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The Fitzhugh–Nagumo equation is an important non-linear reaction–diffusion

equation used to model the transmission of nerve impulses. This equation is

used in biology as population genetics; the Fitzhugh–Nagumo equation is also

frequently used in circuit theory. In this study, we give solutions to the fractional

Fitzhugh–Nagumo (FN) equation, the fractional Newell–Whitehead–Segel

(NWS) equation, and the fractional Zeldovich equation. We found the exact

solutions of these equations by conformable derivatives. We have obtained the

exact solutions within the time-fractional conformable derivative for these

equations.
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1 Introduction

Fractional differential equations (FDEs) are generalizations of known differential

equations (ODEs). FPDEs are used effectively in many fields of science [1–4]. These

equations are significant models to interpret plasma physics, relativistic physics, quantum

mechanics, non-linear optics, etc. So, FPDE studies are getting more and more important.

Recent developments and applications in fractional calculus have been discussed by many

authors [5–9]. Many fractional models can be converted to a FODE, allowing us to use the

power-series technique to find all open-series analytical solutions.

The fractional Fitzhugh–Nagumo equation is an important non-linear

reaction–diffusion equation used to model the transmission of nerve impulses. This

equation is used in biology as population genetics; the fractional Fitzhugh–Nagumo

equation is also frequently used in circuit theory.

There are numerous effective ways to find solutions of PDEs. These methods are the

(G′G)-expansion [10], the sub-equation (11) and (12), the exp-function [13, 14], the first

integral [15], the functional variable [16, 17], the modified simplest [18, 19], the

Kudryashov [20, 21], the extended simple [22], and the extended tanh–coth methods
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[23, 24]. These techniques allow for the calculation of PDE

solutions in a variety of different formats.

These equations we deal with in this study are effective

equations that play a fundamental role in many phenomena

such as plasma physics and optics. The non-linear phenomena of

wave happen in different fields such as optical fiber, physics, and

biology. It is necessary to gain the exact solutions of such models

for the better understanding of non-linear wave phenomena.

In the second part, the conformable derivative is introduced.

In the third part, the extended tanh–coth method is given. In the

other sections, we found the exact solutions of the (1 + 1)

dimensional time-fractional Fitzhugh–Nagumo (FN) equation,

the Newell–Whitehead (NW) equation, and the Zeldovich

equation via this method.

2 Conformable derivative

Definition 1. The basic limit definition of this derivative is [25]:

Dα
t f t( ) �

1
Γ 1 − α( )

d

dt
∫t

0
t − ξ( )−α f ξ( ) − f 0( )( )dξ , 0< α< 1,

f n( ) t( )( ) α−n( )
, n≤ α< n + 1, n≥ 1.

⎧⎪⎪⎨⎪⎪⎩
(1)

Some properties of this derivative are given in [26, 27].

Definition 2. Let g: (0,∞)→ R be a function. The conformable

derivative of g for order α is defined by

Tα g k( )( ) � lim
ε→0

g k + εk1−α( ) − g k( )
ε

, (2)

for all k > 0, α ∈ (0, 1).

Theorem 3. If a function g: [0, ∞) → R is α − differentiable at

t0 > 0, α ∈ (0, 1] and g is continuous at t0.

Theorem 4. Let f and g be α − differentiable at a point t > 0, α ∈
(0, 1]:

Tα αf + bg( ) � aTα f( ) + bTα g( ), for all a, b ∈ R.
Tα tp( ) � ptp−α, for all p ∈ R.
Tα λ( ) � 0, for constant functions f t( ) � λ.

Tα fg( ) � fTα g( ) + gTα f( ).
Tα

f

g
( ) � gTα f( ) − fTα g( )

g2 .

(3)

If g is differentiable,

Tα g( ) t( ) � t1−α
dg

dt
t( ). (4)

Non-linear conformable partial differential equations (NCPDEs)

with one independent variable are as follows:

P
zαu

ztα
,
zu

zx
,
z2αu

zt2α
,
z2u

zx2
, . . .( ) � 0, 0< α≤ 1, (5)

u x, t( ) � U ξ( ), ξ � cx − v
tα

α
, (6)

zα

ztα
� −v z

zξ
,
z2α

zt2α
� v2

z2

zξ2
,

z

zx
� z

zξ
,

z2

zx2
� z2

zξ2
, . . . (7)

The non-linear fPDE (5) can be converted to a non-linear ODE

using Eq. 6:

Q U,U′, U′′, U′′′, . . .( ) � 0. (8)

Let us now discuss how we will approach solving the

Fitzhugh–Nagumo equation, the Newell–Whitehead equation,

and the Zeldovich equation.

3 The extended tanh–coth method

The tanh–coth approach can be summed up as follows

in [28]:

The wave variable ξ � cx − v tα

α into a PDE

P u, ut, ux, uxx, . . .( ) � 0. (9)

u (x, t) = U(ξ) is a traveling wave solution. A non-linear ODE can

be converted from the non-linear PDE (9):

Q U,U′, U′′, U′′′, . . .( ) � 0. (10)

From the derivatives of the independent variable Y,

Y � tanh ξ( ), Y′ � 1 − Y2, (11)
d

dξ
� 1 − Y2( ) d

dY
,

d2

dξ2
� 1 − Y2( ) −2Y d

dY
+ 1 − Y2( ) d2

dY2( ). (12)

The tanh method can be expressed as follows:

U ξ( ) � S Y( ) � ∑m
k�0

akY
k. (13)

The following is an extension of Eq. 13 [29]:

U ξ( ) � S Y( ) � ∑m
k�0

akY
k +∑m

k�1
bkY

−k. (14)

4 Solutions of the Fitzhugh–Nagumo
equation

zαu

ztα
� z2u

zx2
+ u 1 − u( ) u − μ( ), t> 0, 0< α≤ 1, x ∈ R. (15)
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The FN equation is an important non-linear reaction–diffusion

equation used to model the transmission of nerve impulses. Also

used in biology as population genetics, this equation is also

frequently used in circuit theory, where x is the space variable

and t is a time variable.

Since the FN equation is (1 + 1)-dimensional and time-

fractional, using the wave variable ξ � cx − v tα

α , Eq. 15 can be

converted into a non-linear ODE (Eq. 16).

vU′ + c2U′′ + U 1 − U( ) U − μ( ) � 0, (16)

where c and v are constants. By balancing (U)3 with U″ in Eq. 16,

we obtain the following:

3m � m + 2, (17)
m � 1. (18)

The solution form is as follows:

U ξ( ) � a0 + a1Y + b1Y
−1, Y � tanh ξ( ), Y′ � 1 − Y2. (19)

Here a0 and a1, b1 are arbitrary constants. Eq. 19 is substituted

into Eq. 16, and if the coefficients of Y are used to set the system

of equations to zero, then

−a31 + 2a1c
2 � 0.

−3a0a21 + a21μ + a21 − a1v � 0.
−3a20a1 + 2a0a1μ − 3a21b1 − 2a1c

2 + 2a0a1 − a1μ � 0.
−a30 + a20μ − 6a0a1b1 + 2a1b1μ + a20 − a0μ + 2a1b1 + a1v + b1v � 0.

−3a20b1 + 2a0b1μ − 3a1b
2
1 − 2b1c

2 + 2a0b1 − b1μ � 0.
−3a0b21 + b21μ + b21 − b1v � 0.
−3a0b21 + b21μ + b21 − b1v � 0.

(20)
By solving this system of equations, we get the following cases.

Case 1:

a0 � 1
2
, a1 � 0, b1 � ±

1
2
,

c � ±

�
2

√
4
, μ � μ, v � ±

μ

2
− 1
4

( ). (21)

Therefore, the exact solution is as follows:

u1 x, t( ) � 1
2
±
1
2

tanh ±

�
2

√
4

x − ±
μ

2
− 1
4

( ) tα
α

( )( )−1
. (22)

Case 2:

a0 � a0, a1 � 0, b1 � ± a0,

c � ±

�
2

√
2
a0, μ � 2a0, v � ± a0 − a20( ). (23)

The exact solution is as follows:

u2 x, t( ) � a0 ± a0 tanh ±

�
2

√
2
a0x ± a0 − a20( ) tα

α
( )( )−1

. (24)

Case 3:

a0 � a0, a1 � 0, b1 � ± a0 − 1( ),
c � ±

�
2

√
2

a0 − 1( ), μ � 2a0 − 1, v � ± a0 a0 − 1( ). (25)

The exact solution is as follows:

u3 x, t( ) � a0 ± a0 tanh ±

�
2

√
2

a0 − 1( )x ± a0 a0 − 1( ) t
α

α
( )( )−1

.

(26)
Case 4:

a0 � 1
2
, a1 � ±

1
2
, b1 � 0,

c � ±

�
2

√
4
, μ � μ, v � ±

μ

2
− 1
4

( ). (27)

The exact solution is as follows:

u4 x, t( ) � 1
2
±
1
2

tanh ±

�
2

√
4

x ±
μ

2
− 1
4

( ) tα
α

( )( ). (28)

Case 5:

a0 � a0, a1 � ± a0, b1 � 0,

c � ±

�
2

√
2
, μ � 2a0, v � ± a20 − a0( ). (29)

The exact solution is as follows:

u5 x, t( ) � a0 ± a0 tanh ±

�
2

√
2

x ± a20 − a0( ) tα
α

( )( ). (30)

Case 6:

a0 � a0, a1 � ± a0 − 1( ), b1 � 0,

c � ±

�
2

√
2

a0 − 1( ), μ � 2a0 − 1, v � ± a20 − a0( ). (31)

The exact solution is as follows:

u6 x, t( ) � a0 ± a0 − 1( )

× tanh ±

�
2

√
2

a0 − 1( )x ± a20 − a0( ) tα
α

( )( ). (32)

Case 7:

a0 � a0, a1 � ±
a0
2
, b1 � ±

a0
2
,

c � ±

�
2

√
4
a0, μ � 2a0, v � ±

1
2

a20 − a0( ). (33)

The exact solution is as follows:

u7 x, t( ) � a0 ±
a0
2

tanh ±

�
2

√
4
a0x ±

1
2

a20 − a0( ) tα
α

( )( )
±
a0
2

tanh ±

�
2

√
4
a0x ±

1
2

a20 − a0( ) tα
α

( )( )−1
.

(34)

Case 8:

a0 � a0, a1 � ±
1
2

a0 − 1( ), b1 � ±
1
2

a0 − 1( ),
c � ±

�
2

√
4

a0 − 1( ), μ � 2a0 − 1, v � ±
1
2

a20 − a0( ).
(35)
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The exact solution is as follows:

u8 x, t( ) � a0 ±
a0 − 1( )
2

tanh ±

�
2

√
4

a0 − 1( )x ±
1
2

a20 − a0( ) tα
α

( )( )[
+ tanh ±

�
2

√
4

a0 − 1( )x ±
1
2

a20 − a0( ) tα
α

( )( )−1].
(36)

Case 9:

a0 � 1
2
, a1 � ±

1
4
, b1 � ±

1
4
,

c � ±

�
2

√
8
, μ � μ, v � ±

μ

4
− 1
8

( ). (37)

The exact solution is as follows:

u9 x, t( ) � 1
2
±
1
4

tanh ±

�
2

√
8

x ±
μ

4
− 1
8

( ) tα
α

( )( )
±
1
4

tanh ±

�
2

√
8

x ±
μ

4
− 1
8

( ) tα
α

( )( )−1
. (38)

5 Solutions of the Newell–Whitehead
equation

If μ = −1 in Eq. 15, the NW equation is obtained by

zαu

ztα
� z2u

zx2
+ u − u3, t> 0, 0< α≤ 1, x ∈ R. (39)

Using the wave variable ξ � cx − v tα

α , Eq. 39 can be converted

to Eq. 40.

vU′ + c2U′′ + U − U3 � 0, (40)
where c and v are constants. By balancing, we obtain

3m � m + 2, (41)
m � 1. (42)

The solution form is as follows:

U ξ( ) � a0 + a1Y + b1Y
−1, Y � tanh ξ( ), Y′ � 1 − Y2. (43)

Here, a0 and a1, b1 are arbitrary constants. Eq. 43 is substituted

into Eq. 41, and if the coefficients of Y are used to set the system

of algebraic equations to zero, then

−a31 + 2a1c
2 � 0.

−3a0a21 − a1v � 0.
−3a20a1 − 3a21b1 − 2a1c

2 + a1 � 0.
−a30 − 6a0a1b1 + a1v + b1v + a0 � 0.

−3a20b1 − 3a1b
2
1 − 2b1c

2 + b1 � 0.
−3a0b21 − b1v � 0.
−b31 + 2b1c

2 � 0.

(44)

By solving this system of equations, we get the following cases.

Case 1:

a0 � ±
1
2
, a1 � 0, b1 � 1

2
,

c � ±

�
2

√
4
, v � ±

3
4
.

(45)

Therefore, the exact solution is as follows:

u1 x, t( ) � ±
1
2
+ 1
2

tanh ±

�
2

√
4

x ±
3
4
tα

α
( )( )−1

. (46)

Case 2:

a0 � ±
1
2
, a1 � 1

2
, b1 � 0,

c � ±

�
2

√
4
, v � ±

3
4
.

(47)

The exact solution is as follows:

u2 x, t( ) � ±
1
2
+ 1
2

tanh ±

�
2

√
4

x ±
3
4
tα

α
( )( ). (48)

Case 3:

a0 � ±
1
2
, a1 � 1

4
, b1 � 1

4
,

c � ±

�
2

√
8
, v � ±

3
8
.

(49)

The exact solution is as follows:

u3 x, t( ) � ±
1
2
+ 1
4

tanh ±

�
2

√
8

x ±
3
4
tα

α
( )( )

+ 1
4

tanh ±

�
2

√
8

x ±
3
4
tα

α
( )( )−1

. (50)

6 Solutions of the Zeldovich equation

If μ = 0 in Eq. 15, the Zeldovich equation is obtained:

zαu

ztα
� z2u

zx2
+ u − u3, t> 0, 0< α≤ 1, x ∈ R. (51)

Using the wave variable ξ � cx − v tα

α , Eq. 51 can be converted

to Eq. 52.

vU′ + c2U′′ + U2 − U3 � 0, (52)

where c and v are constants. From Eq. 52, we obtain

3m � m + 2, (53)
m � 1. (54)

The solution form is as follows:

U ξ( ) � a0 + a1Y + b1Y
−1, Y � tanh ξ( ), Y′ � 1 − Y2. (55)

Here, a0 and a1, b1 are the arbitrary constants. Eq. 55 is

substituted into Eq. 52, and if the coefficients of Y are used to

set the system of equations to zero, then
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a31 − 2a1c
2 � 0.

3a0a
2
1 − a21 − a1v � 0.

3a20a1 + 3a21b1 + 2a1c
2 − 2a0a1 � 0.

a30 + 6a0a1b1 − a20 − 2a1b1 + a1v + b1v � 0.
3a20b1 + 3a1b

2
1 + 2b1c

2 − 2a0b1 � 0.
3a0b

2
1 − b21 − b1v � 0.
b31 − 2b1c

2 � 0.

(56)

By solving this system of equations, we get the following cases.

Case 1:

a0 � a0, a1 � 0, b1 � ± a0

������
1 − a0
3a0 − 1

√
,

c � c, v � ± 3a20

������
1 − a0
3a0 − 1

√
− a0

������
1 − a0
3a0 − 1

√
.

(57)

FIGURE 1
Figure of u4 in (Eq. 4.14) with μ = 2, 0 < t < 1, and 0 < x < 10.

FIGURE 2
Figure of u5 in (Eq. 4.16) with a0 = 1/2, 0 < t < 10, and 0 <
x < 10.

FIGURE 4
Figure of u9 in (Eq. 4.24) with μ = 2, 0 < t < 1, and 0 < x < 10.

FIGURE 3
Figure of u7 in (Eq. 4.20) with a0 = 1/2, 0 < t < 10, and 0 <
x < 10.
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Therefore, the exact solution is as follows:

u1 x, t( ) � a0 ± a0

������
1 − a0
3a0 − 1

√
tanh cx ± 3a20

������
1 − a0
3a0 − 1

√
− a0

������
1 − a0
3a0 − 1

√
tα

α
⎛⎝ ⎞⎠⎛⎝ ⎞⎠−1

.

(58)

Case 2:

a0 � 1
2
, a1 � ±

1
2
, b1 � 0,

c � ±

�
2

√
4
, v � ±

1
4
.

(59)

The exact solution is as follows:

u2 x, t( ) � 1
2
±
1
2

tanh ±

�
2

√
4

x ±
1
4
tα

α
( )( ). (60)

Case 3:

a0 � 1
2
, a1 � ±

1
4
, b1 � ±

1
4
,

c � ±

�
2

√
8
, v � ±

1
8
.

(61)

The exact solution is as follows:

u3 x, t( ) � 1
2
±
1
4

tanh ±

�
2

√
8

x ±
1
8
tα

α
( )( ) ±

1
4

tanh ±

�
2

√
8

x ±
1
8
tα

α
( )( )−1

. (62)

7 Conclusion

In this article, we present the extended tanh–coth method for

solving non-linear space–time conformable PDEs. We found the

exact and traveling wave solutions of some important space–time

fPDEs via the extended tanh–coth method. We know many of the

results obtained are new solutions that do not exist in the literature.

The hyperbolic and trigonometric function solutions are significant

to explain a variety of physical phenomena. This suggests that the

extended tanh–coth method is more effective in finding the

solutions of non-linear fPDEs. The 3D plots of the acquired

solutions are presented by choosing appropriate values to the

parameters in Figures 1–4. These are the advantages of the

extended tanh–coth method. The offered method can be utilized

to assist complicated models applicable to a wide variety of physical

situations.We hope that the telecommunications industry and other

such forms of waveguides will find this study to be beneficial.

Moreover, we come to the understanding that the newly

obtained hyperbolic function and trigonometric function

solutions in this study may help explain some complex

physical aspects in non-linear physical sciences and are related

to such physical properties. In future studies, these approaches

can be easily used for other NFDEs, NFDE systems, fractional

complex equations, fractional difference equations, etc.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding author.

Author contributions

ACC: Original Draft, Methodology, Validation; AB:

Investigation, Supervision, Writing—Review and Editing;

OAA: Conceptualization, Methodology, Writing; MA: Original

Draft, Validation, Founding acquisition.

Funding

The work in this study was supported, in part, by the Open

Access Program from the American University of Sharjah. This

study represents the opinions of the authors and does not mean

to represent the position or opinions of the American University

of Sharjah

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Miller KS, Ross B. An introduction to the fractional calculus and fractional
differential equations. New York: Wiley (1993).

2. Podlubny I. Fractional differential equations. California: Academic Press
(1999).

3. Hilfer R. Applications of fractional calculus in physics. River Edge, NJ, USA:
World Scientific Publishing (2000).

4. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional
differential equations. Amsterdam: Elsevier (2006).

Frontiers in Physics frontiersin.org06

Cevikel et al. 10.3389/fphy.2022.1028668

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1028668


5. Jajarmi A, Baleanu D, Vahid ZK, Pirouza HM, Asad JH. A new and general
fractional Lagrangian approach: A capacitor microphone case study. Results Phys
(2021) 31:104950. doi:10.1016/j.rinp.2021.104950

6. Acay B, Inc M, Mustapha UT, Yusuf A. Fractional dynamics and analysis for a
lana fever infectious ailment with Caputo operator, Chaos. Solitons & Fractals
(2022) 153:111605. doi:10.1016/j.chaos.2021.111605

7. Erturk VS, Godwe E, Baleanu D, Kumar P, Asad J, Jajarmi A. Novel fractional-
order Lagrangian to describe motion of beam on nanowire. Acta Phys Pol A (2021)
140(3):265–72. doi:10.12693/aphyspola.140.265

8. Rawya A, Alquran M, Ali M, Yusuf A, Momani S. On group of Lie symmetry
analysis, explicit series solutions and conservation laws for the time-fractional
(2+1)-dimensional Zakharov-Kuznetsov (q,p,r) equation. J Geometry Phys (2022)
176:104512. doi:10.1016/j.geomphys.2022.104512

9. Baleanu D, Abadi MH, Jajarmi A, Vahid KZ, Nieto JJ. A new comparative
study on the general fractional model of COVID-19 with isolation and quarantine
effects. Alexandria Eng J (2022) 61(6):4779–91. doi:10.1016/j.aej.2021.10.030

10. Bekir A, Güner Ö, Ayhan B, Cevikel AC. Exact solutions for fractional
differential-difference equations by (G’/G)-Expansion method with modified
Riemann-Liouville derivative. Adv Appl Math Mech (2016) 8(2):293–305. doi:10.
4208/aamm.2014.m798

11. Aksoy E, Cevikel AC, Bekir A. Soliton solutions of (2+1)-dimensional time-
fractional Zoomeron equation. Optik (2016) 127(17):6933–42. doi:10.1016/j.ijleo.
2016.04.122

12. Bekir A, Aksoy E, Cevikel AC. Exact solutions of nonlinear time fractional
partial differential equations by sub-equation method. Math Methods Appl Sci
(2015) 38(13):2779–84. doi:10.1002/mma.3260

13. Cevikel AC. New exact solutions of the space-time fractional KdV-Burgers
and Non-Linear fractional Foam Drainage equation. Therm Sci (2018) 22:15–24.
doi:10.2298/tsci170615267c

14. Bekir A, Güner Ö, Cevikel AC. The exp-function method for some time-
fractional differential equations. Ieee/caa J Autom Sinica (2017) 4:315–21. doi:10.
1109/jas.2016.7510172

15. Aksoy E, Bekir A, Cevikel AC. Study on fractional differential equations with
modified Riemann-Liouville derivative via Kudryashov method. Int J Nonlinear Sci
Numer Simulation (2019) 20(5):511–6. doi:10.1515/ijnsns-2015-0151

16. Rezazadeh H, Vahidi J, Zafar A, Bekir A. The functional variable method to
find new exact solutions of the nonlinear evolution equations with dual-power-law
nonlinearity. Int J Nonlinear Sci Numer Simulation (2020) 21(3-4):249–57. doi:10.
1515/ijnsns-2019-0064

17. Cevikel AC, Bekir A, Akar M, San S. A Procedure to construct exact solutions
of nonlinear evolution equations. Pramana - J Phys (2012) 79(3):337–44. doi:10.
1007/s12043-012-0326-1

18. Taghizadeh N, Mirzazadeh M, Rahimian M, Akbari M. Application
of the simplest equation method to some time-fractional partial
differential equations. Ain Shams Eng J (2013) 4:897–902. doi:10.1016/j.
asej.2013.01.006

19. Savaissou N, Gambo B, Rezazadeh H, Bekir A, Doka SY. Exact optical
solitons to the perturbed nonlinear Schrodinger equation with dual-power
law of nonlinearity. Opt Quan Electron (2020) 52:318. doi:10.1007/s11082-
020-02412-7

20. Cevikel AC, Aksoy E. Soliton solutions of nonlinear fractional differential
equations with their applications in mathematical physics. Revista Mexicana de
Fisica (2021) 67(3):422–8. doi:10.31349/RevMexFis.67.422

21. Cevikel AC, Bekir A, Zahran EHM. Novel exact and solitary solutions of
conformable Huxley equation with three effective methods. J Ocean Eng Sci (2022).
doi:10.1016/j.joes.2022.06.010

22. Bekir A, Cevikel AC, Zahran EHM. New impressive representations for the
soliton behaviors arising from the (2+1)-Boussinesq equation. J Ocean Eng Sci
(2022). doi:10.1016/j.joes.2022.05.036

23. Cevikel AC. Traveling wave solutions of conformable Duffing model in
shallow water waves. Int J Mod Phys B (2022) 36:2250164. doi:10.1142/
s0217979222501648

24. Cevikel AC. New solutions for the high-dimensional fractional BLMP
equations. J Ocean Eng Sci (2022). doi:10.1016/j.joes.2022.06.023

25. Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional
derivative. J Comput Appl Math (2014) 264:65–70. doi:10.1016/j.cam.2014.01.002

26. Abdeljawad T. On conformable fractional calculus. J Comput Appl Math
(2015) 279:57–66. doi:10.1016/j.cam.2014.10.016

27. Eslami M, Rezazadeh H. The first integral method for Wu–Zhang system
with conformable time-fractional derivative. Calcolo (2016) 53:475–85. doi:10.
1007/s10092-015-0158-8

28. Cevikel AC, Bekir A. New solitons and Periodic solutions for (2+1)-
dimensional Davey-Stewartson equations. Chin J Phys (2013) 51(1):1–13. doi:10.
6122/CJP.51.1

29. Bekir A, Cevikel AC. Solitary wave solutions of two nonlinear physical models
by tanh-coth method. Commun Nonlinear Sci Numer Simulation (2009) 14(5):
1804–9. doi:10.1016/j.cnsns.2008.07.004

Frontiers in Physics frontiersin.org07

Cevikel et al. 10.3389/fphy.2022.1028668

https://doi.org/10.1016/j.rinp.2021.104950
https://doi.org/10.1016/j.chaos.2021.111605
https://doi.org/10.12693/aphyspola.140.265
https://doi.org/10.1016/j.geomphys.2022.104512
https://doi.org/10.1016/j.aej.2021.10.030
https://doi.org/10.4208/aamm.2014.m798
https://doi.org/10.4208/aamm.2014.m798
https://doi.org/10.1016/j.ijleo.2016.04.122
https://doi.org/10.1016/j.ijleo.2016.04.122
https://doi.org/10.1002/mma.3260
https://doi.org/10.2298/tsci170615267c
https://doi.org/10.1109/jas.2016.7510172
https://doi.org/10.1109/jas.2016.7510172
https://doi.org/10.1515/ijnsns-2015-0151
https://doi.org/10.1515/ijnsns-2019-0064
https://doi.org/10.1515/ijnsns-2019-0064
https://doi.org/10.1007/s12043-012-0326-1
https://doi.org/10.1007/s12043-012-0326-1
https://doi.org/10.1016/j.asej.2013.01.006
https://doi.org/10.1016/j.asej.2013.01.006
https://doi.org/10.1007/s11082-020-02412-7
https://doi.org/10.1007/s11082-020-02412-7
https://doi.org/10.31349/RevMexFis.67.422
https://doi.org/10.1016/j.joes.2022.06.010
https://doi.org/10.1016/j.joes.2022.05.036
https://doi.org/10.1142/s0217979222501648
https://doi.org/10.1142/s0217979222501648
https://doi.org/10.1016/j.joes.2022.06.023
https://doi.org/10.1016/j.cam.2014.01.002
https://doi.org/10.1016/j.cam.2014.10.016
https://doi.org/10.1007/s10092-015-0158-8
https://doi.org/10.1007/s10092-015-0158-8
https://doi.org/10.6122/CJP.51.1
https://doi.org/10.6122/CJP.51.1
https://doi.org/10.1016/j.cnsns.2008.07.004
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1028668

	Solitary wave solutions of Fitzhugh–Nagumo-type equations with conformable derivatives
	1 Introduction
	2 Conformable derivative
	3 The extended tanh–coth method
	4 Solutions of the Fitzhugh–Nagumo equation
	5 Solutions of the Newell–Whitehead equation
	6 Solutions of the Zeldovich equation
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


