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From the lightest Hydrogen isotopes up to the recently synthesized

Oganesson (Z = 118), it is estimated that as many as about 8,000 atomic

nuclei could exist in nature. Most of these nuclei are too short-lived to be

occurring on Earth, but they play an essential role in astrophysical events

such as supernova explosions or neutron star mergers that are presumed to

be at the origin of most heavy elements in the Universe. Understanding the

structure, reactions, and decays of nuclei across the entire chart of

nuclides is an enormous challenge because of the experimental

difficulties in measuring properties of interest in such fleeting objects

and the theoretical and computational issues of simulating strongly-

interacting quantum many-body systems. Nuclear density functional

theory (DFT) is a fully microscopic theoretical framework which has the

potential of providing such a quantitatively accurate description of nuclear

properties for every nucleus in the chart of nuclides. Thanks to high-

performance computing facilities, it has already been successfully

applied to predict nuclear masses, global patterns of radioactive decay

like β or γ decay, and several aspects of the nuclear fission process such as,

e.g., spontaneous fission half-lives. Yet, predictive simulations of nuclear

spectroscopy—the low-lying excited states and transitions between

them—or of nuclear fission, or the quantification of theoretical

uncertainties and their propagation to basic or applied nuclear science

applications, would require several orders of magnitude more calculations

than currently possible. However, most of this computational effort would

be spent into generating a suitable basis of DFT wavefunctions. Such a task

could potentially be considerably accelerated by borrowing tools from the

field of machine learning and artificial intelligence. In this paper, we review
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different approaches to applying supervised and unsupervised learning

techniques to nuclear DFT.
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nuclear density functional theory, Gaussian process, deep learning, autoencoders,
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1 Introduction

Predicting all the properties of every atomic nucleus in the

nuclear chart, from Hydrogen all the way to superheavy

elements, remains a formidable challenge. Density functional

theory (DFT) offers a compelling framework to do so, since the

computational cost is, in principle, nearly independent of the

mass of the system Eschrig [1]. Because of our incomplete

knowledge of nuclear forces and of the fact that the nucleus is

a self-bound system, the implementation of DFT in nuclei is

slightly different from other systems such as atoms or molecules

and is often referred to as the energy density functional (EDF)

formalism Schunck [2].

Simple single-reference energy density functional (SR-EDF)

calculations of atomic nuclei can often be done on a

laptop. However, large-scale SR-EDF computations of nuclear

properties or higher-fidelity simulations based on the multi-

reference (MR-EDF) framework can quickly become very

expensive computationally. Examples where such computational

load is needed range frommicroscopic fission theory Schunck and

Regnier [3]; Schunck and Robledo [4] to parameter calibration and

uncertainty propagation Kejzlar et al. [5]; Schunck et al. [6] to

calculations at the scale of the entire chart of nuclides Erler et al.

[7]; Ney et al. [8] relevant, e.g., for astrophysical simulations

Mumpower et al. [9]. Many of these applications would benefit

from a reliable emulator of EDF models.

It may be useful to distinguish two classes of quantities that

such emulators should reproduce. What we may call “integral”

quantities are quantum-mechanical observables such as, e.g., the

energy, radius, or spin of the nucleus, or more complex data such

as decay or capture rates. By contrast, we call “differential”

quantities the basic degrees of freedom of the theoretical

model. In this article, we focus on the Hartree-Fock-

Bogoliubov (HFB) theory, which is both the cornerstone of

the SR-EDF approach and provides the most common basis

of generator states employed in MR-EDF calculations. In the

HFB theory, all the degrees of freedom are encapsulated into

three equivalent quantities: the quasiparticle spinors, as defined

either on some spatial grid or configuration space; the full non-

local density matrix ρ(rστ, r′σ′τ′) and pairing tensor κ(rστ,
r′σ′τ′), where r refers to spatial coordinates, σ = ±1/2 to the

spin projection and τ = ±1/2 to the isopin projection Perlińska

et al. [10]; the full non-local HFB mean-field and pairing

potentials, often denoted by h (rστ, r′σ′τ′) and Δ(rστ, r′σ′τ′).
Obviously, integral quantities have the clearest physical

meaning and can be compared to data immediately. For this

reason, they have been the focus of most of the recent efforts in

applying techniques of machine learning and artificial

intelligence (ML/AI) to low-energy nuclear theory, with

applications ranging from mass tables Utama et al. [11];

Utama and Piekarewicz [12,13]; Niu and Liang [14];

Neufcourt et al. [15]; Lovell et al. [16]; Scamps et al. [17];

Mumpower et al. [18], β-decay rates Niu et al. [19], or fission

product yields Wang et al. [20]; Lovell et al. [21]. The main

limitation of this approach is that it must be repeated for every

observable of interest. In addition, incorporating correlations

between such observables, for example the fact that β-decay rates

are strongly dependent on Qβ-values which are themselves

related to nuclear masses, is not easy. This is partly because

the behavior of observables such as the total energy or the total

spin is often driven by underlying shell effects that can lead to

very rapid variations, e.g. at a single-particle crossing. Such

effects could be very hard to incorporate accurately in a

statistical model of integral quantities.

This problem can in principle be solved by emulating what

we called earlier differential quantities. For example, single-

particle crossings might be predicted reliably with a good

statistical model for the single-particle spinors themselves. In

addition, since differential quantities represent, by definition, all

the degrees of freedom of the SR-EDF theory, any observable of

interest can be computed from them, and the correlations

between these observables would be automatically reproduced.

In this sense, an emulator of differential quantities is truly an

emulator for the entire SR-EDF approach and can be thought of

as a variant of intrusive, model-driven, model order reduction

techniques discussed in Melendez et al. [22]; Giuliani et al. [23];

Bonilla et al. [24]. In the much simpler case of the Bohr collective

Hamiltonian, such a strategy gave promising results Lasseri

et al. [25].

The goal of this paper is precisely to explore the feasibility of

training statistical models to learn the degrees of freedom of the

HFB theory. We have explored two approaches: a simple one

based on independent, stationary Gaussian processes and a more

advanced one relying on deep neural networks with autoencoders

and convolutional layers.

In Section 2, we briefly summarize the nuclear EDF

formalism with Skyrme functionals with a focus on the HFB

theory preserving axial symmetry. Section 3 presents the results

obtained with Gaussian processes. After recalling some general

notions about Gaussian processes, we analyze the results of fitting

HFB potential across a two-dimensional potential energy surface

in 240Pu. Section 4 is devoted to autoencoders. We discuss choices
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made both for the network architecture and for the training data

set.We quantify the performance of autoencoders in reproducing

canonical wavefunctions across a potential energy surface in 98Zr

and analyze the structure of the latent space.

2 Nuclear density functional theory

In very broad terms, the main assumption of density

functional theory (DFT) for quantum many-body systems is

that the energy of the system of interest can be expressed as a

functional of the density of particles Parr and Yang [26]; Dreizler

and Gross [27]; Eschrig [1]. Atomic nuclei are a somewhat special

case of DFT, since the nuclear Hamiltonian is not known exactly

and the nucleus is a self-bound system Engel [28]; Barnea [29].

As a result, the form of the energy density functional (EDF) is

often driven by underlying models of nuclear forces, and the EDF

is expressed as a function of non-local, symmetry-breaking,

intrinsic densities Schunck [2]. In the single-reference EDF

(SR-EDF) approach, the many-body nuclear state is

approximated by a simple product state of independent

particles or quasiparticles, possibly with some constraints

reflecting the physics of the problem. We notate |Φ(q)〉 such

as state, with q representing a set of constraints. The multi-

reference EDF (MR-EDF) approach builds a better

approximation of the exact many-body state by mixing

together SR-EDF states.

2.1 Energy functional

The twomost basic densities needed to build accurate nuclear

EDFs are the one-body density matrix ρ and the pairing tensor κ

(and its complex conjugate κ*). The total energy of the nucleus is

often written as

E ρ, κ, κ*[ ] � Enuc ρ[ ] + ECou ρ[ ] + Epair ρ, κ, κ*[ ], (1)

where Enuc [ρ] represents the particle-hole, or mean-field,

contribution to the total energy from nuclear forces, ECou [ρ]

the same contribution from the Coulomb force, and Epair [ρ, κ,

κ*] the particle-particle contribution to the energy1. In this work,

we model the nuclear part of the EDF with a Skyrme-like term

Enuc ρ[ ] � ∑
t�0,1

∫ d3r χt r( ), (2)

which includes the kinetic energy term and reads generically

χt r( ) � Cρρ
t ρ

2
t + Cρτ

t ρtτt + CJJ
t J

2
t + CρΔρ

t ρtΔρt + Cρ∇J
t ρt · Jt. (3)

In this expression, the index t refers to the isoscalar (t = 0) or

isovector (t = 1) channel and the terms Cuu′
t are the coupling

constants associated with the energy functional. The particle

density ρt(r), kinetic energy density τt(r), spin-current tensor

Jt(r), and vector density Jt(r) are all derived from the full one-

body, non-local density ρ(rστ, r′σ′τ′) where r are spatial

coordinates, σ is the intrinsic spin projection, σ = ±1/2, and

τ = ±1/2 is the isospin projection; see Engel et al. [30];

Dobaczewski and Dudek [31]; Bender et al. [32]; Perlińska

et al. [10]; Lesinski et al. [33] for their actual definition. Since

we do not consider any proton-neutron mixing, all densities are

diagonal in isospin space. The two remaining terms in Eq. 1 are

treated in exactly the same way as in Schunck et al. [34]. In

particular, the pairing energy is derived from a surface-volume

density-dependent pairing force

V τ( ) r, r′( ) � V(τ)
0 1 − 1

2
ρ r( )
ρc

[ ]δ r − r′( ), (4)

where ρc = 0.16 fm−3 is the saturation density of nuclear matter.

2.2 Hartree-Fock-Bogoliubov theory

The actual densities in (3) are obtained by solving the

Hartree-Fock-Bogoliubov (HFB) equation, which derives from

applying a variational principle and imposing that the energy be

minimal under variations of the densities Schunck [2]. The HFB

equation is most commonly solved in the form of a non-linear

eigenvalue problem. The eigenfunctions define the quasiparticle

(q.p.) spinors. Without proton-neutron mixing, we can treat

neutrons and protons separately. Therefore, for any one type of

particles, the HFB equation giving the μth eigenstate reads in

coordinate space Dobaczewski et al. [35].

∫ d3r′∑
σ′

h rσ, r′σ′( ) − λδσσ′ ~h rσ, r′σ′( )
~h* rσ, r′σ′( ) −h rσ, r′σ′( ) + λδσσ′

⎛⎝ ⎞⎠
U Eμ, r′σ′( )
V Eμ, r′σ′( )⎛⎝ ⎞⎠ � Eμ

U Eμ, rσ( )
V Eμ, rσ( )⎛⎝ ⎞⎠,

(5)

where h (rσ, r′σ′) is the mean field, ~h(rσ, r′σ′) the pairing field2
and λ the Fermi energy. Such an eigenvalue problem must be

solved for protons and for neutrons.

For the case of Skyrme energy functionals and zero-range

pairing functionals, both the mean field h and pairing field ~h

become semi-local functions of r (semi-local refers to the fact that

these potentials involve differential operators). We refer to

1 The pairing contribution lumps together terms coming from nuclear
forces, Coulomb forces and possibly rearrangement terms.

2 Following Dobaczewski et al. [35,117], we employ the ‘russian’
convention where the pairing field is defined from the pairing
density ~ρ(rσ, r′σ′) rather than the pairing tensor. The quantity ~h is
related to the more traditional form of the pairing field Δ through:
~h(rσ, r′σ′) � −2σ′Δ(rσ, r′ − σ′).
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Vautherin and Brink [36]; Engel et al. [30] for an outline of the

derivations leading to the expressions of the mean field in the

case of Skyrme functionals and to, e.g., Dobaczewski and Dudek

[37]; Bender et al. [38]; Hellemans et al. [39]; Ryssens et al. [40]

for the expression of the mean field in terms of coupling

constants rather than the parameters of the Skyrme potential.

In the following, we simply recall the essential formulas needed in

the rest of the manuscript.

Expression 5 is written in coordinate space. In configuration

space, i.e., when the q.p. spinors are expanded on a suitable basis

of the single-particle (s.p.) Hilbert space, the same equation

becomes a non-linear eigenvalue problem that can be written as

h − λ ~h
~h* −h* + λ

( ) U V*
V U*

( ) � U V*
V U*

( ) −E 0
0 E

( ), (6)

where h, ~h, U and V are now Nbasis × Nbasis matrices, with Nbasis

the number of basis states. Eigenvalues are collected in the

diagonal Nbasis × Nbasis matrix E. The set of all eigenvectors

define the Bogoliubov matrix,

W � U V*
V U*

( ), (7)

which is unitary: WW† � W†W � 1. Details about the HFB

theory can be found in the standard references Valatin [41];

Mang [42]; Blaizot and Ripka [43]; Ring and Schuck [44].

2.3 Mean-field and pairing potentials

The mean fields are obtained by functional differentiation of

the scalar-isoscalar energy functional (1) with respect to all

relevant isoscalar or isovector densities, ρ0, ρ1, τ0, etc. For the

case of a standard Skyrme EDF when time-reversal symmetry is

conserved, the corresponding mean-field potentials in the

isoscalar-isovector representation become semi-local

Dobaczewski and Dudek [37,45]; Stoitsov et al. [46];

Hellemans et al. [39].

ht r( ) � −Mp
t r( ) + Ut r( )

+ 1
2i
∑
μ]

∇μσ]Bt,μ] r( ) + Bt,μ] r( )∇μσ]( ), (8)

where, as before, t = 0, 1 refers to the isoscalar or isovector

channel and the various contributions are.

Mt r( ) � Z2

2m
+ Cρτ

t ρt, (9a)
Ut r( ) � 2Cρρ

t ρt + Cρτ
t τt + 2CρΔρ

t Δρt + Cρ∇J
t  · Jt + U rear( )

t , (9b)
Bt,μ] r( ) � 2CρJ

t Jt,μ] − CρΔJ
t ∇μρt,]. (9c)

In these expressions, μ, ] label spatial coordinates and σ is the
vector of Pauli matrices in the chosen coordinate system. For

example, in Cartesian coordinates, μ, ] ≡ x, y, z and σ = (σx, σy, σz).

The term U(rear)
t is the rearrangement potential originating from

the density-dependent part of the energy. The resulting isoscalar

and isovector mean-field and pairing potentials can then

recombined to give the neutron and proton potentials,

h n( ) � h0 + h1, h p( ) � h0 − h1. (10)
Note that the full proton potential should also contain the

contribution from the Coulomb potential.

The pairing field is obtained by functional differentiation of

the same energy functional (1), this time with respect to the

pairing density. As a result, one can show that it is simply

given by

~h
τ( )

r( ) � V(τ)
0 1 − 1

2
ρ0 r( )
ρc

[ ]~ρ τ( ) r( ). (11)

2.4 Collective space

Nuclear fission or nuclear shape coexistence are two

prominent examples of large-amplitude collective motion of

nuclei Schunck and Regnier [3]; Heyde and Wood [47]. Such

phenomena can be accurately described within nuclear DFT

by introducing a small-dimensional collective manifold, e.g.,

associated with the nuclear shape, where we assume the

nuclear dynamics is confined Nakatsukasa et al. [48];

Schunck [2]. The generator coordinate method (GCM) and

its time-dependent extension (TDGCM) provide quantum-

mechanical equations of motion for such collective dynamics

Griffin andWheeler [49]; WaWong [50]; Reinhard and Goeke

[51]; Bender et al. [32]; Verriere and Regnier [52]. In the

GCM, the HFB solutions are generator states, i.e., they serve as

a basis in which the nuclear many-body state is expanded. The

choice of the collective manifold, that is, of the collective

variables, depends on the problem at hand. For shape

coexistence or fission, these variables typically correspond

to the expectation value of multipole moment operators on

the HFB state. A pre-calculated set of HFB states with different

values for the collective variables defines a potential energy

surface (PES).

In practice, PES are obtained by adding constraints to the

solutions of the HFB equation. This is achieved by introducing a

set of constraining operators Q̂a capturing the physics of the

problem at hand. The set of all such constraints q ≡ (q1, . . ., qN)

defines a point in the PES. In this work, our goal is to design

emulators capable of reproducing the HFB solutions at any

given point q of a PES. Throughout this article, we consider

exclusively two-dimensional collective spaces spanned by the

expectation values of the axial quadrupole Q̂20 and axial

octupole Q̂30 moment operators. In the presence of

constraints, the mean-field potential in the HFB equation is

modified as follows
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h rσ, r′σ′( ) − λδσσ′ → h rσ, r′σ′( ) − λ +∑
a

λaQa r( )⎛⎝ ⎞⎠δσσ′.
(12)

As is well known, the Fermi energies play in fact the role of the

Lagrange parameters λa for the constraints on particle number.When

performing calculations with constraints on the octupole moment, it

is also important to fix the position of the center of mass. This is

typically done by adding a constraint on the dipole moment Q̂10. In

the following, we note qλμ the expectation value of the operator Q̂λμ on

the quasiparticle vacuum, qλμ � 〈Φ(q)|Q̂λμ|Φ(q)〉.
Potential energy surfaces are a very important ingredient in a very

popular approximation to the GCM called the Gaussian overlap

approximation (GOA) Brink and Weiguny [53]; Onishi and Une

[54]; Une et al. [55]. By assuming, among other things, that the

overlap between two HFB states with different collective variables q
and q′ is approximately Gaussian, the GOA allows turning the

integro-differential Hill-Wheeler-Griffin equation of the GCM into

a much more tractable Schrödinger-like equation. The time-

dependent version of this equation reads as Verriere and Regnier [52].

iZ
z

zt
g q, t( ) � −Z

2

2
∑
αβ

z

zqα
Bαβ q( ) z

zqβ
+ V q( )⎡⎢⎢⎣ ⎤⎥⎥⎦g q, t( ), (13)

where the probability to be at point q of the collective space at time t is

given by |g (q, t)|2,V(q) is the actual PES, typically theHFB energy as a

function of the collective variables q (sometimes supplemented by

some zero-point energy correction) and Bαβ(q) the collective inertia
tensor. In (13), indices α and β run from 1 to the number Ncol of

collective variables. While the HFB energy often varies smoothly with

respect to the collective variables, the collective inertia tensor can

exhibit very rapid variations near level crossings.

2.5 Canonical basis

The Bloch-Messiah-Zumino theorem states that the Bogoliubov

matrixW of (7) can be decomposed into a product of three matrices

Ring and Schuck [44]; Bloch and Messiah [56]; Zumino [57].

W � D �WC � D 0
0 D*

( ) �U �V
�V �U

( ) C 0
0 C*

( ), (14)

where D and C are unitary matrices. The matrices �U and �V take

the very simple canonical form

�U �

0
1

uk 0
0 u�k

1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

�V �

0
1

0 vk
v�k 0

1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(15)
Starting from an arbitrary s.p. basis (ĉ, ĉ†) of the Hilbert

space, the transformation characterized by the matrix D leads

to a new basis (â, â†) that diagonalizes the density matrix ρ

and puts the pairing tensor κ into the canonical form similar

to that of �V. This new basis is called the canonical basis of the

HFB theory. Properties of the canonical basis are discussed in

details in the literature; see, e.g., Ring and Schuck [44];

Schunck [2]. In the HFB theory, quasiparticles are

superpositions of particle operators â† and hole operators

â. Thus, the canonical basis is transformed according to the

matrix �W to obtain a set of quasiparticle operators (α̂, α̂†).
There is another transformation of these operators associated

with the matrix C. However, the most important property for

the purpose of this paper is that physical observables

associated with HFB solutions do not depend on that last

transformation.

In addition to simplifying the calculation of many-body

observables, the canonical basis is also computationally less

expensive than the full Bogoliubov basis3. As an illustration,

let us take the example of the local density ρ(r). Assuming the

s.p. basis (ĉ, ĉ†) is represented by the basis functions

{ψn(r, σ)}n∈N, the local density (for isospin τ) is obtained from

the matrix of the Bogoliubov transformation by

ρ r( ) �∑
σ

∑
μ

∑
mn

Vmμ* Vnμ ψm r, σ( )ψn* r, σ( ). (16)

Notwithstanding the constraints imposed by the

orthonormality of the q.p. spinors, the number of

independent parameters in this expression approximately

scales like 2 × N2
basis × Nqp × Nr, where Nbasis is the size of

the s.p. basis, Nqp the number of q.p. states μ and Nr the total

number of points in the spatial grid r (which depends on the

symmetries imposed). In the canonical basis, and assuming

that the state âμ|0〉 is associated with the wavefunction φμ(r,
σ), the same object is represented by

ρ r( ) �∑
σ

∑
μ

v2μ|φμ r, σ( )|2. (17)

The number of data points now scales like 2 × Nqp × Nr + Nqp, or

about N2
basis smaller than before. For calculations with Nbasis ≈

1,000 the compression enabled by the canonical basis is of the

order of 106.

2.6 Harmonic oscillator basis

All calculations in this article were performed with the

HFBTHO code Marević et al. [58]. Recall that HFBTHO

works by expanding the solutions on the axially-deformed

3 This statement is obviously not true when solving the HFB equation
directly in coordinate space. In the case of the local density discussed
here, the expression ρ(r) � ∑σ∑μVμ(r, σ)Vμ*(r, σ) is just as
computationally expensive as the canonical basis expression ρ(r) �∑σ∑μv

2
μ|φμ(r, σ)|2.
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harmonic oscillator basis Stoitsov et al. [46]. Specifically, the HO

basis functions are written

ψn r, σ( ) � ψΛ
nr

r( )ψnz
z( ) e

iΛθ���
2π

√ χΣ σ( ), (18)

where n ≡ (nr, nz, Λ, Ω = Λ ±Σ) are the quantum numbers

labeling basis states and.

ψΛ
nr

r( ) � Nnrβ⊥
�
2

√
η|Λ|/2e−η/2L|Λ|

nr
η( ), (19a)

ψnz
z( ) � Nnz

��
βz

√
e−ξ

2/2Hnz ξ( ), (19b)

With η � β2⊥r
2 and ξ = βzz dimensionless variables, L|Λ|nr

the

associated Laguerre polynomials of order nr andHnz the Hermite

polynomial of order nz. The oscillator scaling factors β⊥ and βz
are the inverse of the oscillator lengths, i.e., βz = 1/bz.

All integrations are performed by Gauss quadrature, namely

Gauss-Hermite for integrations along the ξ-axis of the intrinsic

reference frame and Gauss-Laguerre for integrations along the

perpendicular direction characterized by the variable η. In the

following, we note Nz the number of Gauss-Hermite nodes and

N⊥ the number of Gauss-Laguerre nodes.

3 Supervised learning with Gaussian
processes

Gaussian processes (GPs) are a simple yet versatile tool for

regression that has found many applications in low-energy

nuclear theory over the past few years, from determining the

nuclear equation of state Drischler et al. [59], quantifying the

error of nuclear cross sections calculations Kravvaris et al. [60];

Acharya and Bacca [61] to modeling of neutron stars Pastore

et al. [62]. In the context of nuclear DFT, they were applied to

build emulators of χ2 objective functions in the UNEDF project

Kortelainen et al. [63–65]; Higdon et al. [66]; McDonnell et al.

[67]; Schunck et al. [6], of nuclear mass models Neufcourt et al.

[15,68–70], or of potential energy surfaces in actinides Schunck

et al. [34]. In this section, we test the ability of GPs to learn

directly the HFB potentials across a large, two-dimensional

collective space.

3.1 Gaussian processes

Gaussian processes are commonly thought of as the

generalization of normally-distributed random variables

(Gaussian distribution) to functions. There exists a

considerable field of applications for GPs and we refer to the

reference textbook by Rasmussen and Williams for a

comprehensive review of the formalism and applications of

GPs Rasmussen and Williams [71]. For the purpose of this

work, we are only interested in the ability of GPs to be used

as a regression analysis tool and we very briefly outline below

some of the basic assumptions and formulas.

We assume that we have a dataset of observations

{y � yi}i�1,...,n and that these data represent n realizations of

y � f x( ) + ϵ, (20)

where f: x↦f(x) is the unknown function we are seeking to learn

from the data. Saying that a function f is a Gaussian process

means that every finite collection of function values f = (f (x1), . . .,

f (xp)) follows a p-dimensional multivariate normal distribution.

In other words, we assume that the unknown function f follows a

normal distribution in ‘function space’. This is denoted by

f x( ) ~ GP m x( ), k x, x′( )( ), (21)

where m: x↦m(x) is the mean function and k: (x, x′)↦k (x, x′)
the covariance function, which is nothing but the generalization

to functions of the standard deviation,

k x, x′( ) � E f x( ) −m x( )( ) f x′( ) −m x′( )( )[ ]. (22)

Thanks to the properties of Gaussian functions, the mean and

covariance functions have analytical expressions as a function of

the test data y and covariance k; see Eqs (2.25)-(2.26) in

Rasmussen and Williams [71].

The covariance function is the central object in GP

regression. It is typically parametrized both with a functional

form and with a set of free parameters called hyperparameters.

The hyperparameters are determined from the observed data by

maximizing the likelihood function. In our tests, the covariance

matrix is described by a standard Matérn 5/2 kernel,

k x, x′( ) � 1 +
�
5

√
ℓ
‖x − x′‖ + 5

3ℓ2
‖x − x′‖2( )exp −

�
5

√
ℓ
‖x − x′‖( ),

(23)
where ℓ is the length-scale that characterizes correlations

between values of the data at different locations. The length-

scale is a hyper-parameter that is optimized in the training phase

of the Gaussian process. In this work, we only considered

stationary GPs: the correlation between data points x and x′
only depends on the distance ‖x − x′‖ between these points, not

on their actual value.

3.2 Study case

3.2.1 HFB potentials
Section 2.2 showed that the HFB mean-field potential

involves several differential operators. When the HFB matrix

is constructed by computing expectation values of the HFB

potential on basis functions, differentiation is carried over to

the basis functions and computed analytically—one of the many

advantages of working with the HO basis. In practice, this means

that the elements of the HFBmatrix are computed bymultiplying
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spatial kernels with different objects representing either the

original HO functions or their derivatives. This means that we

cannot consider a single emulator for the entire HFB potential.

Instead, we have to build several different ones for each of its

components: the central potential U (derivative of the EDF with

respect to ρ), the r- and z-derivatives of the effective mass M*

(derivative with respect to the kinetic density τ), the r- and z-

derivatives of the spin-orbit potential W, and the pairing field ~h.

There are six such functions for neutrons and another six for

protons. We denote this set of twelve functions as {fi}i�1,...,12.
At any given point q of the collective space, these functions

are all local, scalar functions of η and ξ, fi(q) ≡ fi: (η, ξ)↦fi (η, ξ; q)
where (η, ξ) are the nodes of the Gauss-Laguerre and Gauss-

Hermite quadrature grid. We note generically fik(q) the value at
point k of the quadrature grid (linearized) of the sample at point q
of the function fi. When fitting Gaussian process to reproduce

mean-field and pairing potentials, we consider a quadrature grid

ofNz ×N⊥ = 3,200 points. Our goal is thus to build 3,200 different

emulators, one for each point k of that grid, for each of the

12 local functions characterizing the mean-field and pairing

potentials. This gives a grand total of 38,400 emulators to

build. While this number is large, it is still easily manageable

on standard computers. It is also several orders of magnitude

smaller than emulating the full set of quasiparticle spinors, as we

will see in the next section.

In addition, the value of all the Lagrange parameters used to

set the constraints must also be included in the list of data points.

In our case, we have 5 of them: the two Fermi energies λn and λp
and the three constraints on the value of the dipole, quadrupole

and octupole moments, λ1, λ2 and λ3, respectively. Finally, we

also fit the expectation value of the three constraints on Q̂10, Q̂20

and Q̂30. We thus have a grand total of 38,408 functions of q to

emulate.

3.2.2 Training data and fitting procedure
We show in Figure 1 the potential energy surface that we are

trying to reconstruct. This PES is for the 240Pu nucleus and was

generated with the SkM* parameterization of the Skyrme energy

functional Bartel et al. [72]. The pairing channel is described with

the zero-range, density-dependent pairing force of Eq. 4 that has

exactly the same characteristics as in Schunck et al. [73].

We imposed constraints on the axial quadrupole and

octupole moments such that: 0 b ≤ q20 ≤ 300 b and 0 b3/2 ≤
q30 ≤ 51 b3/2 with steps of δq20 = 6 b and δq30 = 3 b3/2, respectively.

The full PES should thus contain 918 collective points. In

practice, we obtained Np = 887 fully converged solutions.

Calculations were performed with the HFBTHO solver by

expanding the solutions on the harmonic oscillator basis with

Nmax = 28 deformed shells and a truncation in the number of

states ofNbasis = 1,000. At each point of the PES, the frequency ω0

and deformation β2 of the HO basis are set according to the

empirical formulas given in Schunck et al. [73]. Following

standard practice, we divided the full Np = 887 dataset of

points into a training (80% of the points) and validation (20%

of the points) set. The selection was done randomly and resulted

in Ntrain = 709 training points and Nvalid. = 178 validation points.

The training points are marked as small black crosses in Figure 1

while the validation points are marked as larger white circles.

Based on the discussion in Section 3.2.1, we fit a Gaussian

process to each of the 38,408 variables needed to characterize

completely the HFB matrix. Since we work in a two-dimensional

collective space, we have two features and the training data is

represented by a two-dimensional array X of dimension (nsamples,

nfeatures) with nsamples =Np and nfeatures = 2. The target values Y (=

the value at point k on the quadrature grid of any of the functions

fi) are contained in a one-dimensional array of size Np. Prior to

the fit, the data is normalized between 0 and 1. The GP is based

on a standard Matérn kernel with ] = 2.5 and length-scale ℓ. In

practice, we use different length-scales for the q20 and q30
directions so that ℓ = ℓ is a vector. We initialized these values

at the spacing of the grid ℓ = (δq20, δq30). We added a small

amount of white noise to the Matérn kernel to account for the

global noise level of the data.

3.2.3 Performance
Once the GP has been fitted on the training data, we can

estimate its performance on the validation data. For each of the

Nvalid. = 178 validation points, we used the GP-fitted HFB

potentials to perform a single iteration of the HFB self-

consistent loop and extract various observables from this

single iteration. Figure 2 focuses on the total HFB energy and

the zero-point energy correction ε0. Together, these two

quantities define the collective potential energy in the

FIGURE 1
Potential energy surface of 240Pu with the SkM* EDF for the
grid (q20, q30) ∈ [0 b, 300 b] × [0 b3/2, 51 b3/2] with steps δq20 = 6 b
and δq30 = 3 b3/2. The black crosses are the training points, the
white circles the validation points. Energies indicated by the
color bar are in MeV relatively to −1820 MeV.
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collective Hamiltonian (13) of the GCM. The left panel of the

figure shows the histogram of the error ΔE � E(true)
HFB − E(GP)

HFB ,

where E(true)
HFB is the result from the fully converged HFB solution

and E(GP)
HFB is the value predicted by the Gaussian process. The bin

size is 100 keV. Overall, we find that the large majority of the

error is within ±200 keV. This is a rather good result considering

the span of the PES and the fact that basis truncation errors can

easily amount to a few MeV Schunck [74].

To gain additional insight, we draw in the right panel of Figure 2

each of the validation points with a marker, the size of which is

proportional to the error of the prediction. To further distinguish

betweenmost points and the few outliers, we show in gray the points

for which the absolute value of the error is less than 500 keV and in

black the points for which it is greater than 500 keV. For the gray

points, we use 5 different marker sizes corresponding to energy bins

of 100 keV: the smaller grey symbol corresponds to an error smaller

than 100 keV, the larger one between 400 and 500 keV. Similarly,

the larger black circles have all an error greater than 500 keV and are

ordered by bins of 400 keV (there are only two points for which the

error is larger than 4MeV). Interestingly, most of the larger errors

are concentrated in the region of small elongation q20 < 80 b and

high asymmetry q30 > 30 b3/2. This region of the collective space is

very high in energy (more than 100MeV above the ground state)

and plays no role in the collective dynamics.

FIGURE 2
(A): Histogram of the error on the GP-predicted total HFB energy and zero-point energy correction across the validation points. Bin size is
100 keV. (B): Size of the error on the GP-predicted total HFB energy across the validation set. Gray circles have an error lower than 500 keV and the
size of themarkers correspond to energy bins of 100 keV. Black circles have an error greater than 500 keV and are binned by 400 keV units. Energies
indicated by the color bar are in MeV relatively to −1820 MeV.

FIGURE 3
(A): Histogram of the error on the GP-predicted values of the multipole moments. The bin size is 0.2 bλ/2 with λ = 2 (quadrupole moment) or λ =
3 (octupole moment). (B): Histogram of the relative error, in percents, on the GP-predicted values of the components of the collective inertia tensor.
The bin size is 1, corresponding to 1% relative errors.
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Note that the expectation values of the multipole moments

themselves are not reproduced exactly by the GP: strictly

speaking, the contour plot in the right panel of Figure 2 is drawn

based on the requested values of the constraints, not their actual

values as obtained by solving the HFB equation once with the

reconstructed potentials. The histogram in the left panel of

Figure 3 quantifies this discrepancy. It shows the absolute error

Δqλμ � q(true)λμ − q(GP)λμ , where q(true)λμ is the result from the fully

converged HFB solution and q(true)λμ is the value predicted by the

Gaussian process. On average, the error remains within ±0.5 b for q20
and ±0.5 b3/2 for q30, which is significantly smaller than themesh size.

The collective potential energy is only one of the two

ingredients used to simulate fission dynamics. As mentioned

in Section 2.4, see Eq. 13, the collective inertia tensor is another

essential quantity Schunck and Robledo [4]; Schunck and

Regnier [3]. In this work, we computed the collective inertia

at the perturbative cranking approximation Schunck and

Robledo [4]. Since we work in two-dimensional collective

spaces, the collective inertia tensor B has three independent

components, hereafter labeled B22, B33 and B32 = B23. Figure 3

shows the relative error on these quantities, defined as

ϵ � (B(true)
λλ′ − B(GP)

λλ′ )/B(true)
λλ′ . Overall, the error is more spread

than for the energy but rarely exceeds five percents4.

Both the total energy and the collective mass tensor are

computed from the HFB solutions. However, since the GP fit is

performed directly on the mean-field and pairing potentials, one

can analyze the error on these quantities directly. In Figure 4, we

consider two different configurations. The configuration C1 �
(q20, q30) � (198 b, 30 b3/2) is very well reproduced by the GP

with an error in the HFB energy of 4.4 keV and a relative error on

B22 of -0.43% and B22 of -0.84% only. In contrast, the

configuration C2 � (q20, q30) � (138 b, 51 b3/2) is one of the

worst possible cases, with a total error on the HFB energy of

9.0 MeV and relative errors on B22 of -71.0% and B22 of -13.7%.

For each of these two configurations, we look at the central part of

the mean-field potential for protons, the term Up = U0 − U1 of

(9b). The left side of Figure 4 shows, respectively, the actual value

of Up(r, z) across the quadrature grid (top panel) and the

difference between the true value and the GP fit (bottom

panel) for the configuration C1. The right side of the figure

shows the same quantity for the configuration C2. In all four

plots, the energy scale is in MeV; it is identical for the two panels

at the top, but it is different for the two at the bottom.

We see that for the “good” configuration C1, the error is

between −0.6 MeV and 1.0 MeV but is mostly occurring at the

surface of the nucleus and at the edges of the domain. Conversely,

the “bad” configuration C2 actually corresponds to a scissioned

configuration: the mean-field potential (upper right panel) shows

two different regions corresponding to fully separated

fragments5. Such a geometric configuration is very different

FIGURE 4
(A): Central part of the mean-field potential for protons, Up(r, z) for the configuration (q20, q30) = (198 b, 30 b3/2); (B): Error in the GP fit for that
same configuration. (C): Central part of the mean-field potential for protons, Up(r, z) for the configuration (q20, q30) = (138 b, 51 b3/2); (D): Error in the
GP fit for that same configuration. In all figures, the energy given by the error bar is in MeV. Note the much smaller energy scale for the bottom left
panel.

4 Note that B32 vanishes for axially-symmetric shapes. As a result, the
relative error can be artificially large for values of q30 ≈ 0 b3/2.

5 This particular scission configuration corresponds to what is called
cluster radioactivity Warda and Robledo [118]; Warda et al. [119];
Matheson et al. [120]. The heavy fragment is much larger than the
light one. Here, 〈AH〉 = 205.6, 〈AL〉 = 34.4.
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from the rest of the potential energy surface shown in Figure 1,

which contains mostly non-scissioned configurations. As a result,

the error in the GP fit is very large in the region between the two

fragments since it predicts this configuration to be non-

scissioned. Note that in HFBTHO, the representation of the

potentials on the quadrature points does not contain the

exponential factor exp(−βzξ2) exp(−β2⊥ξ2) which is factored in

the quadrature weights. Therefore, the large errors at the edges of

the domain, for z ≈ − 30 fm, z ≈ + 30 fm or r ≈ 18 fm are not

significant since they are entirely absorbed by this exponential

factor.

Overall, Gaussian processes seem to provide an efficient way

to predict HFB solutions across potential energy surfaces. Their

primary advantage is that they are very simple to implement,

with several popular programming environments offering ready-

to-use, full GP packages, and very fast to train (a few minutes at

most for a few hundreds of samples). As our examples suggest,

GPs are very good at interpolating across a domain where

solutions behave smoothly. In the case of PES, this implies

that the training data must not contain, e.g., scissioned and

non-scissioned configurations. More generally, it should not

feature too many discontinuities Dubray and Regnier [75].

When these conditions are met, GPs can be used to quickly

and precisely densify a PES, e.g., to obtain more precise fission

paths in spontaneous fission half-live calculations

Sadhukhan [76].

However, Gaussian processes are intrinsically limited. In our

example, we treated the value of each potential at each point of

the quadrature mesh as an independent GP. Yet, such data are in

reality heavily correlated. To incorporate such correlations

requires generalizing from scalar GPs to vector, or multi-

output GPs Bruinsma et al. [77]. In our example of nuclear

potentials, the output space would be RD with D ≈ 32,008. An

additional difficulty is related to choosing the kernel that is

appropriate to describe the correlated data and identifying

what the prior distribution should be Álvarez et al. [78]. Yet

another deficiency of standard Gaussian processes, especially in

contrast to the deep-learning techniques discussed below, is that

they are not capable to learn a latent representation of the data.

For these reasons, we consider such techniques helpful mostly to

densify existing potential energy surfaces.

4 Deep learning with autoencoders

Even though self-consistent potential energy surfaces are

key ingredients in the microscopic theory of nuclear fission

Bender et al. [79], we must overcome two significant obstacles

to generate reliable and complete PES. First, the

computational cost of nuclear DFT limits the actual

number of single-particle d.o.f. When solving the HFB

equation with basis-expansion methods, for example, the

basis must be truncated (up to a maximum of about a few

thousand states, typically), making the results strongly basis-

dependent Schunck [80]; even in mesh-based methods, the

size of the box and lattice spacing also induce truncation

effects Ryssens et al. [81]; Jin et al. [82]. Most importantly, the

number of collective variables that can be included in the PES

is also limited: in spontaneous fission calculations, which do

not require a description of the PES up to scission, up to Ncol =

5 collective variables have been incorporated Sadhukhan [76];

when simulating the PES up to scission, only 2 collective

variables are included with only rare attempts to go

beyondRegnier et al. [83]; Zhao et al. [84]. As a

consequence, the combination of heavily-truncated

collective spaces and the adiabatic hypothesis inherent to

such approaches leads to missing regions in the PES and

spurious connections between distinct channels with

unknown effects on physics predictions Dubray and

Regnier [75]; Lau et al. [85]. The field of deep learning may

offer an appealing solution to this problem by allowing the

construction of low-dimensional and continuous surrogate

representations of potential energy surfaces. In the following,

we test the ability of autoencoders—a particular class of deep

neural networks—to generate accurate low-dimensional

representations of HFB solutions.

4.1 Network architecture

The term ‘deep learning’ encompasses many different types

of mathematical and computational techniques that are almost

always tailored to specific applications. In this section, we

discuss some of the specific features of the data we seek to

encode in a low-dimensional representation, which in turn help

constrain the network architecture. The definition of a proper

loss function adapted to quantum-mechanical datasets is

especially important.

4.1.1 Canonical states
We aim at building a surrogate model for determining

canonical wavefunctions as a function of a set of continuous

constraints. Canonical states are denoted generically φ(τ)
μ (r, σ)

with r ≡ (r, z, θ) the cylindrical coordinates and σ = ±1/2 the spin.

Fully characterizing an HFB state requires the set of canonical

wavefunctions for both neutrons and protons, which are

distinguished by their isospin quantum number τ = +1/2

(neutrons) and τ = −1/2 (protons). As mentioned in Section

2, an HFB solution |Φ(q)〉 is entirely determined up to a global

phase by the set of all canonical states {φ(τ)
μ (r, σ)}μ and their

associated occupation amplitudes {v(τ)μ }μ.
In this work, we restrict ourselves to axially-symmetric

configurations. In that case, the canonical wavefunctions are

eigenstates of the projection of the total angular momentum on

the symmetry axis Ĵz with eigenvalue Ω and acquire the same

separable structure (18) as the HO basis functions,

Frontiers in Physics frontiersin.org10

Verriere et al. 10.3389/fphy.2022.1028370

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1028370


φ τ( )
μ r, σ( ) � φ τ( )

μ r, z, σ( ) e
iΛθ���
2π

√ , (24)

where φ(τ)
μ (r, z, σ) is the canonical wavefunction at θ = 0. In this

initial work, we only consider even-even nuclear systems and time-

reversal symmetric nuclear Hamiltonians. Therefore, Kramer’s

degeneracy ensures that paired particles in the canonical basis are

time-reversal partners of each other: φ(τ)
�μ (r, σ) � 2σφ(τ)*

μ (r,−σ).
This guarantees that the canonical wavefunction at θ = 0 can be

chosen purely real. Incidentally, it also means that we only need to

describe one wavefunction per pair of particles. Using these

properties, we can completely describe a canonical wavefunction

in ourmodel by only predicting a single pair of real-valued functions

(one for each spin projection σ).

As shown by Eqs 8, Eqs 9a–9c, all mean-field and pairing

potentials are functions of the Skyrme densities. The kinetic

energy density τ(r, z), spin-current tensor J(r, z), and vector

density J (r, z) involve derivatives of the quasiparticle spinors or,
in the canonical basis, of the canonical wavefunctions on the

quadrature grid Stoitsov et al. [46]. We compute these derivatives

by first extracting the coefficients α(τ)nμ of the expansion of the

canonical wavefunctions φ(τ)
μ (r, σ) in the HO basis

φ τ( )
μ r, σ( ) �∑

n

α τ( )
nμ ψn r, σ( )0α τ( )

nμ � ∫ d3r ψn* r, σ( )φ τ( )
μ r, σ( ),

(25)
using Gauss-Laguerre and Gauss-Hermite quadrature. Since all

the derivatives of the HO functions can be computed analytically,

the expansion (25) makes it very easy to compute partial

derivatives with respect to r or z, for example,

zφ τ( )
μ

zz
r, σ( ) �∑

n

α τ( )
nμ

zψn

zz
r, σ( ). (26)

4.1.2 Structure of the predicted quantity
In the ideal case, the canonical wavefunctions evolve smoothly

with the collective variables. The resulting continuity of the many-

body state with respect to collective variables is a prerequisite for a

rigorous description of the time evolution of fissioning systems, yet

it is rarely satisfied in practical calculations. We discuss below the

three possible sources of discontinuity of the canonical

wavefunctions in potential energy surfaces.

First, the canonical wavefunctions are invariant through a

global phase. Since the quantity we want to predict is real, the

orbitals can be independently multiplied by an arbitrary sign.

Even though this type of discontinuity does not impact the

evolution of global observables as a function of deformation,

it affects the learning of the model: since we want to obtain

continuous functions, a flipping of the sign would be seen by the

neural network as a discontinuity in the input data. We address

this point through the choice of the loss, as discussed in Section

4.1.3, and through the determination of the training set, as

detailed in Section 4.2.

Second, we work within the adiabatic approximation, which

consists in building PES by selecting the q.p. vacuum that

minimizes the energy at each point. When the number Ncol of

collective variables of the PES is small, this approximation may

lead to discontinuities Dubray and Regnier [75]. These

discontinuities correspond to missing regions of the collective

space and are related to the inadequate choice of collective

variables. Since we want to obtain a continuous description of

the fission path, we must give our neural network the ability to

choose the relevant degrees of freedom. This could be achieved

with autoencoders. Autoencoders are a type of neural networks

analogous to the zip/unzip programs. They are widely used and

greatly successful for representation learning—the field of

Machine Learning that attempts to find a more meaningful

representation of complex data Baldi [86]; Burda et al. [87];

Chen et al. [88]; Gong et al. [89]; Bengio et al. [90]; Zhang et al.

[91]; Yu et al. [92] and can be viewed as a non-linear

generalization of principal component analysis (PCA). As

illustrated in Figure 5, an autoencoder Ξ typically consists of

two components. The encoder E (T(φ)) encodes complex and/or

high-dimensional data T(φ) to a typically lower-dimensional

representation v(φ). The latent space is the set of all possible

such representations. The decoder D (v(φ)) takes the low-

dimensional representation of the encoder and uncompresses

it into a tensor T(ϕ) as close as possible to T(φ). Such architectures

are trained using a loss function that quantifies the discrepancy

between the initial input and the reconstructed output,

Lrec. T
(ϕ)( ) � d T(φ), T(ϕ)( ), (27)

where d (., .) defines the metric in the space of input data. We

discuss the choice of a proper loss in more details in Section 4.1.3.

FIGURE 5
An autoencoder is the association of two blocks. The first
one, on the left, compresses the input data into a lower-
dimensional representation, or code, in the latent space. The
second one, on the right, decompresses the code back into
the original input.
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Third, the evolution of the q.p. wavefunctions as a function of

the collective variables q may lead to specific values qi where the
q.p. solutions are degenerate. These degeneracies form a sub-

manifold of dimension at most D − 2, where D is the number of

collective d.o.f.s. As a consequence, they cannot appear in one-

dimensional PES: q.p. solutions with the same symmetry “cannot

cross” (the famous no-crossing rule von Neuman and Wigner

[93]). In multi-dimensional spaces, this rule does not hold

anymore: when following a closed-loop trajectory around such

a degeneracy, the sign of the q.p. wavefunctions is flipped, in a

similar manner that we flip side when winding around aMoebius

strip Teller [94]; Longuet-Higgins et al. [95]; Longuet-Higgins

[96]. In the field of quantum chemistry, such degeneracies are

referred to as diabolical points or conical intersections Domcke

et al. [97]; Larson et al. [98]. The practical consequence of conical

intersections for deep learning is that the manifold of all the

q.p. wavefunctions cannot be embedded in a D-dimensional

latent space. Such singularities can be treated in two ways: (i)

by using a latent space of higher dimension than needed or (ii) by

implementing specific neural network layers capable of handling

such cases. For now, we do not consider these situations.

4.1.3 Loss functions and metrics
As already discussed in Section 4.1.2, autoencoders are

trained through the minimization of a loss function that

contains a reconstruction term of the form (27). As suggested

by its name, this term ensures that the autoencoder can correctly

reconstruct the input tensor T(φ) from its compressed

representation. It depends on a definition for the metric d (.,

.) used to compare the different elements of the input space. Since

our canonical wavefunctions φμ are expanded on the axial

harmonic oscillator basis of Section 2.6, they are discretized

on the Gauss quadrature mesh without any loss of

information. Therefore, both the input and output tensors of

our surrogate model are a rank-3 tensor T(ϕ) ≡ T(φ) ≡ Tijk of

dimensions N⊥× Nz × 2, where i is the index of the Gauss-

Laguerre node along the r-axis, j the index of the Gauss-Hermite

node along the z-axis, and k the index of the spin component.

A standard loss used with autoencoders is the mean-square-

error (MSE). Because of the structure of our input data, see

Section 4.1.1, the MSE loss reads in our case

dMSE T(φ), T(ϕ)( ) � 1
N⊥ × Nz × 2

∑N⊥−1

i�0
∑Nz−1

j�0
∑1
i�0

T(ϕ)
ijk − T(φ)

ijk( )2.
(28)

The MSE is very general and can be thought of, quite simply, as

the mean squared “distance” between the initial and

reconstructed data. However, this generality implies that it

does not contain any information about the properties of the

data one tries to reconstruct.

Indeed, we can define a metric that is better suited to the

physics we aim to describe. Let us recall that our goal is to

compute potential energy surfaces that can be used, e.g., for

fission simulations. These PES are nothing but generator states

for the (TD)GCM mentioned in Section 2.4. The GCM relies on

the norm kernel N (q, q′) and the Hamiltonian kernel H(q, q′),
which are defined as.

N q, q′( ) � 〈Φ(q)|Φ(q′)〉, (29)
H q, q′( ) � 〈Φ(q)|Ĥ|Φ(q′)〉. (30)

Since the norm kernel involves the standard inner product in the

many-body space, it represents the topology of that space.

Therefore, it should be advantageous to use for the loss a

metric induced by the same inner product that defines the

norm kernel.

In our case, we want to build an AE where the encoder v(φ) =
E (T(φ)) compresses the single-particle, canonical orbitals {φμ}μ
associated with |Φ〉 into a low-dimensional vector v(φ) and where
the decoder T(ϕ) = D (v(φ)) is used to compute the set of

reconstructed canonical orbitals {ϕμ}μ. Most importantly, this

reconstruction should be such that the reconstructed many-body

state |Ψ〉 is as close as possible to the original state |Φ〉. In other

words, we need to use a loss that depends on the norm overlap

(between many-body states) but since we work with single-

particle wavefunctions, we must have a way to relate the

norm overlap to these s.p. wavefunctions. This can be

achieved with Equations 5.4 and (5.6) of Haider and Gogny

[99], which relate the inner product 〈Φ|Ψ〉 in the many-body

space with the inner product (overlap) 〈φμ|ϕ]〉 between the

related canonical orbitals φμ and ϕ],

〈φμ|ϕ]〉 ≡ τ
φϕ( )

μ] � â(φ)†μ , âϕ]{ } �∑
σ

∫ d3r φμ* r, σ( )ϕ] r, σ( ) (31)

and with the occupation amplitudes. However, it assumes that

the canonical wavefunctions of each many-body state are

orthogonal. This property is not guaranteed for our

reconstructed canonical wavefunctions. In fact, because of this

lack of orthogonality, the reconstructed wavefunctions cannot be

interpreted as representing the canonical basis of the Bloch-

Messiah-Zumino decomposition of the quasiparticle vacuum

and the Haider and Gogny formula cannot be applied ‘as is’.

However, we show in Supplementary Appendix S1 that it is

possible to find a set of transformations of the reconstructed

wavefunctions that allows us to define such as genuine canonical

basis.

We want the loss function to depend only on the error

associated with the reconstructed orbital ϕμ. Therefore, we

should in principle consider the many-body state |~Φμ〉 where

only the orbital φμ is substituted by its reconstruction ϕμ. We can

then compute the inner product between |Φ〉 and |~Φμ〉 using

Supplementary Appendix S1 and deduce any induced metric f

df
exact T

φ( ), T ϕ( )( ) � f
〈Φ|~Φμ〉��������
〈~Φμ|~Φμ〉

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (32)
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However, computing this metric is too computationally involved

to be carried out explicitly for each training data at each epoch.

Instead, we keep this metric for comparing a posteriori the

performance of our model.

Instead of explicitly determining dfexact(T(φ), T(ϕ)), we focus
on reproducing canonical orbitals using the metrics of the one-

body Hilbert space. In practice we considered the distance noted

d(0)◦ that is induced by the inner product between normalized

functions in the one-body Hilbert space, that is,

d 0( )
◦ φ, ϕ( ) ≡ 〈φ|�����

〈φ|φ〉√ − 〈ϕ|�����
〈ϕ|ϕ〉√( ) |φ〉�����

〈φ|φ〉√ − |ϕ〉�����
〈ϕ|ϕ〉√( ),

(33)
which is nothing but

d 0( )
◦ φ, ϕ( ) �∑

σ

∫ d3r φ r, σ( ) − ϕ r, σ( )∣∣∣∣ ∣∣∣∣2, (34)

where the φ(r, σ) and ϕ(r, σ) have been normalized. Since all

wavefunctions are discretized on the Gauss quadrature mesh, this

distance reads

d 0( )
◦ φ,ϕ( ) � ∑

n⊥nznσ

Wn⊥nz T
φ( )

n⊥nznσ − T
ϕ( )

n⊥nznσ

∣∣∣∣∣∣ ∣∣∣∣∣∣2, (35)

where the weights W are given by

Wn⊥nz �
wGL

n⊥

2b2⊥
× 2π ×

wGH
nz

bz
. (36)

These weights, which depend on the indices n⊥ and nz in the

summation, are the only difference between the squared distance

loss (Eq. 35) and the MSE loss (Eq. 28). Although the distance

(Eq. 35) is norm-invariant6, it still depends on the global phase of

each orbital. We have explored other possible options for the loss

based on norm- and phase-invariant distances; see

Supplementary Appendix S2 for a list. However, we found in

our tests that the distance d(0)◦ systematically outperformed the

other ones and, for this reason, only show results obtained with

this one.

4.1.4 Physics-informed autoencoder
From a mathematical point of view, deep neural networks

can be thought of as a series of compositions of functions. Each

composition operation defines a new layer in the network.

Networks are most often built with alternating linear and

nonlinear layers. The linear part is a simple matrix

multiplication. Typical examples of nonlinear layers include

sigmoid, tanh, Rectified Linear Unit (ReLU) functions. In

addition to these linear and nonlinear layers, there could be

miscellaneous manipulations of the model for more specific

purposes, such as adding batch normalization layers Ioffe and

Szegedy [100], applying dropout Srivastava et al. [101] to some

linear layers, or skip connection He et al. [102] between layers.

Our data is a smooth function defined over a N⊥× Nz = 60 ×

40 grid and is analogous to a small picture. For this reason, we

chose a 2D convolutional network architecture. Convolutional

layers are popular for image analysis, because they incorporate

the two-dimensional pixel arrangement in the construction of the

weights of the network. These two-dimensional weights, or

filters, capture local shapes and can model the dependent

structure in nearby pixels of image data. Given a 2D m × m

input array, a 2D filter F is a n × nmatrix, usually with n≪ m. If

we note In the space of n × n integer-valued matrices, then the

convolutional layer C is an operation of the C: (In, In) → N that

is applied to all pairs (F, C) where C is any n × n chunk of the

input image; see Figure 6 for an example. This way, the resulting

output summarizes the strength and location of that particular

filter shape within the image. As the model gets trained, the filter

parameters are fitted to a shape that is learned to be important in

the training data. Convolutional neural network are very effective

for image analysis and are currently widely used Krizhevsky et al.

[103]; Zeiler and Fergus [104]; Sermanet et al. [105]; Szegedy

et al. [106].

In this work, we used the Resnet 18 model as our encoder and

constructed the decoder from a transposed convolution

architecture of the Resnet 18. The Resnet 18 model was first

introduced by He et al. as a convolutional neural network for

image analysis He et al. [102]. It was proposed as a solution to the

degradation of performance as the network depth increases.

Resnet branches an identity-function addition layer to sub-

blocks (some sequential layers of composition) of a given

network. While a typical neural network sub-block input and

output could be represented by x and f(x), respectively, a Resnet

sub-block would output f(x) + x for the same input x, as in

Figure 2 of He et al. [102]. This architecture is called ‘skip

FIGURE 6
Schematic example of a convolutional layer. For any 2 × 2
chunk C of the input image on the left, this convolutional layer
performs the point-wise multiplication of C with the filter F
followed by the addition of all elements. This compresses the
initial chunk of the image into a single integer.

6 A distance d(u, v) is norm-invariant if for any positive real number α and
β, we have d(αu, βv) = d(u, v).

Frontiers in Physics frontiersin.org13

Verriere et al. 10.3389/fphy.2022.1028370

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1028370


connection’ and was shown to be helpful for tackling multiple

challenges in training deep neural network such as vanishing

gradient problem and complex loss function Li et al. [107]; He

et al. [102]. Since then, the Resnet architecture has been widely

successful, often being used as a baseline for exploring new

architectures Zhang et al. [108]; Radosavovic et al. [109] or as

the central model for many analyses Cubuk et al. [110]; Yun et al.

[111]; Zhang et al. [112]. In a few cases, it was also combined with

autoencoders for feature learning from high-dimensional data

Wickramasinghe et al. [113].

For the decoder part, we designed a near-mirror image of the

encoder using transposed convolution. Transposed convolution

is essentially the opposite operation to convolution in terms of

input and output dimensions. Here the meaning of transpose

refers to the form of the filter matrix when the convolution layer

is represented by a 1D vector input obtained from linearizing the

2D input. Note that the mirror-located filters in the decoder are

independent parameters and not the actual transposed filter

matrix of the encoder. Such a construction ensures

symmetrical encoder and decoder models, making the decoder

model close to the inverse shape of the encoder model. Figure 7

illustrates the operation: one input value is multiplied by the

entire kernel (filter) and is added to the output matrix at its

corresponding location. The corresponding output location for

each colored input number are color-coded and show how the

addition is done.

The first and the last layer of the Resnet architecture are

mostly for resizing and were minimally modified from the

original Resnet 18 model since the size of our input data is

significantly smaller than typical image sizes used for Resnet

image classification analyses. We also modified the number of

input channels of the first layer of the encoder to be 2 (for each of

the spin components of the nuclear wavefunction) instead of the

usual number 3 (for the RGB colors of colored images) or 1 (for

black-and-white images). The spin components are closely

related to each other with covariance structure, similar to how

colors interact within an image. Therefore, we treat a pair of spin

components as a single sample and treat each component as an

input channel. The same applies to the output channel of the

decoder.

The full network is represented schematically in Figure 8.

Parametric Rectified Linear Unit, or PRELU, layers were added to

impose nonlinearity in the model He et al. [114]. PRELU layers

are controlled by a single hyperparameter that is trained with the

data. Batch normalization is a standardizing layer that is applied

to each batch by computing its mean and standard deviation. It is

known to accelerate training by helping with optimization steps

Ioffe and Szegedy [100]. The average pooling layer (bottom left)

averages each local batch of the input and produces a downsized

output. The upsampling layer (top right) upsamples the input

using a bilinear interpolation.

4.2 Training

As mentioned in Section 4.1.4, the loss is the discrepancy

between the input of the encoder and the output of the decoder.

The minimization of the loss with respect to all the model

parameters w, such as the filter parameters, is the training

process. We used the standard back-propagation algorithm to

efficiently compute the gradient of the loss function with respect

to the model parameters. The gradient computation is done with

the chain rule, iterating from the last layer in the backward

direction. We combined this with the mini-batch gradient

descent algorithm: ideally, one would need the entire dataset

to estimate the gradient at the current model parameter value.

However, with large datasets, this becomes computationally

inefficient. Instead we use a random subset of the entire data,

called mini-batch, to approximate the gradient, and expedite the

convergence of the optimization. For each mini-batch, we update

each parameter w by taking small steps of gradient descent,

wt+1 � wt − α zL
zwt

. At step t, or at tth mini-batch, the average loss

FIGURE 7
Schematic illustration of the 2D-transposed convolution. Each input value, e.g., 55, 57, etc., is multiplied by the entire kernel resulting in a 3 × 3
matrix. These matrices are then added to one another in a sliding and overlapping way.
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L and the gradient with respect to current model parameter wt

are computed. Then α-sized gradient descent step is taken to

update the model parameters. Instead of using the current

gradient for the update, one can use a weighted average of

past gradients. We employed the well-known Adam

algorithm, which uses the exponential moving average of

current and past gradients Kingma and Ba [115].

Iterating over the entire dataset once, using multiple mini-

batches, is called an epoch. Typically a deep neural network needs

hundreds to thousands of epochs for the algorithm to converge.

Parameters such as the batch size or learning rate, the parameters

of the optimizer itself (Adam’s or other), and the number of

epochs are hyper-parameters that must be tuned for model

fitting. For our training, we used the default initialization

method in PyTorch for the model parameters. The linear

layers were initialized with a random uniform distribution

over [ − 1/k, 1/k], where k is the size of the weight. For

example, if there are 2 input channels and 3 × 3 convolution

filters are used, k = 2 × 3 × 3. PRELU layers were initialized with

their default PyTorch value of 0.25. We proceeded with mini-

batches of size 32 with the default β1 = 0.9, β2 = 0.999 and ϵ = 10–8:

all these numbers refer to the PyTorch implementation of the

Adam’s optimizer. For α, we used 0.001 as starting value and used

a learning rate scheduler, which reduces the α value by a factor of

0.5 when there is no improvement in the loss for 15 epochs. After

careful observation of the loss curves, we have estimated that at

least 1,000 epochs are needed to achieve convergence.

To mitigate the problem of the global phase invariance of the

canonical wavefunctions discussed in Section 4.1.2, we doubled

the size of the dataset: at each point q of the collective space (=the
sample), we added to each canonical wavefunction φμ(r, σ) the
same function with the opposite sign − φμ(r, σ). The resulting

dataset was then first split into three components, training,

validation and test datasets, which represent 70%, 15%, and

15% of the entire data respectively. Training data is used for

minimizing the loss with respect to the model parameters as

explained above. Then we choose the model at the epoch that

performs the best with the validation dataset as our final model.

Finally, the model performance is evaluated using the test data.

4.3 Results

In this section, we summarize some of the preliminary results

we have obtained after training several variants of the AE. In

Section 4.3.1, we give some details about the training data and the

quality of the reconstructed wavefunctions. We discuss some

possible tools to analyze the structure of the latent space in

Section 4.3.2. In these two sections, we only present results

obtained for latent spaces of dimension D = 20. In Section

4.3.3, we use the reconstructed wavefunctions to recalculate

HFB observables with the code HFBTHO. We show the

results of this physics validation for both D = 20 and D = 10.

4.3.1 Performance of the network
Figure 9 shows the initial potential energy surface in 98Zr

used in this work. Calculations were performed for the SkM*

parametrization of the Skyrme potential with a surface-volume,

density-dependent pairing force with V(n)
0 � −199.69 MeV.fm−3,

V(p)
0 � −223.59 MeV.fm−3 and an “infinite” pairing cutoff. The

FIGURE 8
Representation of ourmodified Resnet 18 architecture for the
encoder (A) and the decoder (B). Large numbers on the left of each
side label the different layers. Numbers such as 64, 128, etc. refer
to the size of the filer; see text for a discussion of some of the
main layers.
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basis was identical for all points with oscillator length b0 =

1.971 fm, deformation β0 = 0.3 and number of shells Nbasis =

20. The PES contains 548 HFB calculations with constraints on

the axial quadrupole, q20 � 〈Q̂20〉, and axial octupole moment,

q30 � 〈Q̂30〉. The mesh was: − 12.5 b ≤ q20 ≤ 25.0 b with steps

δq20 = 1 b and 0.0 b3/2 ≤ q30 ≤ 3.0 b3/2 with step δq30 = 0.125 b3/2.

The black dots in Figure 9 indicate the location of the converged

solutions. For each solution, the np = 60 highest-occupation

proton and nn = 87 highest-occupation neutron canonical

wavefunctions were used as training data for the network7.

For each of the losses discussed in Supplementary Appendix

S2, we trained the AE with the slightly modified Resnet

18 architecture described in Section 4.1.4. It is important to

keep in mind that the value of these losses should not be

compared with one another. The only rigorous method to

compare the performance of both networks would be to

compute the many-body norm overlap across all the points in

each case—or to perform a posteriori physics validation with the

reconstructed data, as will be shown in Section 4.3.3.

To give an idea of the quality of the AE, we show in Figure 10

one example of the original and reconstructed canonical

wavefunctions. Specifically, we consider the configuration (q20,

q30) = ( − 7.0 b, − 0.25 b3/2) in the collective space and look at the

neutron wavefunction with occupation number v2μ � 0.945255,

which is located near the Fermi surface. This example was

obtained for an AE trained with the d(0)o loss and compressed

to D = 20. The figure shows, in the left panel, the logarithm of the

squared norm of the original wavefunction across the quadrature

mesh, ln |φμ|2 ≡ ln |T(φμ)
n⊥nznσ |2, in the middle panel, the same

quantity for the reconstructed wavefunction, and in the right

panel the logarithm of the absolute value of the difference

between the two. On this example, the AE can reconstruct the

wavefunction with about 3% error.

4.3.2 Structure of the latent space
One of the advantages of AEs is the existence of a low-

dimensional representation of the data. In principle, any visible

structure in this latent space would be the signal that the network

has properly learned, or encoded, some dominant features of the

dataset. Here, our latent space has dimension D = 20. This means

that every canonical wavefunction, which is originally a matrix of

size n = N⊥× Nz, is encoded into a single vector of size D. From a

mathematical point of view, the encoder is thus a function

Ê: Rn → RD

φ ⟼ v � Ê φ( ) (37)

Let us consider some (scalar) quantity P associated with the

many-body state |Φ(q)〉 at point q. Such a quantity could be an

actual observable such as the total energy but it could also be an

auxiliary object such as the expectation value of the multipole

moment operators. In fact, P could also be a quantity associated

with the individual degrees of freedom at point q, for example the

q.p. energies. In general terms, we can think of P as the output

value of the function

P̂: Rn → R

φ ⟼ P � P̂ φ( ) (38)

For example, if P represents the s.p. canonical energies, then the

function P̂ is the one that associates with each canonical

wavefunction its s.p. energy. Therefore, for every canonical

wavefunction, there is a different value of P. Conversely, if

P � 〈Q̂20〉, there is a single value for all the canonical

wavefunctions at point q. Since there is a vector in the latent

space for each canonical wavefunction, and there is also a value

for the quantity P for each such function, we can then define the

new function P̂ acting on vectors of the latent space and

defined as

P̂: RD → R

v ⟼ P � P̂ v( ) (39)

and it is straightforward to see that: P̂ � P̂◦Ê. Our goal is now to

try to analyze where various quantities P are located in the latent

space and whether one can identify some specific features of these

locations.

Since we have a total of nt = 147 wavefunctions for each of the

Np = 552 points in the collective space, the encoder yields a set of

nt × Np vectors of dimension D. This means that, in the latent

space, every quantity P above is also represented by a cloud of

FIGURE 9
Potential energy surface of 98Zr in the (q20, q30) plane.
Converged HFBTHO solutions are represented by black dots.
Energies given by the color bar are in MeV relatively to the ground
state.

7 Since time-reversal symmetry is conserved, the Fermi energy is located
around states with indices μp ≈ 20 and μn ≈ 29. Therefore, our choice
implies that in our energy window, about 1/3 of all states are below the
Fermi level and about 2/3 of them are above it.
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nt ×Np such vectors. This is obviously impossible to visualize. For

this reason, we introduce the following analysis. First, we perform

a linear regression in the D-dimensional latent space of a few

select quantities of interest P, that is, we write

P � α · v + b, (40)

where α is a D-dimensional vector, v is the vector associated with
the quantity P in the latent space and b ∈ R. The unit vector u =

α/‖α‖ can be interpreted as representing the leading direction in

the latent space. The quantity u = u ·v is a scalar which we obtain

easily from the result of the linear regression. We can thus plot

the function P: u↦P(u). Examples of such functions are shown in

Figure 11. Each point in the figures represents the value P � P̂(v)
of some characteristic quantity at point u = u ·v.

The three cases shown in Figure 11 illustrate that the network

has not always identified relevant features. The case of Ω, middle

panel, is the cleanest: there is a clear slope as a function of u: if one

sets u = 1, for example, then only values of 7/2 ≤ Ω ≤ 15/2 are

possible. Conversely, the AE has not really discovered any feature

in the neutron Fermi energy (right panel): for any given value of

u, there is a large range of possible values of Fermi energies. In the

case of the total energy (left panel), the situation is somewhat

intermediate: there is a faint slope suggesting a linear dependency

of the energy as a function of u.

4.3.3 Physics validation
The results presented in the Section 4.3.1 suggest the AE has

the ability to reproduce the canonical wavefunctions with good

precision. To test this hypothesis, we recalculated the HFB

solution at all the training, validation and testing points by

substituting in the HFBTHO binary files the original

canonical wavefunctions by the ones reconstructed by the AE.

Recall that only the lowest nt wavefunctions with the largest

occupation were encoded in the AE (nn = 87 for neutrons and

np = 60 for protons); the remaining ones were unchanged. In

practice, their occupation is so small that their contribution to

nuclear observables is very small (< 10 keV for the total energy,

for example).

FIGURE 10
(A): Contour plot of the logarithm of the squared norm of the neutron canonical wavefunctionwith occupation number v2μ � 0.945255 (without
the exponential factor). Middle: Same for the reconstructed wavefunction. (B): Logarithm of the difference between the squared norm of the original
and reconstructed wavefunctions.

FIGURE 11
One-dimensional projections of the D-dimensional linear fit for the total energy EHFB (A), the projection Ω of the canonical state (B) and the
neutron Fermi energy λn (C). Each point represents one of these quantities for a canonical wavefunction μ and a point q in the collective space.
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Figure 12 shows the error on the potential energy across the

(q20, q30) collective space obtained with the reconstructed

canonical wavefunctions for latent spaces of dimension D =

20 (left) and D = 10 (right). In each case, we only show

results obtained when using the d(0)o loss, which gives the best

results. The black crosses denote the location of all the original

points; the white circles show the location of the validation

points. Overall, the results are very encouraging. In both

cases, most of the error is concentrated near regions of the

PES where there are discontinuities (hence, the lack of

converged solutions). Everywhere else, the error is small and

mostly randomly distributed across the PES, that is, it is not

systematically larger at the validation points. As expected, the

quality of the reconstruction is a little worse whenD = 10: one can

notice about a dozen points for which the error is significantly

larger, in absolute value. Examples include (q20, q30) = ( − 5.0 b,

1.125 b3/2) or (q20, q30) = ( + 8.0 b, 2.5 b3/2) in the validation set,

and (q20, q30) = (0.0 b, 1.75 b3/2) or the region around 1 b ≤ q20 ≤
4 b and 1.5 b3/2 ≤ q30 ≤ 2.25 b3/2 in the training set. These may

suggest that forD = 10, the loss may not have fully converged yet.

Because of the existence of discontinuities near these points, this

could also be the manifestation that our continuous AE cannot

build a continuous representation of the data everywhere.

However, the fact that an increase of the compression by a

factor 2, fromD = 20 toD = 10, does not substantially degrade the

performance of the AE is very promising.

The two histograms in Figure 13 give another measure of the

quality of the AE. The histogram in the left shows the distribution

of the error on the HFB energy for two sizes of the latent space,

D = 20 and D = 10. For the D = 20 case, the mean error is ΔE �

FIGURE 12
(A): Potential energy surface in the (q20, q30) plane for 98Zr obtained after replacing the first nn = 87 and np = 60 highest-occupation canonical
wavefunctions by their values reconstructed by the AE for a latent space of dimensionD = 20. The black dots show the location of the training points
only, the white circles the location of the validation points. (B): same figure for a latent space of dimensionD= 10. For both figures, energies are given
in MeV.

FIGURE 13
(A): Histogram of the difference in total HFB energy between the original HFBTHO calculation and the result obtained by computing the energy
in the canonical basis with the reconstructed wavefunctions (see text for details). Calculations were performed both for a D = 20 and D = 10 latent
space. (B): Similar histogram for the expectation value of the axial quadrupole moment.
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104 keV and the standard deviation σE = 89 keV. These numbers

increase a little bit in the case of D = 10: ΔE � 122 keV and σE =

153 keV. To better estimate the quality of the AE, we applied the

same Gaussian process technique as described in Section 3 to the

dataset in 98Zr. Since GPs are interpolators and reproduce the

training data, we can only test them across the validation set,

which, in the case of 98Zr contains only 110 configurations. After

computing the energy with the HFB potentials obtained from the

GP across this set, we obtain: ΔE(GP) � −32 keV and σ(GP)E � 225

keV. This is comparable to what the AE predicts. As mentioned

before, it is important to bear in mind that, for the AE, the points

with the higher error ΔE < − 150 keV or ΔE > 250 keV do not

correspond to testing points only.

The histogram on the right shows the distribution of the

error for q20, in units of b. Here, the mean and standard deviation

of the error are: Δq20 � 6.8 mb and σq = 33.0 mb for D = 20, and

Δq20 � −7.4mb and σq = 48.2 mb forD = 10. For comparison, the

results obtained (across the validation set only) with the GP are:

Δq20 � −12.7 mb and σq = 68.3 mb. Once again, the AE performs

just as well, if not slightly better, than the GP fit.

5 Conclusion

Nuclear density functional methods are amenable to large-

scale calculations of nuclear properties across the entire chart of

isotopes relevant for, e.g., nuclear astrophysics simulations or

uncertainty quantification. However, such calculations remain

computationally expensive and fraught with formal and practical

issues associated with self-consistency or reduced collective

spaces. In this article, we have analyzed two different

techniques to build fast, efficient and accurate surrogate

models, or emulators, or DFT objects.

We first showed that Gaussian processes could reproduce

reasonably well the values of the mean-field and pairing-field

potentials of the HFB theory across a large two-dimensional

potential energy surface. The absolute error on the total

energy was within ±100 keV and the relative errors on the

collective inertia tensor smaller than 5%. However, GPs

require the training data to be “smoothly-varying”,

i.e., they should not include phenomena such as nuclear

scission or, more generally, discontinuities in the PES. It is

well known that GPs are not reliable for extrapolation: such a

technique can thus be very practical to densify (=interpolate)

an existing potential energy surface but must not be applied

outside its training range.

Our implementation of standard versions of GPs is fast and

simple to use, but it misses many of the correlations that exist

between the values of the HFB potentials on the quadrature

grid: (i) all components of the full Skyrme mean field (central,

spin-orbit, etc.) are in principle related to one another through

their common origin in the non-local one-body density matrix;

(ii) the correlations between the value of any given potential at

point (r, z) and at point (r′, z′) were not taken into account; (iii)

the correlations between the variations of the mean fields at

different deformations was also neglected. Incorporating all

these effects may considerably increase the complexity of the

emulator. In such a case, it is more natural to directly use deep-

learning techniques. In this work, we reported the first

application of autoencoders to emulate the canonical

wavefunctions of the HFB theory. Autoencoders are a form

of deep neural network that compresses the input data, here the

canonical wavefunctions, into a small-dimensional space called

the latent representation. The encoder is trained simultaneously

with a decoder by enforcing that the training data is left

invariant after compression followed by decompression. In

practice, the measure of such “invariance” is set by what is

called the loss of the network. We discussed possible forms of

the loss that are best adapted to learning quantum-mechanical

wavefunctions of many-body systems such as nuclei. We

showed that such an AE could successfully reduce the data

into a space of dimension D = 10 while keeping the total error

on the energy lower than ΔE = 150 keV (on average). The

analysis of the latent space revealed well-identified structures in

a few cases, which suggests the network can learn some of the

physics underlying the data. This exploratory study suggests

that AE could serve as reliable canonical wavefunctions

generators. The next step will involve learning a full

sequence of such wavefunctions, i.e., an ordered list, in order

to emulate the full HFB many-body state.
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