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Optoacoustic (OA, photoacoustic) imaging capitalizes on the low scattering of

ultrasound within biological tissues to provide optical absorption-based

contrast with high resolution at depths not reachable with optical

microscopy. For deep tissue imaging applications, OA image formation

commonly relies on acoustic inversion of time-resolved tomographic data.

The excitation of OA responses and subsequent propagation of ultrasound

waves can be mathematically described as a forward model enabling image

reconstruction via algebraic inversion. These model-based reconstruction

methods have been shown to outperform alternative inversion approaches

and can further render OA images from incomplete datasets, strongly distorted

signals or other suboptimally recorded data. Herein, we provide a general

perspective on model-based OA reconstruction methods, review recent

progress, and discuss the performance of the different algorithms under

practical imaging scenarios.
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1 Introduction

Development, implementation and optimization of image formation algorithms is

essential for advancing the performance of biomedical imaging modalities [1–3].

Optoacoustic (OA, photoacoustic) imaging has experienced an unprecedented growth

in the last 10–15 years to become a powerful technology covering a large range of spatial

and temporal imaging scales and providing otherwise-unavailable functional and

molecular information deep from living tissues [4–8]. Rapid evolution of the OA

technology has resulted in a myriad of embodiments based on different light delivery

and ultrasound (US) detection methods [9–12]. Various types of sensors with detection

bandwidth tailored to the desired resolution-depth range [13–16] and acquisition

geometries (i.e. spatial distribution of US detectors relative to the sample) have

further been developed [17–22]. Many of these systems have found use in biomedical

research studies and clinical applications [23–28]. The great diversity of possible hardware

designs represents an important advantage of the OA technology [29]. On the other hand,
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significant variability of image formation approaches,

independently developed for each particular configuration

[30–33], may compromise reproducibility and reliability of the

reported experimental results thus hindering the development of

standardized methodologies enabling accurate quantification of

bio-markers [34].

OA is inherently a tomographic imaging modality. This

implies that OA images can only be accurately reconstructed

if signals are acquired at a set of locations enclosing the sample

with sufficient angular coverage [35–37]. OA excitation is mainly

performed with short (10−10–10−7 s) light pulses. In this case, the

collected signals around the sample correspond to a solution of

an initial value problem expressed as a Radon-type transform

that depends on the arrangement and shape of US sensors

[38–40]. Much like for x-ray CT, analytical inversion can be

performed by means of a filtered back-projection (FBP) formula,

which in practice is discretized to reconstruct an image from a

finite number of signals [41–44]. However, accurate image

reconstruction implies a more complex representation of the

physical problem. The negative impact of insufficient spatial

sampling and noise in tomographic imaging with FBP algorithms

has long been recognized [45]. Note that the OA forward model

corresponds to a different type of transform than that in x-ray

CT, but the term FBP is also used in the OA literature as it is

conceptually equivalent. The shape and detection bandwidth of

the sensors as well as acoustic propagation effects cannot

accurately be accounted for by FBP formulas, which have only

been developed for specific acquisition or scanning geometries.

Model-based (MB) inversion schemes, which determine the

desired solution (reconstructed image) via minimization of a

cost function, are known to overcome the major limitations of

FBP algorithms [39, 46–48]. Apart from the so-called data fidelity

term, the cost function can additionally include regularization

terms penalizing unlikely solutions given the available a priori

knowledge on the sample [49–56]. Also, the solution can be

constrained e.g. not to have negative values having no physical

meaning [57–59]. Another important aspect to consider is the

fact that the admissible solutions of the tomographic inversion

problem can be restricted by expressing the images as a

combination of a set of basis functions. Proper selection of

these functions along with regularization terms enable

exploiting compressed-sensing-based concepts to reconstruct

an image from a relatively low number of signals [60–62].

Generally, MB reconstruction provides a flexible framework

for the reconstruction of OA images and is generally

applicable for any physical configuration.

In this review article, we provide a practical guide for MB

reconstruction in OA imaging. We focus on describing the

enhanced performance with respect to alternative

reconstruction algorithms rather than on the mathematical

foundations, which are briefly discussed without loss of

generality for short-pulsed excitation. We further show that

MB reconstruction enables capabilities unattainable with

conventional reconstruction approaches, such as super-

resolution imaging beyond the acoustic diffraction barrier,

image reconstruction using a single detector or high-

resolution imaging through the skull bone.

2 The optoacoustic forward model

In practice, MB reconstruction is performed by considering a

discrete-to-discrete linear model mapping a finite-dimensional

representation of the optical absorption distribution to the

collected signals at a set of locations and time points. The

mathematical derivation of the OA forward model depends

on the temporal profile of the light beam and can be done in

the time or frequency domains [63–65]. Without loss of

generality, we briefly describe below the time-domain model

for standard short-pulsed excitation verifying the so-called stress

and thermal confinement conditions [66] (Figure 1A). In this

case, the temporal profile of the light beam can be approximated

as a Dirac delta δ(t) and optical absorption results in an initial

pressure rise p0(r) � Γ(r)H(r), being Γ(r) the dimensionless

Grueneisen parameter and H(r) the energy being thermalized

per unit volume. Propagation of an US wave optoacoustically

generated in soft tissues is mathematically described by [67]

z2p(r, t)
zt2

− c(r)2ρ(r)∇ · ( 1
ρ(r)∇p(r, t)) � Γ(r)H(r) zδ(t)

zt
,

(1)
being p(r, t) the acoustic pressure field, c(r) the speed of

sound and ρ(r) the mass density of the medium. Equation 1

corresponds to a wave equation with a well-defined source term

that can be expressed as an initial value problem [67], hence a

mathematical solution exists. Generally, the pixels (or voxels) of a

Cartesian grid enclosing the sample are considered to build the

basis functions used to approximate H(r) e.g. via weighted

interpolation (Figure 1B) [68, 69], i.e., Eq. 1 is approximated by

z2p(r, t)
zt2

− c(r)2ρ(r)∇ · ( 1
ρ(r)∇p(r, t)) ≈

zδ(t)
zt

∑N

i�1p0,iki(r),
(2)

where p0,i is the initial pressure at the center of the ith voxel and

ki(r) is the interpolation function. The solution of Eq. 2 can be

expressed as

p(r, t) � ∑N

i�1p0,ipi(r, t), (3)

where pi(r, t) is the generated pressure field for a unit initial

pressure rise at the ith voxel. An analytical expression of pi(r, t)
can be derived in some cases, e.g. for a uniform non-attenuating

acoustic medium [48]. Note that soft tissues are modelled as a

heterogeneous fluid in Eq. 1. The wave equation can be

significantly more complex for hard (solid) and/or absorbing

tissues such as the skull bone [70]. However, an initial value
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problem can still be defined, thus the time-resolved pi(r, t)
signals for all voxels can be obtained e.g. with numerical

simulations [30]. Alternatively, these can be measured

experimentally by scanning a sub-resolution absorber [71].

This approach further enables accounting for the response of

the US transducer(s) used to collect the OA signals. In this case,

pi(r, t) corresponds to the collected voltage signals rather than

the pressure field, which are affected by the transducer response

and can also be theoretically modelled [72–74]. The discrete-to-

discrete OA forward model is built from the values of pi(r, t) for
the positions of the transducer(s) and the sampling instants.

Specifically, p(r, t) at these positions and instants, expressed as a

column vector p, is given as a function of p0,i for the voxels of the

grid, also expressed as a column vector p0, as

p � Ap0. (4)

The model matrix A represents the discrete-to-discrete OA

forward model. The columns of this matrix correspond to the

pi(r, t) signals for each voxel of the grid (Figure 1C). If the

reconstruction grid is selected to match the scanning geometry,

translational and rotational scanning symmetries as well as axial

symmetries of the transducer surface can be considered to build

the model matrix [75–77]. In this manner, the pi(r, t) signals for
all positions can be derived from that corresponding to a

reference position. This facilitates storage of the model matrix

in memory, which if often challenging, particularly for three-

dimensional imaging.

3 The inverse problem

The OA forward model enables calculating the theoretical

pressure (or transducer) signals as a linear function of the initial

pressure distribution (sources). MB OA image reconstruction

corresponds to the inverse problem aiming at estimating the

initial pressure rise from the acquired signals. This is generally

formulated as an optimization-based problem involving

minimizing the energy functional defined as

FIGURE 1
Time-domain optoacoustic (OA) forward model for short-pulsed excitation. (A) Schematic representation of the excitation of ultrasound (US)
waves with light. An example of time-resolved OA signal is shown. For a uniform acoustic medium with a defined speed of sound, the time-of-flight
linearly scales with the distance to the measuring location. (B) Discretization of the OA image by considering the initial pressure at a define grid of
points. (C)Discrete-to-discrete OA forward model expressed in a matrix formmapping the initial pressure expressed as a column vector to the
measured pressure at different time points also expressed as a column vector. The columns of the model-matrix correspond to the pressure signals
for a unit initial pressure at the corresponding pixel (or voxel). Note that only one collected signal is shown and the model-matrix is generally built by
considering multiple measuring locations.
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p0,sol � argmin
p0 (≥ 0)

{����pm − Ap0

����2 + λR(p0)}, (5)

where pm are the measured signals expressed in a vector form.

The first term of Eq. 5 corresponds to the data fidelity term

driving the solution towards the observed data. R(p0)
corresponds to the regularization term, being λ the

regularization parameter. Optionally, p0 can be

constrained e.g. not to have negative values (p0 ≥ 0) in

order to avoid solutions with no physical meaning [57].

Regularization is generally included in the inversion

problem to reduce the effects of noise and data

incompleteness and/or to incorporate prior knowledge on

the image. The simplest and most standard regularization

strategy to stabilize the inversion, known as Tikhonov

regularization, is based on the L2 norm of the image,

i.e., R(p0) � ‖p0‖2. In this case, the unconstrained solution

of Eq. 5 is analytically expressed as

p0,sol � (ATA + λI)−1ATpm, (6)

being AT the transpose of the model matrix. Note, however,

that Eq. 6 is impractical in most cases due to the large size of

the model matrix, particularly for high-resolution three-

dimensional imaging. Thereby, the inversion problem in

Eq. 5 is solved iteratively e.g. with algorithms based on

steepest descent or conjugate gradient methods [58]. The

matrix-vector multiplications involving the model matrix

and its transpose are the most computationally demanding

operations in iterative algorithms. In some cases, the model

matrix cannot be stored in memory and the elements of the

model matrix are calculated in each iteration to perform these

operations. Graphics processing unit (GPU)-based

parallelization of these operations is then essential to

accelerate the inversion process. For this, efficient methods

for on-the-fly calculation of the elements of the model matrix

e.g. based on look-up tables are needed, since GPU-storage of

the entire matrix is generally not possible [55, 74].

If a very large regularization term (strong Tikhonov

regularization) is chosen to suppress artifacts and enhance

signal-to-noise ratio (SNR), the term λI becomes dominant

over ATA, thus in Eq. 6 can be approximated as

p0,sol � ATpm. (7)

AT is the algebraic adjoint (transpose) of the discrete-to-

discrete OA forward model. The adjoint of the continuous

operator can also be calculated prior to discretization, which

enables exploiting fast wave propagation solvers [78]. Equation 7

can be interpreted as a model back-projection (MBP, non-

iterative) reconstruction approach associated to the discrete-

to-discrete model and enabling fast reconstructions. It can

also be regarded as a cross-correlation with the theoretical

signals generated by each voxel and can be interpreted in

terms of a matched filter [79].

4 Outperforming filtered back-
projection

MB (iterative) reconstruction methods were used to

reconstruct the first x-ray CT images. However, they were

quickly replaced by less complex FBP algorithms and were

not implemented in commercial scanners until around

10 years ago [80]. The wide use of FBP algorithms in x-ray

CT fostered the development of similar formulas for OA

tomography [41, 42, 81, 82] whose discretized versions are

still in common use. Particularly, GPU-based implementations

of FBP algorithms enable real-time preview of three-dimensional

data, which is essential for the clinical translation of the OA

technology [83].

Sparse spatial sampling of signals is common in OA

tomography since transducer arrays are routinely used for

real-time imaging [84]. Indeed, ad-hoc design of US arrays

with optimized OA performance generally focuses on

increasing the angular coverage to avoid limited-view

effects rather than on reducing the inter-element pitch

[85]. Much like in x-ray CT, reduced spatial sampling is

known to result in streak-type artefacts in the images.

These artefacts, illustrated in Figure 2A, are a consequence

of signals from strong absorbers such as blood vessels being

back-projected into arcs, which average out for a sufficient

number of measuring locations but can lead to strong noise in

the images if the number of collected signals is relatively small.

The capability of MB OA algorithms to mitigate this and other

sources of noise has been demonstrated with the development

of the first iterative algorithms [46]. Figure 2B shows an

example of a cross-sectional MB algorithm significantly

reducing the noise in the OA images of the mouse brain

with respect to those obtained with FBP [86]. Iterative MB

reconstruction could also clearly enhance the performance of

full-body three-dimensional small-animal imaging systems

[48]. In the example shown in Figure 2C,

OA images reconstructed with FBP are clearly afflicted

by noise even though a large number of signals (11,520)

were used for reconstruction. The noise could be reduced

by considering an optimization-based framework

including a total-variation (TV) regularization term,

i.e., R(p0) � ‖



















(zp0zx )2 + (zp0zy )2 + (zp0zz )2

√
‖1. The effects of

streak-type artefacts in three-dimensional OA images are

more prominent if these are acquired with hand-held

scanners based on spherical arrays, currently being used in

clinical trials [87, 88]. Indeed, even though three-dimensional

imaging is possible with a single laser pulse, the number of

signals that can be simultaneously collected with an array is

generally significantly lower than that required according to

the Nyquist spatial sampling criterion [89]. Figure 2D shows

an example of an image of the finger vasculature of a healthy

volunteer [55]. The MBP approach (Eq. 7) is shown to reduce

the background noise of FBP images, while still begin able to
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FIGURE 2
Performance comparison of model-based (MB) and filtered back-projection (FBP). (A) Example of streak-type artefacts produced in the
reconstructed images as a function of the number of sensors considered. Adapted from [171] with permission from Nature Publishing Group. (B)
Comparison of the cross-sectional images of themouse brain renderedwith FBP andMB. Adapted from [86] with permission fromAmerican Institute
of Physics. (C) Comparison of the three-dimensional full-wave images reconstructed with FBP and MB based on total-variation regularization.
Adapted from [48] with permission from Institute of Physics. (D) Comparison of the three-dimensional images of the finger vasculature of a healthy
volunteer obtained with FBP, model back-projection (MBP) and MB based on Tikhonov regularization. Reprinted from [55] with permission from
Institute of Electrical and Electronics Engineers.

FIGURE 3
Model-based (MB) reconstruction from sparse data based on advanced regularization methods. (A) Performance of three-dimensional MB
reconstruction based on total-variation (TV) regularization in the spatial and temporal domains. As a reference, the images reconstructed with
filtered back-projection (FBP) are shown in the left column as a function of the number of time-resolved signals considered. The equivalent MB
images are shown in the other columns. TVxN indicates that a sequence of N images is simultaneously reconstructed. Reprinted from [99] with
permission fromOptica Publishing Group. (B) Performance of the deep gradient descent (DGD) algorithmwhen considering signals sub-sampled by
a factor of 4 in the spatial and temporal domains. The image obtained with DGD after 5 iterations (top right) is compared to the image obtained with
the model back-projection (MBP) method (1 iteration, top left) and iterative TV-based MB algorithm (20 iterations, bottom left). As a reference, the
image reconstructed with the same TV-based MB algorithm (20 iterations) from the full data is also shown (bottom right). Adapted from [101] with
permission from Institute of Electrical and Electronics Engineers.
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provide real-time feed-back during the scans. Iterative MB

inversion based on Tikhonov regularization clearly provides

an enhanced imaging performance, but results in a longer

computation time in the order of 5 s.

MB reconstruction is more flexible than FBP as it is

generally applicable regardless of the acquisition geometry.

Moreover, it facilitates guiding the solution towards an image

consistent with prior knowledge on the sample. For example,

the images reconstructed with FBP are known to be affected by

negative values with no negative meaning [90]. These can be

avoided by including non-negative constraints in the

optimization-based framework [57, 91, 92]. The

regularization term in the energy functional to be

minimized (Eq. 5) also plays an essential role in the

contrast, resolution and overall quality of the image being

rendered. For example, an L1-based regularization term in

the image domain, i.e., R(p0) � ‖p0‖1, tends to set many

voxels to zero (or close to zero) values. This was exploited

to enhance the spatial resolution beyond the acoustic

diffraction barrier [76, 92, 93]. TV-based regularization is

also commonly used as it enables mitigating noise while

preserving sharp edges [52, 53, 94–98]. Figure 3A displays

a comparison of the images of a freely-swimming zebrafish

larvae reconstructed with FBP and MB including a TV

regularization term in the spatial and temporal domains,

i.e., R(p0) � ‖



























(zp0zx )2 + (zp0zy )2 + (zp0zz )2 + k(zp0zt )2

√
‖1. A sequence

of images is simultaneously reconstructed with this approach

following a sparse acquisition scheme [99]. MB reconstruction

then enables significantly reducing the required number of

signals for each laser pulse and thus increasing the achievable

frame rate [100].

Defining the optimal regularization strategy is generally

challenging as prior information may not be available and/or

cannot be expressed by standard regularization terms. Also,

regularizers known to provide a good performance in other

imaging modalities may be suboptimal for OA. The MB

performance can be enhanced by learning realistic

information on the expected image content and how to best

incorporate this in an iterative reconstruction approach. For this,

convolutional neural networks have been suggested. These can be

used e.g. to iteratively update the reconstructed OA image from

the previous image and the gradient of the fidelity term [101].

The regularization effects are then learned from the data during

training. The performance of this reconstruction approach,

termed deep gradient descent (DGD), is shown in Figure 3B

when using x-ray CT angiography images for training. The

updated image after 5 iterations of the DGD method

considering data sub-sampled by a factor of 4 is shown to

clearly reduce the noise of the MBP image, corresponding to

the first iteration (Figure 3B, top). The DGD can also provide

more accurate results than standard iterative MB reconstruction

based on TV regularization for the same data sparsity level

(Figure 3B, bottom left), as validated with the equivalent TV-

based image reconstructed from the full data (Figure 3B, bottom

right).

5 Modelling the transducer response

FBP formulas are derived by considering the spatio-temporal

pressure wavefield at a surface surrounding the sample. As

mentioned above, OA signals are often acquired at a relatively

sparse distribution of measuring locations. Also, standard

piezoelectric US transducers have a finite size and a finite

detection bandwidth, thus the collected signals generally differ

from the acoustic pressure.

The effects of the transducer are generally characterized as a

convolution with the so-called electrical impulse response (EIR)

and the spatial impulse response (SIR). The EIR corresponds to

the signal for an impulse-type wavefront incident normal to the

surface of the transducer [102]. The SIR is associated to the finite

aperture of the transducer and has long been known to degrade

the tangential resolution in the reconstructed OA images [72,

103]. Both the EIR and the SIR can be incorporated into a MB

reconstruction framework. As an example, Figure 4A displays the

OA images reconstructed with the simulated signals for a flat

transducer with 6 mm diameter circularly scanned around the

sample with 50 mm radius [103]. Point absorbers at distances of

up to 25 mm away from the scanning center could be accurately

reconstructed with a MB algorithm accounting for the SIR, while

the OA images reconstructed with FBP clearly show a progressive

reduction in the azimuthal resolution at peripheral regions. For a

finite-size transducer perfectly matched to the acoustic coupling

medium, the SIR is approximated as the integral of the pressure

on the active surface [104]. This enables estimating analytically

the SIR of some types of sensors [72, 105]. Alternatively, the

active surface of the sensor can be numerically approximated to

estimate the SIR [47, 73, 106]. Figure 4B shows the OA

microscopy images of the subcutaneous murine vasculature

obtained with a broadband spherical polyvinylidene difluoride

(PVDF) transducer [76]. A MB algorithm incorporating the SIR

clearly outperformed a back-projection-based synthetic aperture

focusing technique (SAFT). Specifically, the vascular network at

different depths was more clearly resolved with the MB

considering a L2-norm-based regularization term. Also, an

increase in resolution beyond the barrier of acoustic

diffraction was achieved with L1-norm-based regularization to

the detriment of the number of vascular branches being observed.

A similar enhanced performance was observed with MB

reconstruction in other acquisition geometries [55, 107–110],

which substantiates the general applicability of this approach. It

is important to note that the estimated SIR is based on an

approximation. Wave propagation and energy conversion

within piezoelectric materials is generally more complex. A

more accurate estimation of the spatially-dependent total

impulse response (TIR) of the transducer can be performed
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by scanning a sub-resolution absorber [111, 112]. The TIR can

then be incorporated into the MB reconstruction framework to

further enhance the reconstruction accuracy [113]. The TIR may

also be measured by considering the response of small particles

flowing in blood [114–116], which may facilitate enhancing the

imaging performance in vivo.

6 Accounting for acoustic
propagation effects

Direct inversion of a Radon-type transform into a FBP

formula is only possible for a uniform non-attenuating

acoustic medium. However, biological tissues are

heterogeneous acoustic media further absorbing part of the

acoustic energy. In soft tissues, the speed of sound can change

within a range of approximately ±10% [117]. This mainly affects

the time-of-flight of US waves, which results in a time-shift of the

collected signals [118]. Other effects such as reflections,

refractions or scattering can further result in strong artefacts

in the images [119–121], but these are only prominent in other

tissues featuring stronger acoustic mismatch such as bones or

lungs. On the other hand, frequency-dependent acoustic

attenuation causes both a decrease in intensity and a

reduction in bandwidth of the collected signals, which in turn

results in quantification errors and in a loss of spatial resolution

[122, 123].

MB reconstruction frameworks provide a flexible means for

compensating for all these effects. For uniform non-attenuating

acoustic media, discrete-to-discrete time-domain OA forward

models can be built by discretizing the Poisson-type integral

corresponding to the solution of Eq. 1 [68]. The effects of speed of

sound changes can then be corrected by modifying the

integration surface (or curve) based on the induced time-of-

flight changes [49]. Full-wave MB algorithms based on the exact

OA wave equation have also been suggested to mitigate the

effects of speed of sound heterogeneities [33, 78, 124, 125]. Also,

so-called joint-reconstruction MB algorithms aiming at

simultaneously recovering an OA image and the speed of

sound distribution have been suggested [126, 127]. These

algorithms were shown to be ill-conditioned and numerically

unstable [128], but could be used to reconstruct cross-sectional

images of mice by considering a low-dimensional

parametrization of the sound speed distribution [129]. MB

algorithms can also be used to reconstruct the speed of sound

distribution from transmitted US waves [130]. Figure 5A shows a

comparison of the OA images of the murine liver region obtained

with MB algorithms assuming a uniform speed of sound and

considering two different speed of sound values for the tissue and

coupling medium, respectively [129]. TV regularization was used

in both cases. The distortion induced in the images due to speed

of sound changes is higher when using heavy water as coupling

medium [131] or air-coupled transducers [132, 133]. Acoustic

attenuation effects can also be accounted for withMB algorithms.

These correspond to a convolution of the time-domain signals

(columns of the model matrix) with an attenuation impulse

response function [123]. Recently, cross-sectional OA

tomography based on a full-ring array was combined with

transmission US methods providing speed of sound and

attenuation maps [134]. This information can then be

exploited in MB reconstruction frameworks to advance the

OA imaging performance. In principle, full-wave MB

algorithms can account for any effect associated to acoustic

propagation in strongly mismatched tissues. However, this

approach is impractical unless accurate knowledge of the

distribution of acoustic properties is available. The artefacts

induced in the images can be mitigated by weighting the

signals and the model matrix so that less distorted signals

have a higher influence in the inversion algorithm [135]. This

approach was initially suggested for FBP algorithms [136, 137].

FIGURE 4
Accounting for the finite aperture of the ultrasound transducer. (A) Comparison of the optoacoustic (OA) images reconstructed with MB and
filtered back-projection (FBP) algorithms considering the simulated signals for a flat transducer circularly scanned around the sample. Reprinted
from [103] with permission from Optica Publishing Group. (B) Comparison of the OA microscopy images of the subcutaneous murine vasculature
obtained with a FBP-based synthetic aperture focusing technique (SAFT, left), a MB algorithm considering a L2-norm regularization term
(middle) and a MB algorithm considering a L1-norm regularization term (right). Reprinted from [76] with permission from Wiley Online Library.
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Figure 5B shows a comparison of the coronal cross-sectional OA

images of the mouse brain reconstructed with a standard MB

algorithm and with a weightedMB (wMB) algorithm considering

the probability that the signals are distorted by scattering events

[138], indicating the enhanced performance achieved with the

latter. Arguably, the greatest challenge in OA is to achieve high-

resolution imaging through the skull bone, particularly in

humans. Transcranial US propagation is known to be affected

FIGURE 5
Accounting for acoustic heterogeneities in the sample. (A) Comparison of the cross-sectional optoacoustic (OA) images of the mouse liver
reconstructed with a model-based (MB) algorithm considering a uniform speed of sound (top) and a MB algorithm considering a different speed of
sound within the mouse and the water coupling medium (MB2, bottom). Adapted from [129] with permission from Society for Industrial and Applied
Mathematics. (B) Comparison of the cross-sectional OA images of the mouse brain reconstructed with a standard MB algorithm (top) and a MB
algorithm weighted with the probability the collected signals are distorted by scattering or reflection events (wMB, bottom). Reprinted from [138]
with permission from Wiley Online Library. (C) Transcranial OA images reconstructed with a standard MB algorithm (left) and with a MB algorithm
built from a reference signal based on the OA memory effect (MBM, right) [142].

FIGURE 6
Model-based (MB) image reconstruction with time-resolved optoacoustic (OA) signals encoding the position of absorbers via complex
propagation of ultrasound (US) waves. (A) Image of the cortical vasculature of the mouse brain obtained by exploiting US propagation through an
ergodic relay. Adapted from [150] with permission from Nature Publishing Group. (B) Image of seven synthetic hairs sparsely distributed within an
acoustically reverberant cavity causing multiple reflections of the US waves. Reprinted from [151] with permission from Optica Publishing
Group. (C) Image of a zebrafish larva obtained by exploiting US transmission through a randomized scattering medium. Adapted from [71] with
permission from American Physical Society.
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by reflections, refractions, mode conversion and other effects

[139, 140]. OA forward models accounting for some of these

effects have been suggested [141], but their applicability in vivo is

challenged by the lack of accurate knowledge on cranial acoustic

and dimensional properties. Recently, it has been demonstrated

that the distortion of optoacoustically-generated waves is locally

preserved after transcranial propagation [142]. A MB

reconstruction algorithm can then be developed based on this

memory effect (MBM). Figure 5C shows the enhanced

performance achieved with the MBM algorithm with respect

to a standard MB algorithm assuming a uniform speed of sound.

The strong distortion induced by the skull is clear in the MB-

reconstructed images, while high-resolution images of point

absorbers could be obtained with the MBM algorithm.

7 Compressed acquisition and
reconstruction

MB frameworks are also particularly suitable for recovering

signals or images from a few signal samples in the spatial and/or

temporal dimensions. Mathematically, this corresponds to

finding a solution of an underdetermined linear system and is

the basis of compressed sensing methods [143]. Efficient recovery

implies two conditions, namely that the signal (or image) exhibits

sparsity in some domain and that the sampling matrix verifies the

so-called restricted isometry property. The lack of speckle noise

in OA images promotes sparsity, thus facilitates defining

compressed acquisition and reconstruction schemes.

Compressed-sensing-based methods have been widely used

in OA for reconstructing images from so-called partial data [50,

144–147]. Generally, this corresponds to signal acquisition at a

spatially sparse location of sensors. Note that this is

fundamentally different than the limited-view problem.

Indeed, signals acquired under limited-view conditions lack

sufficient information to achieve accurate OA reconstructions

regardless the spatial and temporal sampling density [36]. An

approach to recover information from partial data consists in

formulating a MB problem to reconstruct the OA signals

corresponding to dense spatial sampling and subsequently

perform image reconstruction [83]. Alternatively, MB image

reconstruction capitalizing on compressed-sensing principles

can be performed, which generally implies L1-norm-based

regularization terms [50, 144–146, 148, 149]. It is important

to take into account that the advantage of sparse sampling is two-

fold. On the one hand, compressed data acquisition significantly

reduces the complexity of the transducer array and associated

electronics, thus facilitates the development of low-cost OA

imaging systems. On the other hand, the imaging rate can be

significantly accelerated for a given data throughput capacity.

Recently, OA imaging with a single time-resolved signal has been

achieved by encoding the location of absorbers via complex

propagation of the generated US waves. Three examples of

systems based on this principle are shown in Figure 6.

Figure 6A shows the OA images of the cortical murine

vasculature reconstructed by considering the time-resolved

signal acquired with a single-element transducer and single-

shot excitation [150]. For this, US wave propagation through

an ergodic relay causing multiple reflections was exploited. The

model-matrix was experimentally calibrated by scanning a

focused laser beam. Figure 6B shows the image seven

sparsely-distributed synthetic hairs obtained with a different

system based on a reverberant cavity also causing multiple

reflections of US [151]. In this case, the signal from an

individual synthetic hair was used for calibration. Figure 6C

displays the image of a zebrafish larva obtained by exploiting

acoustic scattering to physically encode the position of optical

absorbers in the acquired signals [71]. For this, an imaging

system based on ultrasound propagation through a

randomized scattering medium was used. The model-matrix

was experimentally calibrated by scanning an individual

absorbing microsphere.

8 Summary and outlook

In this article, we described the basis of both iterative and

non-iterative MB reconstructions in OA imaging and reviewed

recent work on this topic. The reported results, based on OA

models independently developed by different groups, have

systematically demonstrated an enhanced performance with

respect to conventional reconstruction methods. In particular,

the commonly-used FBP algorithms are often afflicted by noise

and other artefacts, even when considering an arrangement of

sensors for which an accurate FBP formula - derived from the

inversion of a Radon-type transform - is available. Iterative

methods provide a flexible means for mitigating these

artefacts, further rendering a solution consistent with a priori

knowledge on the sample. This is achieved by properly selecting

regularization terms, constraints or number of iterations.

Moreover, the spatial- and frequency-dependent response of

the US transducer(s) as well as acoustic heterogeneities and

attenuation can be accurately accounted for with MB

methods. In this manner, it was possible to advance the OA

imaging capabilities to a new level of performance e.g. by

enabling breaking through the resolution limit dictated by

acoustic diffraction. Considering the large variety of existing

OA embodiments and the fact that the OA hardware is

continuously being upgraded, new MB methods can be

developed or adapted to new systems. Thereby, further

research on MB reconstruction is expected.

The existence of a linear OA forward model stems from the

thermoelastic generation mechanism of US within biological

tissues, regardless the complexity of the acoustic media or the

type and arrangement of US sensors [152]. We have shown that

mathematical modelling of this effect results in a well-defined
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source term in the time-domain wave equation corresponding to

short-pulsed excitation. Similarly, wave equations in the time or

frequency domains can be derived for other types of time-varying

light sources [153]. This is fundamentally different from pulse-

echo US or other coherent imaging modalities based on back-

scattered waves from different types of sources. For homogenous

media, a solution of the wave equation exists and a discrete OA

forward model, defined as a model matrix, can be theoretically

derived from it. However, analytical derivation of the forward

model is significantly more challenging when considering the

propagation of US waves through complex media or through

piezoelectric sensing materials. In this case, the model-matrix

can be experimentally calibrated by collecting the OA signals

generated by sub-resolution optical absorbers at a grid of

points covering the region of interest. The number of signals

required for experimentally building the model-matrix can be

significantly reduced by considering the OA memory effect if

the isoplanatic zone is relatively large due to symmetries in

the scanning geometry [154]. Indeed, MB reconstruction

based on an experimentally calibrated matrix enabled

exploiting the complex propagation of US waves to encode

the absorption distribution in a single OA signal or imaging

through strongly mismatch acoustic media such as the

skull bone.

MBmethods are also commonly used for linear un-mixing of

spectrally-distinctive chromophores such as oxygenated and

deoxygenated haemoglobin from OA images acquired at

multiple wavelengths [155, 156]. Multi-spectral (multi-

wavelength) OA imaging is a powerful approach for

molecular imaging applications provided accurate

quantification of the bio-distribution of specific molecules is

achieved [4, 5, 23, 157–159]. The combination of

reconstruction and un-mixing steps into a single model-

matrix has been shown to render more quantitative results if

regularization parameters and non-negative constraints are

properly selected [160]. Also, the model-matrix can

incorporate the wavelength-dependent light fluence

distribution within the sample, which can be estimated with

different methods [161–165]. Thereby, the so-called spectral

coloring effects, which hamper quantification of tissue

oxygenation, can potentially be mitigated [156].

In recent years, deep learning has rapidly emerged as an

appealing alternative for tomographic image reconstruction and

processing. MB methods are sometimes categorized as

knowledge-driven as they are based on minimizing the error

between estimations of a physical model and actual data. On the

contrary, deep learning methods are based on “reconstructing”

the inversion model by minimizing the error between predicted

and ground truth data. This data driven approach has similarities

with experimentally-calibrated MB methods but the

computationally efficiency can greatly be enhanced once the

network has been trained. However, the ways deep neural

networks process data are mathematically not fully

understood with serious concerns raised regarding validity of

the results. Nevertheless, in the OA field deep learning has been

used for image quality improvement as well as for directly

reconstructing images from the acquired signals [166–179].

Also, it was possible to train neural networks to learn the

regularization term in an iterative MB inversion framework

[101, 180, 181]. The latter hybrid method combines the

advantages of both approaches further highlighting the

importance of physical modeling for enhancing reliability and

practical applicability of newly developed neural networks. The

regularization performance in this case depends on the data

quality as well as on the amount of data used for training.

Combination of MB and deep learning methods is expected to

emerge as a promising research direction.

In summary, MB reconstruction is a powerful tool for

enhancing image quality and performance of OA imaging

systems. Its efficacy derives from accurate physical modelling of

US generation and propagation further accounting for experimental

imperfections and other effects using either mathematical

derivations or experimental calibrations. It has been

demonstrated that MB approaches may facilitate super-resolution

imaging, accurate image reconstruction from partial data as well as

imaging through strongly aberrativemedia. TheMB framework can

further be exploited for processingmulti-spectral or time-lapse data.

Performance of MB approaches can be enhanced by incorporating

neural networks, e.g. to act as regularizers.
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