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We experimentally investigated clean optical emissions from multiple

combustion intermediates including free radicals C2, CH, and CN at multiple

wavelengths induced by ultrashort 1,030-nm laser pulses. We systematically

study the evolution of the fluorescence emissions induced by the femtosecond

laser filament in the combustion field with the parameters such as the laser

pulse energy, pulse duration, and focal length. Compared with the previous

work, we promote that the fluorescence emissions of the combustion product

can be manipulated effectively by controlling the femtosecond laser

characteristics including pulse energy, duration, and the focusing conditions.

This process helps to optimize its signal-to-noise ratio, which provides a further

application of the femtosecond laser pulses to sense the combustion

intermediates.
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Introduction

In recent years, the rapid development of the ultrafast laser technology has made it

easier to obtain high power femtosecond laser pulses, and novel nonlinear effects triggered

by the femtosecond laser filamentation process have attracted widespread attention, such

as laser power density clamping in the filament, super-continuous white light, THz

generation, and self-steepening effects [1–3]. Based on these unique nonlinear effects,

ultrafast strong-field laser filament formation has shown great promise for applications in

atmospheric environmental sensing, air lasers, artificial weather control, and other

applied research fields [4–9]. In the field of combustion, the ultrafast intense-field

laser filament-induced nonlinear spectroscopy can be used for combustion diagnosis.

On the one hand, ultrafast strong-field lasers can be used to measure combustion

intermediate radical products with ultrashort lifetime in the combustion field and

reveal various ultrafast complex physicochemical processes existing in the combustion

field [7]. On the other hand, the high clamping intensity of the femtosecond filament can
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be used for multi-photon excitation of combustion intermediates

to achieve simultaneous multi-component measurements and to

solve the limitation of tuning the laser wavelength for detecting

different combustion components [4, 9].

The combustion process of fuels creates a very complex

environment with a large number of intermediate products and

many chemical reactions taking place. Although filamentation

parameters of ultrafast intense-field laser transmission have been

measured in flames and it has been demonstrated that ultrafast

intense-field laser filamentation-induced nonlinear spectroscopy

can be used for simple flame combustion diagnostics [10–20], this

research is still in its infancy. Some of themain current advances in

the diagnostic analysis of combustion fields using ultrafast intense-

field laser filamentation include the verification of the universality

of ultrafast intense-field laser filamentation nonlinear

spectroscopy for combustion diagnosis of different fuels, the

proposed use of ultrafast intense-field laser filamentation-

induced excitation phenomena to solve the fluorescence

quenching problem in combustion fields, the viable

pump–probe approach to measure ultrafast processes of the

soot particles in flames with femtosecond time resolution [21],

the demonstration of the minimum ignition energy can decrease

to the sub-mJ level using an ultrashort femtosecond laser [22], and

ultrafast combustion diagnosis using femtosecond filamentation-

induced flame nonlinear spectroscopy. This study is intended to

systematically investigate the optimization of the fluorescence

emissions of ultrafast strong-field laser filament-induced

spectroscopy in ethanol flames using the ultrafast laser at the

center wavelength of 1,030 nm with changeable pulse energy,

duration, and the focusing conditions, with the aim of better

application to remote combustion diagnostics.

Experiment setup

As shown in Figure 1, the experiment was conducted with

a Yb: the KGW femtosecond laser system (PHAROS, Light

Conversion), which delivers 190 fs (FWHM) pluses with a

central wavelength at 1,030 nm and a maximum pulse energy

of 2 mJ at 10 kHz repetition frequency. The pulse energy and

pulse duration of the laser were adjusted, respectively, by an

electrically operated attenuator and pulse chirp modulator

installed inside the PHAROS laser. The output beam from the

laser system was reflected by a dichroic mirror with high

reflectivity of 800–1,200 nm and high transmission for UV

and visible light at a 45° incidence angle. The femtosecond

laser pulse was focused into the flame on an alcohol burner

array by the lens (L1) with different focal lengths to generate a

bright filamentation as shown in the inset of Figure 1. The

alcohol burner array was set on a stage with an

adjustable position to ensure that the filament can pass

through the core of the flame when changing different

focal lengths. The total length of the alcohol burner array

with five burner wicks is approximately 40 mm. The

fluorescence generated from the filament was collected and

collimated in a backward direction by the same lens.

After passing through the two dichroic mirrors, the

fluorescence in the UV and visible range was focused into

an imaging spectrometer with a grating of 1,200 grooves/mm

(Kymera 328i, Andor) by an f = 6 cm lens (L2). A damper

was used to collect the pump beam and forward emissions

such as third harmonic and white light, which was aligned to

prevent the forward radiation scattering back to the

spectrometer.

FIGURE 1
Schematic diagram of the experimental setup.
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Result and discussion

Figure 2 shows the backward fluorescence spectra of with/

without the ethanol/air flame generated by the femtosecond laser

pulse filament with laser energy of 2 mJ. The spectra are

acquisitioned using the spectrometer and the background

noise has been subtracted. In addition, the spectra signal of

the flame without the interaction of the femtosecond laser mainly

originated from the thermal noise and flame light which is two

orders of magnitude weaker compared with the fluorescence

signal. As the femtosecond filament transmits through the air

without ethanol/air flame, the fluorescence spectra mainly show

the spectral lines of N2 and N+
2 , as indicated by the blue line in

Figure 2, while as the femtosecond filament transmits through

the ethanol/air flame, the N2 and N+
2 fluorescence emissions were

quenched, and there exist spectral bands around 388.34, 431.42,

and 516.52 nm which correspond to B2Σ(v � 0) −X2Σ(v′ � 0)
transition of the CN radical, A2Δ(v � 0) −X2Π(v′ � 0)
transition of the CH radical, and A3Πg(v � 0) −
X′3Πu(v′ � 0) transition of C2, respectively (red line).

Compared with the previous work results in Ref. [17], the

emission of CH and C2 radicals became significant in the

fluorescence spectrum. In particular, the emission of the C2

radical at the wavelength around 515 nm became dominant,

which probably originates from the two-photon resonant

enhancement of the insert pump laser pulse with the

wavelength of 1,030 nm. By selecting a suitable wavelength of

the pump pulse, the clean enhanced fluorescence emission can be

achieved, and the signal-to-noise ratio can be improved.

In addition, to further optimize the free-radical CN, C2, and

CH fluorescence emission in the flame, wemeasured the intensity

of the fluorescence emission at different focal lengths. The laser

pulse energy and repetition frequency were fixed at 2 mJ and

10 kHz, respectively. As shown in Figure 3, the intensity of the

three free-radical fluorescence emissions decreases with the

increasing focal length. The conditions of the focal length

mainly affect the interaction length and intensity, that is, the

longer focal length, longer interaction length, and lower intensity.

The results indicated that the optical intensity plays an important

role in fluorescence generation compared to the interaction

length. In addition, the 388 nm which corresponds to the CN

radical fluorescence emission decay the fastest with an

increasing focal length, which shows that the CN molecule

fluorescence is more sensitive to the focusing condition.

Therefore, as a result, a tighter focus can be used to improve

the fluorescence intensity and improve the fluorescence

emissions.

FIGURE 2
Backward fluorescence spectra obtained when the
femtosecond filament transmits through air (blue line) and flame
(red line).

FIGURE 3
Dependence of intensity of the fluorescence from CN (red
circle), C2 (green diamond), and CH (blue square) radicals on the
focal length. The experimental data are fitted with the power
exponential function.

FIGURE 4
Measured (circle) and fitted (solid line) dependence of the
emission intensity of CN at 388.3 nm (red), that of CH at 431.4 nm
(blue), and C2 at 516.5 nm (green) on the input laser energy.
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Furthermore, we changed the pulse energy from 0 to 1 mJ by

adjusting an electrically operated attenuator installed inside the

laser, then the pump laser beam is focused by a spherical lens (f =

75 mm) into the flame. As shown in Figure 4, we measured the

intensity of CN radical emission at 388.3 nm (red), that of CH at

431.4 nm (blue), and C2 at 516.5 nm (green) as a function of

incident laser energy. It can be seen that the three signals display

a superliner dependence on incident laser energy. The

experimental data can be well fitted by a power dependence

which gives a value of b = 2.078, 2.357, and 3.394, respectively.

Obviously, the fluorescence emission of the three free radicals

overcomes the quenching effect in combustion diagnosis. In

addition, the two-photon effect of the 1,030 nm femtosecond

laser pulses can improve the excitation efficiency of C2 radiation

emission at 516.5 nm.

Last, we changed the chirp of the pump laser pulse by

adjusting a pulse chirp modulator installed inside the laser,

here; the chirp of the pump laser pulse is defined by the

quadratic phase term ϕʺ via the relation β � τ20/8 ln 2 and

γ � 1 + ϕ″2/4β2, where τ0 is the duration (FWHM) of the

transform-limited pulse. Then the duration of the chirped

pulse τ can be expressed as
�

γ
√

τ0, which was measured by the

single shot autocorrelator (SSA) before the focusing lens. The

fluorescence emission intensity of the CN, CH, and C2 free

radicals were plotted as a function of the chirp of the pump

pulse, as presented in Figure 5. Here, the signal intensities of the

three emissions are normalized. It can be clearly observed that

the three fluorescence emissions at 388.3, 431.4, and 516.5 nm

reach the maximum when the chirp ϕʺ = 0, and the transition

signal of CN seems to be more sensitive to the chirp of the insert

pump pulse, indicating that the transform-limited pulse can

efficiently generate the fluorescence emissions for combustion

diagnosis. Thus, the changes of pulse energy, duration, and the

focusing conditions actually can affect the filament

characteristics of the femtosecond laser which plays an

important role in the fluorescence emission. In short, the

intensity of fluorescence emission is strongly dependent on

the excited intensity of the pump laser and the interaction

length. Longer laser duration and lower pulse energy mean

the weaker clamping intensity with the results of weaker

fluorescence emission. In addition, with the increase in the

focal length, the interaction length becomes longer, however,

with a weaker excited intensity, resulting in a weaker fluorescence

signal. It means that the excited pump intensity has a greater

effect on fluorescence emission than the interaction length.

In conclusion, we systematically investigate generation of the

fluorescence emission of the multiple combustion intermediates

from the femtosecond filament with the ultrashort laser pulse at

the wavelength of 1,030 nm. By studying the evolution of the

fluorescence emission with the focusing conditions, pulse energy,

and pulse duration, we proposed an optimizing rule to improve

the signal-to-noise ratio of the fluorescence emission intensity in

the ethanol/air flame using femtosecond laser filament excitation,

which will be promoting a further application of the femtosecond

laser pulses to simultaneously monitoring the multiple

combustion intermediates.
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