AN gap that stretches

far above Tc is the pseudogap and the gap on the residual Fermi

arcs that opens below Tc is the pairing gap. We quote from Ref.

[16] “The sudden change in vΔ at p = 0.19 is interpreted as the

T = 0 endpoint of the pseudogap” (vΔ is the velocity (zΔ/zk)
parallel to the Fermi surface). Beyond p = 0.19, the Fermi arcs

extend across the entire Fermi surface and the pairing gap

forms on these commencing from just above, then below, Tc

and extending fully out to the AN. Thus, if we focus only on the

AN gap, in the under-doped region, it is the pseudogap, and for

p > 0.19, the AN gap is the pairing gap, Δ(T), while around

optimal doping, it could be either, depending on which is

larger. If one chooses to focus only on the AN gap, one will

infer a roughly linearly descending line of p-dependent gap

values which vanish as Tc(p) vanishes. It is not uncommon in

the field to select these AN gaps, and divide by kB to obtain a

T*(p) line which remains finite across the over-doped region

and vanishes as Tc(p) vanishes—in distinct contrast to our

vertical T* line. But these are gap energies not temperatures;

they have no place on a p-T phase diagram and they represent

two distinct gaps: E* when p is somewhat less than 0.19 and Δ0

when p > 0.19.

4.2.2 Optics
There are also two key results from optics that we would

emphasize. First, the frequency-dependent infrared

conductivity, σc(ω), for R123 single crystals with electric

field along the c-axis exhibits two distinct and often well-

separated regions of loss of spectral weight (SW) associated

with gaps opening on the Fermi surface [50, 51]. In the more

under-doped region, there is a large-energy gap for which,

already at 300 K, there is a suppression of sub-gap SW which

continues to grow with decreasing temperature. This is the

pseudogap and is located at ωPG. Below Tc, there is an

additional SW loss occurring below a lower energy feature,

ωSC, associated with the onset of superconductivity and the

opening of a coherent pairing gap. The two distinct gaps can

be tracked with doping and are plotted in Figure 10C by the

blue and red squares, respectively. The doping evolution of

these gaps is essentially the same as that inferred from the

specific heat and ARPES. The AN pseudogap projects to

disappear around p = 0.19, while the superconducting gap,

Δ0, changes little on the under-doped side and falls on the

over-doped side, tracking Tc(p) downward, as we have already

concluded.

The second distinct feature of these infrared measurements

is that the pseudogap is characterized by a transfer of SW

upward to energies above ωPG [50]. In contrast, with the

opening of the superconducting gap, SW is transferred

downward into the zero-frequency delta function [50].

Moreover, the onset of pairing fluctuations above Tc also

results in a downward shift of SW, not to zero frequency but

to a low-frequency Drude peak [54]. Below Tc, this Drude peak

is shifted, in turn, into the ω = 0 delta function. This, then, is the

distinctive spectroscopic signature of the pseudogap vis à vis

pairing—states below the pseudogap are shifted to higher

energy. A pairing gap shifts SW downwards. For this reason

alone, one may not interpret the large AN gap at low doping as a

pairing gap.

4.2.3 Intrinsic tunneling spectroscopy
The final comparison here is with intrinsic tunneling

spectroscopy (ITS), which in our view has been regrettably

downplayed. Typically involving up to 20 bilayer stacks,

intrinsic tunneling is arguably a bulk tunneling technique in

comparison with scanning tunneling spectroscopy (STS) and

ARPES which mainly probe the outer CuO2 layer. Moreover,

STS is compounded by the presence of spatial inhomogeneity

and broadened coherence peaks, while ITS consistently reveals

very sharp gap features [52, 55] and the presence of two gaps

with very different doping and temperature dependences. For

example, investigations on Bi2(Sr2−xLax)CuO6+δ reveal a SC

gap that closes at Tc with 2Δ0/kBTc = 4.2, while the pseudogap

remains fixed in value with increasing temperature [55]. With

increasing doping, the pseudogap reduces in magnitude and

falls to zero at p ≈ 0.20 holes/Cu. This phenomenology is

consistent with what has been described throughout this

article. In the case of Bi2212, the evolution of E* and Δ0

with doping has been reported in detail by Krasnov et al.

[52]. This system shows a behavior similar to the just-

mentioned Bi2201, and the observed gap values are plotted

in Figure 10D by the blue and red symbols, respectively. Here,

each gap can be discerned, both when E* > Δ0 and when E* <
Δ0. The detailed variation with doping is again consistent with

all the other data shown in Figure 10, with the pseudogap

falling steadily toward zero at p = 0.19. Such data have been

questioned on the basis of overheating of the nanoscale mesas

[56], but this can be addressed and eliminated [57, 58]. More

recent intrinsic tunneling studies by Benseman et al. [20] have

been carried out in closely spaced increments in doping. Their

values of Δ0 are also plotted in Figure 10D by the open red

symbols. They confirm the Krasnov data, and again, the

correspondence with the specific heat and other

spectroscopies is apparent.

4.3 Impurity scattering and the pseudogap

The effect of impurity scattering on superconductivity in the

cuprates holds an important place in HTS physics because of the

d-wave order parameter. Scattering mixes the phases of Cooper
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pairs and therefore mixes positive and negative quadrants of the

order parameter. The result is a rapidly suppressed Tc and an

even more rapidly suppressed superfluid density [35]. In the

unitary scattering limit, the suppression of Tc and λ−2 is a purely

thermodynamic process and the critical concentration of Zn, ycrit,

for just suppressing superconductivity is a thermodynamic

ground-state parameter. To justify this, we have previously

shown the numerical agreement between S(Tc)/R and xcrit for

Y0.8Ca0.2Ba2Cu3O7−δ, Bi2Sr2CaCu2O8+δ, and La2−xSrxCuO4 [35]

across the superconducting phase diagram. As we have shown,

this implies that superconductivity is destroyed when the density

of unitary scatterers equals the pair density, that is, each scatterer

breaks one pair [35].

Figure 11A shows this rapid suppression of the Tc(p) phase

curve with Zn substitution in Y0.8Ca0.2Ba2Cu3O7−δ [59].

Significantly, the rate of suppression is much higher in the

under-doped region, thus resulting in an asymmetric collapse

of the phase curve around p* ≈ 0.19. The last vestige of

superconductivity at critical doping occurs at p*, clearly a

special point in the phase diagram of the cuprates. This

enhanced suppression in the under-doped region is due to

the presence of the pseudogap and the associated reduced

DOS. We follow our treatment given earlier [59]. The Tc

reduction for elastic scattering in weak-coupling d-wave

superconductors follows the Abrikosov–Gorkov (A-G)

equation [60]. Thus

−ln Tc/Tc0( ) � Ψ 1/2 + Γ/ 2πkBTc( )[ ] − Ψ 1/2[ ], (8)

where Ψ[x] is the digamma function; Tc0 = Tc (y = 0); and for

unitary scattering, Γ = ni/(πN0) is the pair-breaking scattering

rate. Here,N0 is the DOS per spin at the Fermi level and ni = αyab/

abc is the density of impurity scatterers with yab being the

“planar” concentration of Zn atoms in the CuO2 plane; α

being the number of CuO2 planes per unit cell; and a, b, and

c being the lattice parameters. For La214, α = 1 and yab = y, while

for Y123, α = 2 and yab = 3y/2. For weak coupling, the critical

scattering rate for suppression of superconductivity is Γc =

0.412Δ00 = αycrit/(abcπN0). Finally, the DOS is related to γn
by the standard relation

γn � 2/3( )π2k2BN0 (9)

This is, of course, true only if N(E) is not strongly energy

dependent. However, the essentially constant γ(T) at high

temperature, largely independent of doping, gives some

credibility to this assumption.

The problem is then fully defined with no fitting parameters.

The A-G equation can be linearized for small Γ to get the initial

linear slope as follows

Tc/Tc0 � 1 − 0.69Γ/Γc � 1 − 29α/ γnΔ00( )yab( , (10)

where Δ00 is the T = 0 amplitude of the d-wave gap when yab =

0 and where γn is expressed in J mol−1 K−2. As the scattering

rate is inversely proportional to N0, the role of the pseudogap

is clear—as the AN gap opens, the DOS falls and the

scattering rate increases. Observationally, γn is essentially

constant, independent of doping, when p > 0.19 on the over-

doped side, so the slope of Tc vs yab remains fixed on the over-

doped side, as shown in Figure 11B. In contrast, it rises

steeply on the under-doped side due to the presence of the

pseudogap. Already at optimal doping, the curve has

steepened showing that the pseudogap is present even

there. The A-G equation is plotted by the curves shown in

Figure 11B, where we have used for γn the quantity (S/T)Tc
which is the average value of γn between T = 0 and Tc. All

curves for all dopings show a good fit to the data with no free

fitting parameter. Similar results were found for

Bi2Sr2CaCu2O8+δ [61] and La2−xSrxCuO4 [59].

FIGURE 11
(A) Tc plotted as a function of hole concentration, p, for Zn-
substituted Y0.8Ca0.2Ba2(Cu,Zn)3O7−δ at 4 different Zn
concentrations: 0%, 2%, 4%, and 6%. The dashed line is a guide to
the eye showing the asymmetric collapse of the phase curve
toward p* ≈ 0.19. (B)Data points show Tc as a function of planar Zn
concentration, yab for fixed doping states. Open symbols are
under-doped and filled are over-doped. For ease of identification,
colors alternate blue, then red, and then blue again with increasing
doping. The lines are Tc vs yab calculated using Eq. 8. Dashed
curves are under-doped, and solid curves, over-doped.
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5 Conclusion

The results presented here summarize the key features of

the thermodynamics of cuprate superconductors as they relate

to the pseudogap. They reveal a unique and powerful insight

into the essential physics, not only because the electronic

specific heat captures all of the low-lying excitations but

because the entropy always reflects the presence of a gap

near the Fermi level, whether it be asymmetric about EF or

indeed lies within a Fermi window below EF. Many

spectroscopies will not see a normal-state gap at elevated

temperature if the thermal energy, kBT, well exceeds the gap

magnitude. The entropy will always see it. This probably lies at

the heart of many observations which mistakenly identify a

pseudogap closing temperature, T*, that descends more or less

linearly with doping. It is the pseudogap energy E* which

descends and vanishes at p*, independent of temperature. As

a consequence, the specific heat reveals a vertical line delimiting

the pseudogap in the p-T phase diagram, mirroring the abrupt

vertical line observed in ARPES separating incoherent states

from coherent states at the antinodal zone boundary [36]. Such

a conclusion is fundamentally important to cuprate physics and

is essentially overlooked in the community despite additional

support from 1/17T1 data [62] and infrared optics. The

proximity of the van Hove singularity in some over-doped

cuprates complicates the interpretation unless the full

complement of specific heat studies is considered over a

wide range of cuprates, especially in Y0.8Ca0.2Ba2Cu3O7−δ

where the vHs is more distant. Even so, the vHs can be

identified clearly and the vHs crossing distinguished from

the closure of the pseudogap at p* even in Bi2212 and La214.

The essential thermodynamic features are captured in

Figure 12 which shows a false-color contour plot of S/T (a) as

observed, and (b) as would be observed if superconductivity could

be suppressed, that is, the normal-state value, Sn/T. Sn is calculated

using the equal-area entropy-balance construction which is

illustrated in Figure 1A. First, the as-observed entropy shows

just how weak the superconducting transition is in the under-

doped region—there is barely a change in entropy at Tc, in stark

contrast to the over-doped region where the onset of

superconductivity is evidently very strong. Pairing fluctuations

are also evident near the transition, as is the vertical T* line

defining a vertical ridge extending to room temperature. This

ridge is definitively accentuated in the normal-state projection

shown in Figure 12B. It extends from T = 0 to room temperature

(and as shown elsewhere up to 400 K [12]). Evidently, (zS/zp)T
diverges at p* as T → 0 and, using the appropriate Maxwell

relation, (zμ/zT)p also diverges, thus underscoring the possibility

of a hidden quantum critical point under the superconducting

dome. Finally, the square data points show the doping dependence

of E* descending, not along a T*(p) line but, along an entropy

contour. The pseudogap takes its energy scale from the magnitude

of J but descends rapidly and vanishes abruptly at p*, causing all

suppressed thermodynamic features to fully recover at that point:

the jump in specific heat, the critical fields, the superfluid density,

and the condensation energy. All this is captured in this entropy

plot. Beyond p*, essentially conventional behavior is recovered in

all these thermodynamic entities. Thermodynamics does not

disclose the origins of the pseudogap and its potential

relationship to high-Tc superconductivity, but it clearly defines

the phenomenology and phase extent in a way that the collective

research community is largely yet to embrace.

FIGURE 12
False-color maps in the p-T plane of S/T for Y0.8Ca0.2Ba2Cu3O7−δ (A) as measured, including the superconducting and normal states, and (B) for
the normal state only if superconductivity were suppressed. The latter is determined using the equal-area entropy-balance method as illustrated in
Figure 1(A). The square data points in (B) are the pseudogap energy as determined from the y-axis intercept of the linear entropy at high temperature.
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