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Even-Mansour is one of the most important constructions in symmetric

cryptography, both from a theoretical and practical perspective. With the

rapid development of quantum computing, the security of Even-Mansour

construction in quantum setting needs to be considered. For one round

Even-Mansour construction, it is well settled by classical and quantum

attacks. While for the iterated scheme, the situation is much more complex.

In this paper, we study the next case in line in detail and depth: quantum attacks

against two rounds case. We first make an asymptotic comparison with existing

classical and quantum attacks. Then we give concrete resource estimation for

the proposed quantum attacks on round reduced LED cipher and AES2. The

resource estimation allows to deduce the most efficient attacks based on the

trade-off of the number of qubits and Toffoli depth.
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1 Introduction

The Even-Mansour (EM) construction [1] is a minimal block cipher that has been

widely studied since its outstanding simplicity and provable classical security [1, 2]. It is

made up of a n-bit public permutation P and two n-bit secret subkeys K1 and K2, i.e.,

E(x) = P (x ⊕ K1) ⊕ K2, where n is the block size. When P is a public random permutation,

EM construction has been proven to be indistinguishable from a random permutation

whenD · T =Ω(2n), whereD and T are the number of queries to the encryption oracle E(x)

and permutation oracle P respectively. At EUROCRYPT 2012, Bogdanov et al. [3] studied

EM construction into an r-round iterated EM scheme, which is defined as

E x( ) � Pr /P2 P1 x ⊕ K1( ) ⊕ K2( ) ⊕ K3/⊕ Kr( ) ⊕ Kr+1,

where P1, . . . , Pr are r independent permutations and K1, . . . , Kr+1 are (r + 1) n-bit

subkeys. This construction was proven to be secure up to 22n/3 queries against

distinguishing attack for r ≥ 2 [3] and subsequently improved to 2rn/(r+1) queries [4, 5].

Recently, the security analysis of symmetric cryptography in quantum setting has also

become a hot issue in cryptography research [6], in addition to quantum cryptography

[7–10]. There are two different models for quantum cryptanalysis against symmetric

cipher based on the notions for pseudorandom function security in quantum setting,
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standard security and quantum security [11]. The standard

security and quantum security are also denoted as Q1 model

and Q2model respectively by Kaplan et al. [12]. In Q1model, the

adversaries could only access the encryption oracle classically but

process data with quantum operations. While in Q2 model, the

adversaries could query the encryption oracle with quantum

superpositions and process data with quantum operations.

In 2012, Kuwakado andMorri [13] proposed a quantum key-

recovery attack against EM construction in Q2model. Compared

with the classical key-recovery attack, the quantum attack can

attain exponential acceleration. In other words, the EM

construction has been broken in Q2 model. Very recently, at

EUROCRYPT 2022, Alagic et al. [14] proved a lower bound that

≈ 2n/3 queries are necessary for attacking EM construction in

Q1 model. In 2014, Kaplan [15] gave the quantum meet-in-the-

middle attack (QMITM attack) against iterated block ciphers in

Q1 model. For two-round iterated EM (2EM) construction with

two alternating subkeys and 2EM construction with independent

subkeys, the attack requires the time andmemory complexities of

O(2n) and Ω(2n) quantum queries to permutation oracle to

recover all subkeys. However, the QMITM attack which reduces

key-recovery to claw finding problem [16] is a general attack that

may not be as effective for 2EM constructions. Therefore, we aim

at investigating more efficient quantum key-recovery attacks on

2EM constructions in this paper. The constructions we focused

on are 2EM construction with identical subkeys, 2EM

construction with two alternating subkeys and 2EM

construction with independent subkeys which we refer as

2EM1: E1 x( ) � P2 P1 x ⊕ K( ) ⊕ K( ) ⊕ K,
2EM2: E2 x( ) � P2 P1 x ⊕ K1( ) ⊕ K2( ) ⊕ K1,
2EM3: E3 x( ) � P2 P1 x ⊕ K1( ) ⊕ K2( ) ⊕ K3.

At FSE 2013, Nikolić et al. [17] proposed the first nontrivial

classical attack on 2EM1 construction which requires the time

complexity of 2n ln n/n with 2n ln n/n known plaintexts. Later,

Dinur et al. [18] improved this attack to reduce the data

complexity to 2λn known plaintexts, where 0 < λ < 1.

Meanwhile, they also presented an attack against 2EM3

construction with the time complexity of O(2n �����
ln n/n

√ ) and

2n
�����
ln n/n

√
chosen plaintexts. However, the above attacks against

2EM1 construction are based on multi-collisions techniques,

which require time and memory complexities close to 2n. In

2016, Dinur et al. [19] presented an alternative attack on 2EM1

construction with linear algebra techniques. This attack requires

a time complexity of 2n/λn and memory complexity of 2λn, but

with 2n/λn chosen plaintexts. Subsequently, Isobe et al. [20]

introduced meet-in-the-middle techniques into the attack

against 2EM1 construction which requires the time and

memory complexities of 2n ln n/n with 2n ln n/n chosen

plaintexts. Furthermore, they also described a low data-

complexity and a time-optimized variant attacks. The low

data-complexity attack requires the time and memory

complexities of 2n ln n/n with 2λn chosen plaintexts. The time-

optimized one requires the time complexity of 2nβ/n and

memory complexity of 2n/2β with 2nβ/n chosen plaintexts,

where log n ≤ β 0 n. More recently, Leurent et al. [21]

proposed three key-recovery attacks on 2EM1 construction

which are related to the 3-XOR problem. The basic attack

requires the time complexity of 2n/n and memory complexity

of 22n/3 with 22n/3 known plaintexts in a balanced case. The variant

attack based on 3-SUM algorithm requires the time complexity of

2n ln2n/n2 and memory complexity of 22n/3 with 22n/3 known

plaintexts, but it is unpractical for realistic block size.

The low data-complexity attack requires the time

complexity of 2n/λn and memory complexity of 2λn with λn

known plaintexts.

Besides, there are also other quantum attacks against

iterated EM construction such as the quantum slide attack

on iterated EM construction with identical permutations and

subkeys in Q2 model [12] and the quantum related-key attack

against iterated EM cipher with identical permutations and

independent subkeys in Q2 model [22]. However, these

TABLE 1 Comparison of previous quantum attacks and our attacks on 2EM2 and 2EM3 constructions, where “Data” represents encryption queries,
“Queries” signifies calls to Pi, “Q-memory” and “C-memory” denote quantum memory and classical memory respectively.

Target Model Data Queries Time Q-memory C-memory References

2EM2 Q2 O(2n) 0 O(2n) O(n) 0 [23]

Q1 O(1) Ω(2n) O(2n) O(n) O(2n) [15]

Q2 O(n · 2n/2) O(n · 2n/2) O(n3 · 2n/2) O(n2) 0 Section 3.2

Q2 O(n) O(n · 2n/2) O(n3 · 2n/2) O(n2) O(n) Section 3.2

Q1 O(22n/3) O(n · 22n/3) O(n3 · 22n/3) O(n2) O(n) Section 3.2

2EM3 Q2 O(23n/2) 0 O(23n/2) O(n) 0 [23]

Q1 O(1) Ω(2n) O(2n) O(n) O(2n) [15]

Q2 O(n · 2n/2) O(n · 2n/2) O(n3 · 2n/2) O(n2) 0 Section 3.2

Q2 O(n) O(n · 2n/2) O(n3 · 2n/2) O(n2) O(n) Section 3.2

Q1 O(22n/3) O(n · 22n/3) O(n3 · 22n/3) O(n2) O(n) Section 3.2
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quantum attacks are in Q2 model and only consider iterated

EM construction with identical permutations.

Contributions. in this paper, we study quantum key-

recovery attacks against 2EM constructions. The main

contributions of this paper include the following two aspects.

First, we consider the security of two-round Even-Mansour

constructions with independent permutations in quantum setting.

Several quantum key-recovery attacks on 2EM constructions are

proposed. For 2EM1 construction, the presented quantum key-

recovery attack adopts Grover algorithm [23] directly. Compared

with the classical attack with optimal query complexity (including

the queries to cipher and permutation), i.e., the observed by Leurent

et al. [21], our attack reduces the query complexity by a factor of 2n/6.

For 2EM2 and 2EM3 constructions, we consider Grover-meets-

Simon algorithm [24] (GMS algorithm) and Offline Simon

algorithm [25] (OS algorithm) on constructed functions. The

proposed quantum attacks against 2EM2 and 2EM3 constructions

require ~O(22n/3) and ~O(2n/2) queries inQ1 andQ2model, where ~O
means ignoring logarithmic factors. In the case of 2EM2

construction, the query complexity of our attacks is less than

Grover search by a factor of 2n/3 and 2n/2 in Q1 and Q2 model

respectively. In the case of 2EM3 construction, the query complexity

of our attacks is better than Grover search by a factor of 25n/6 and 2n

in Q1 and Q2 model. When compared with the QMITM attack

against 2EM2 and 2EM3 constructions, the query complexity of our

attacks is reduced by a factor of 2n/3 and 2n/2 in Q1 and Q2 model.

TABLE 2 Comparison of attacks against 2-step LED-64. Assume that one evaluation of the cipher as one complexity unit and the evaluation of one
permutation costs 1/2 unit.

Data Queries Time Memory References

258.7 260.5 260.9 260 [17]

245 260.7 260.7 260 [18] (λ = 0.7)

260 259 260.6 216 [19] (λ = 1/4)

260 260 261.3 260 [20]

28 262 262.6 262 [20]

261 257 261.7 258 [20] (β = 8)

242 243 258 242 [21]

242 243 256.1 242 [21]

24 260 261 216 [21] (λ = 1/4)

232 0 232 26 qubits Section 3.1

TABLE 4 Comparison of attacks against AES2.

Model Data Queries Time Q-memory C-memory References

/ 2128 2129 2129.6 0 2128 [3]

/ 2125.4 2126.8 2126.8 0 2125.4 [18]

Q2 2192 0 2192 28.6 0 [23]

Q1 1 2128 2128 28.6 2128 [15]

Q2 272 272 285 214 0 Section 3.2

Q2 27 271 285 214 27 Section 3.2

Q1 290 290 2104 214 27 Section 3.2

TABLE 3 Comparison of quantum attacks against 2-step LED-128.

Model Data Queries Time Q-memory C-memory References

Q2 264 0 264 27 0 [23]

Q1 1 264 264 27 264 [15]

Q2 239 239 250 212 0 Section 3.2

Q2 26 238 250 212 26 Section 3.2

Q1 247 246.5 258.5 212 26 Section 3.2
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Besides, the classical memory complexity of our attacks can attain

exponential acceleration compared with the QMITM attack on

2EM2 and 2EM3 constructions. It is worth noting that the

presented quantum attacks could break 2EM3 construction with

O(n · 2n/2) queries in Q2 model, which is less than the classical

indistinguishable bound for 2EM3 construction, i.e., 22n/3 queries.

The comparison of previous quantum attacks and our attacks on

2EM2 and 2EM3 constructions is shown in Table 1.

Second, we apply the presented quantum attacks on 2-step

LED-64, 2-step LED-128 and full AES2. Then we design the

quantum circuits for proposed attacks and give the

corresponding resource estimation. According to the result of

resource estimation, the cost imposed by the attacks based on

GMS algorithm and attacks with OS algorithm in Q2 model is

close. The extra overhead generated by the attacks based on GMS

algorithm is mainly due to their more complex classifier oracles.

Besides, the attacks based on OS algorithm in Q1 model cost

more resources than corresponding attacks in Q2model since the

attacks in Q1 model require more iterations to search more bits

exhaustively. Moreover, there is no doubt that the presented

quantum attacks on 2-step LED-128 and AES2 cost much less

than the corresponding Grover attacks, except for the number of

qubits.

Organization. The rest of the paper is organized as follows. In

the next section, some essential preliminaries are introduced. The

quantum attacks on 2EM constructions and their application to

specific ciphers are presented in Sect. 3. In Sect. 4, we give the

quantum resource estimation of the proposed quantum attacks on

corresponding ciphers. Finally, a short conclusion is given in Sect. 5.

2 Preliminaries

In this section, some relevant preliminaries are given.

2.1 Quantum algorithms

2.1.1 Grover algorithm
Problem 1. (Grover [23]). Assume that there exists only one

marked item x′ in the N-scale unstructured datasets, the goal is to
find x′, where N = 2n. In other words, let f: {0,1}n → {0, 1} be a

function such that f(x) = 0 for all 0 ≤ x < 2n except x′, for which
f(x′) = 1, find x′.

To solve this problem, any deterministic classical

algorithms need to make O(2n) queries to f(x). However,

Grover algorithm can solve this problem with a probability

close to 1 by performing Grover iteration about π
4

��
2n

√
times.

Therefore, the query complexity of Grover algorithm is

O( ��
2n

√ ), which is a square speed-up compared to the

classical counterpart. Furthermore, the generalization of

Grover algorithm (i.e., Quantum Amplitude Amplification,

QAA) is given in the following theorem.

Theorem 1. (Brassard et al. [26]). Let A be any quantum

algorithm performed on q qubits without measurement. Let

B: Fq
2 → {0, 1} be a function that classifies the outcomes of A

TABLE 5 Resource estimation for constructed functions of target ciphers, where #Toffoli/CNOT/NOT represents the number of Toffoli gates, CNOT
gates and NOT gates respectively.

Algorithm Model Target
cipher

Toffoli
depth

#Toffoli #CNOT #NOT width

f (i, x) GMS Q2 2-step
LED-128

304 7296 9280 1536 352

f (i, x) OS Q1&Q2 2-step
LED-128

304 4864 6080 1024 208

f (i, x) GMS Q2 AES2 22016 66032 328656 3264 1820

f (i, x) OS Q1&Q2 AES2 22016 33016 164072 1632 910

FIGURE 1
Quantum gates of (A) NOT gate, (B) CNOT gate and (C)
Toffoli gate.
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as good or bad and p > 0 be the initial success probability that a

measurement of A|0〉 is good. Set k � � π4θ�, where θ is defined as

sin2(θ) = p. Besides, define the unitary operator Q � −AS0A−1SB ,
where SB changes the sign of the good state

|x〉 � −|x〉, if B x( ) � 1
|x〉, if B x( ) � 0

{ ,

while S0 changes the sign of zero state |0〉 only. Finally, the

measurement after the operation of QkA|0〉 will obtain the

good state with probability at least max{1 − p, p}.

Algorithm 1. Grover algorithm [23]

2.1.2 Simon algorithm
Problem 2. (Simon [27]). Let f: {0,1}n→ {0,1}n be a function. Promise

that there exists s ∈ {0,1}n such that for any (x, y) ∈ {0,1}n, [f(x) �
f(y)]5[x ⊕ y ∈ {0n, s}] is satisfied. The goal is to find the period s.

By performing Simon algorithm, one can obtain a random

vector y such that y · s = 0. Therefore, (n − 1) independent vectors

orthogonal to period s can be obtained by repeating Simon

algorithm for O(n) times. Then one can recover the period s

with linearalgebraclassically.Thus, thequerycomplexityofSimon

algorithm is O(n).
According to EM construction, Kuwakado and Morri [13]

introduce the function f(x) = E(x) ⊕ P(x) = P (x ⊕ K1) ⊕ K2 ⊕
P(x). It is obvious that f(x) = f (x ⊕ K1) and the period s is K1. Hence,

they can recover the subkeyK1 with Simon algorithm and then obtain

the value of K2 easily.

2.1.3 Grover-meets-simon algorithm

Problem 3. (Leander et al. [24]). Let f: {0,1}m ×{0,1}n → {0,1}i be a

function, where m is in O(n). There exists a unique i0 ∈ {0,1}m

such that for any x ∈ {0,1}n, f(i0, x) = f(i0, x ⊕ s) is satisfied, where s

∈ {0,1}n. The goal is to find the unique i0 and the period s.

The problem can be solved by GMS algorithm which requires the

query complexity ofO(n · 2m/2) and time complexity ofO(n3 · 2m/2).
At Asiacrypt 2017, Leander and May [24] proposed GMS

algorithm to attack the FX construction [28] that

Enc(x) � EK0(x ⊕ K1) ⊕ K2. They consider the function

f(k,x) � Enc(x) ⊕ Ek(x) � EK0(x ⊕ K1) ⊕ K2 ⊕ Ek(x).
Obviously, the function f (k, x) is periodic with periodK1 for all xwhen

k =K0. Otherwise f (k, x) is not periodic. In such a case, they design the

following GMS algorithm to recover all subkeys of FX construction.

2.1.4 Offline Simon algorithm
Problem 4. (Bonnetain et al. [25]). Let f: {0,1}m ×{0,1}n → {0,1}l and g:

{0,1}n→ {0,1}l be functions,wherem is inO(n). There exists a unique i0
∈ {0,1}m such that for any x ∈ {0,1}n, f(i0, x)⊕ g(x) = f(i0, x⊕ s)⊕ g(x⊕ s)

is satisfied, where s ∈ {0,1}n. The goal is to find the unique i0 and the

period s.

Algorithm 2. Simon algorithm [27]

To solve this problem, we can adopt OS algorithm. The OS

algorithm requires O(n) quantum queries to g, O(n · 2m/2)
quantum queries to f and the time complexity of O(n3 · 2m/2).

Furthermore, we can also solve this problem with OS

algorithm in Q1 model if the function g can be only queried

classically. Concretely, it is similar to executing OS algorithm in

Q2model except that the quantum state |ψg〉 in steps 2 and 6 now
should be prepared by querying the whole codebook of g. Hence,

it requires O(2n) classical queries to g, O(n · 2m/2) quantum

queries to f and the time complexity of O(n3 · 2m/2).

FIGURE 2
Quantum circuit of S-box used in SubCells: |a〉|0〉 → |S(a)〉|0〉, where |a3〉 is the most significant qubit.
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2.2 Target ciphers

Next, we introduce three ciphers that belong to 2EM1, 2EM2

and 2EM3 constructions respectively.

2.2.1 LED
At CHES 2011, Guo et al. [29] proposed a 64-bit resource-

constrained block cipher named LED. The step function Fi of LED is

a 4-roundAES-like permutationwhere the addition of the subkeys is

replaced with addition of constants. There are two primary variants

of LED.LED − 64 uses a 64-bit key in each step as a subkey and the

number of steps is 8. It is clear that 2-step LED-64 belongs to 2EM1

construction.LED − 128 divides a 128-bit key into K1‖K2 as the

subkeys alternatively and the number of steps is 12. Obviously, 2-

step LED-128 belongs to 2EM2 construction.

Algorithm 3. Grover-meets-Simon algorithm [24]

2.2.2 AES2

AES2 is a 128-bit cipher designed by Bogdanov et al. [3] at

EUROCRYPT 2012. It belongs to 2EM3 construction, where

each of the public permutations P1 and P2 is based on an

invocation of full AES-128 with a pre-fix and publicly known

key. The subkeys are composed of three independently

chosen 128-bit secret subkeys K1, K2 and K3.

3 Quantum attacks

In this section, several quantum key-recovery attacks on

2EM1, 2EM2 and 2EM3 constructions and the corresponding

applications are given.

3.1 Quantum key-recovery Attack on 2EM1
construction

Based on 2EM1 construction, the function E1(x) = P2
(P1(x ⊕ K) ⊕ K) ⊕ K is obtained. In such a case, we adopt

Grover algorithm on this function directly. Therefore, the

query complexity and time complexity of this attack are both

O(2n/2).

Algorithm 4. Offline Simon algorithm [25]

3.1.1 The Application to 2-step LED-64
We can attack 2-step LED-64 by applying Grover algorithm

on E(x) = F2(F1(x ⊕ K) ⊕ K) ⊕ K directly, where the block size is

64. Thus, the attack requires the query and time complexities of

232. The comparison of attacks against 2-step LED-64 is

summarized in Table 2.

3.2 Quantum key-recovery Attacks on
2EM2 and 2EM3 constructions

For 2EM2 construction, we consider the function

f i, x( ) � E2 x( ) ⊕ P2 P1 x( ) ⊕ i( )
� P2 P1 x ⊕ K1( ) ⊕ K2( ) ⊕ K1 ⊕ P2 P1 x( ) ⊕ i( ).

It is easily seen that f (i, x) has the period K1 when i = K2 since

f K2 , x ⊕ K1( ) � P2 P1 x ⊕ K1 ⊕ K1( ) ⊕ K2( ) ⊕ K1 ⊕ P2 P1 x ⊕ K1( ) ⊕ K2( )
� P2 P1 x( ) ⊕ K2( ) ⊕ K1 ⊕ P2 P1 x ⊕ K1( ) ⊕ K2( )
� f K2 , x( ).

Therefore, we can employ GMS algorithm on f (i, x) to recover K1

and K2 which requires the query complexity of O(n · 2n/2) and
time complexity of O(n3 · 2n/2).

Furthermore, the recovery of subkeys K1 and K2 can also be

reduced to Problem 4 by defining functions f: {0,1}n ×{0,1}n →
{0,1}n and g: {0,1}n → {0,1}n as

f i, x( ) � P2 P1 x( ) ⊕ i( ),
g x( ) � E2 x( ).

Similarly, we can obtain that

f K2, x ⊕ K1( ) ⊕ g x ⊕ K1( ) � f K2, x( ) ⊕ g x( )
when i = K2. Then we can recover all subkeys with OS algorithm.

In such a case, the quantum attack requiresO(n) queries to g(x),
O(n · 2n/2) queries to f (i, x) and the time complexity of O(n3 ·
2n/2).

On the other hand, we can also solve this problem with

OS algorithm in Q1 model if the cryptographic function E2(x)
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can be accessed only classically. Now the functions f:

{0,1}n+(n−u) ×{0,1}u → {0,1}n (0 ≤ u ≤ n) and g: {0,1}u → {0,1}n

are defined as

f i‖j, x( ) � P2 P1 x‖j( ) ⊕ i( ) j ∈ 0, 1{ }n−u( ),
g x( ) � E2 x‖0n−u( ).

obviously, f(K2‖K2
1, x) ⊕ g(x) has the period K1

1 when i‖j �
(K2‖K2

1, x ⊕ K1
1) ⊕ g(x ⊕ K1

1)K2‖K2
1 since

f K2‖K2
1 , x ⊕ K1

1( ) ⊕ g x ⊕ K1
1( )

� P2 P1 x ⊕ K1
1( )‖K2

1( ) ⊕ K2( ) ⊕ P2 P1 x ⊕ K1
1‖0n−u( ) ⊕ K1( ) ⊕ K2( ) ⊕ K1

� P2 P1 x‖0n−u( ) ⊕ K1( ) ⊕ K2( ) ⊕ P2 P1 x‖K2
1( ) ⊕ K2( ) ⊕ K1

� f K2‖K2
1 , x( ) ⊕ g x( ),

where the subkey K1 � K1
1‖K2

1 and |K1
1| � u, |K2

1| � n − u.

Therefore, we can apply OS algorithm on above functions

in Q1 model to recover subkeys K1 and K2. Then, the attack

requires O(2u) classical queries to g(x), O(n · 2(2n−u)/2)
quantum queries to f (i‖j, x) and the time complexity of

O(n3 · 2(2n−u)/2). Specially, the number of classical queries

to g(x) and quantum queries to f (i‖j, x) are balanced when

u � 2n
3 .
The quantum key-recovery attack against 2EM3 construction

is similar to the case of 2EM2 construction, except that the

functions we considered here are

f i, x( ) � E3 x( ) ⊕ P2 P1 x( ) ⊕ i( ), Problem 3
f i, x( ) � P2 P1 x( ) ⊕ i( ), g x( ) � E3 x( ), Problem 4 in Q2 model
f i‖j, x( ) � P2 P1 x‖j( ) ⊕ i( ), g x( ) � E3 x‖0n−u( ), Problem 4 in Q1 model

⎧⎪⎨⎪⎩ .

Finally, we can easily obtain the value of K3 with additional

encryption after recovering subkeys K1 and K2. Hence, the query

and time complexities of the quantum attacks on 2EM3

construction are the same as the case of 2EM2 construction.

FIGURE 4
Quantum circuit of (A) 2-step LED-64 and (B) 2-step LED-
128, here ancilla qubits are not represented.

FIGURE 3
Quantum circuit ofmatrix A, whereU2 andU4 are quantum circuits of operations 2 and 4 respectively.U†

2 represents the inverse quantum circuit
of U2. Each mj and tj contains four qubits, where j = 0, 1, . . . , 15.
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3.2.1 The applications to 2-step LED-128 and
AES2

According to the structure of 2-step LED-128, we can obtain

the cryptographic function

E x( ) � F2 F1 x ⊕ K1( ) ⊕ K2( ) ⊕ K1,

where |K1| = |K2| = 64. In order to attack 2-step LED-128, we

consider the function

f i, x( ) � E x( ) ⊕ F2 F1 x( ) ⊕ i( )
� F2 F1 x ⊕ K1( ) ⊕ K2( ) ⊕ K1 ⊕ F2 F1 x( ) ⊕ i( )

in Problem 3. Now, we can adopt GMS algorithm on f (i, x)

directly. Hence, this attack requires the query complexity of 239

and time complexity of 250.

Furthermore, we can also utilize OS algorithm to recover K1

and K2 of 2-step LED-128. First, we define the functions

f i, x( ) � F2 F1 x( ) ⊕ i( ),
g x( ) � E x( ).

Then the subkeys can be recovered with OS algorithm on f (i, x)

and g(x). The quantum attack requires 26 quantum queries to

E(x), 238 quantum queries to f (i, x) and time complexity of 250.

On the other hand, we can also consider functions

FIGURE 6
Grover oracle for 2-step LED-64.

FIGURE 5
Quantum circuit of (A) AES, where the box of AESmeans the quantumcircuit of AES-128 in Ref. [35], K′ is the subkey of the 10th round in AES and
c is the ciphertext; (B) AES2, where the vertical line above the AES box indicates that 128 × 2 CNOT gates are performed instead of 128 × 2 NOT gates
in the quantum circuit of AES-128. The ancilla qubits and unused outputs are not represented.
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f i‖j, x( ) � F2 F1 x‖j( ) ⊕ i( ),
g x( ) � E x‖0n−u( )

and apply OS algorithm on f (i‖j, x) and g(x) in Q1 model when

E(x) can be queried only classically. In such a case, the quantum

attack requires 247 classical queries to E(x), 246.5 quantum queries

to f (i‖j, x) and time complexity of 258.5 when u = 47. The

comparison of quantum attacks against 2-step LED-128 is

summarized in Table 3.

In order to attack AES2, we need to construct functions in the

case of 2EM3 construction described in Section 3.2 with block

size 128. Thus, the subkeys of AES2 can be recovered by GMS

algorithm with the query complexity of 272 and time complexity

of 285. Furthermore, we can also attack AES2 with OS algorithm

in Q1 and Q2 model respectively. In Q1 model, the attack

requires 290 classical queries to E(x), 290 quantum queries to f

(i‖j, x) and the time complexity of 2104 when u = 90. In Q2 model,

the attack requires 27 quantum queries to E(x), 271 queries to f (i,

x) and the time complexity of 285. The comparison of attacks

against AES2 is summarized in Table 4.

Tables 3 and 4 show that the quantum attacks we proposed in

Q1 and Q2 models are more efficient than existing classical and

quantum attacks in time complexity and query complexity when

we consider queries of cryptographic function and public

permutations, except that more qubits are needed.

4 Resource estimation

We first give some quantum gates that are used in quantum

implementations of classical circuits in Figure 1. Note that the

last qubit is target qubit and other qubits are control qubits in

CNOT and Toffoli gates.

4.1 Resource estimation of target ciphers

Next, we give the quantum resource estimation of 2-step

LED-64, 2-step LED-128 and AES2 respectively.

4.1.1 Resource estimation of 2-step LED-64 and
2-step LED-128

The internal state of LED contains 64 bits, arranged in

16 nibbles. Each nibble represents an element from GF(24) with

the underlying polynomial for field multiplication given by X4 +

X + 1. The step function Fi of LED cipher is a 4-round AES-like

permutation. Each of these four rounds consists of operations

AddConstants, SubCells, ShiftRows and MixColumnsSerial.

AddConstants. The operation consists of XOR-ing of a 32-

bit round constant to the internal state of LED.

Thus, it can be realized by using 32 NOT gates in quantum

circuit.

SubCells. LED cipher uses a 4-bit to 4-bit S-box of PRESENT

[30], which is applied in parallel 16 times to the internal state of

LED. According to Algorithm 3 of Ref. [31], the quantum circuit

of the S-box is redesigned in Figure 2, which requires Toffoli

depth 19, 19 Toffoli gates, 5 CNOT gates, 2 NOT gates and

5 qubits. Therefore, we can obtain the resource estimation of

SubCells by multiplying the resources of the S-box by 16, except

FIGURE 8
Iterative oracle for OS algorithm, the quantum circuit for
classifier is provided in Supplementary Figure S6 of
Supplementary B.

FIGURE 7
Iterative oracle for GMS algorithm, the quantum circuit for
classifier β is given in Supplementary Figure S5 of Supplementary B.
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for the Toffoli depth since that these 16 S-boxes are applied in

parallel.

ShiftRows. After the operation ShiftRows, the internal

state is changed into a special permutation. Hence, we do not

have to perform any operation for the quantum circuit of

ShiftRows since it corresponds to a permutation of qubits.

In this case, we only need to adjust the position of

subsequent operations to ensure that the correct input

wire is used.

MixColumnsSerial. The MixColumnsSerial performs four

applications of matrix A, which is equivalent to matrix M:

A( )4 �
0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4

�
4 1 2 2
8 6 5 6
B E A 9
2 2 F B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � M.

The first scheme of implementing MixColumnsSerial is to

realize matrix A. In order to design the quantum circuit of matrix

A, the quantum circuit of operations 2 and 4 in A should be

considered first. It is easy to obtain that 2 · (a3, a2, a1, a0) = (a2, a1,

a3 ⊕ a0, a3) and 4 · (a3, a2, a1, a0) = (a1, a3 ⊕ a0, a3 ⊕ a2, a2). Hence,

the implementation of operations 2 and 4 cost 1 and 2 CNOT

gates respectively. Now, we can design the quantum circuit of

matrix A based on operations 2 and 4 in Figure 3.

According to Figure 3, we can derive that the quantum circuit

of matrix A requires (2 + 4 + 6 + 6) × 4 = 72 CNOT gates. Thus,

the resource estimation for operation MixColumnsSerial is 72 ×

4 = 288 CNOT gates.

The second scheme is to consider the matrix M directly.

From SageMath [32], we can obtain the PLU decomposition

M �
4 1 2 2
8 6 5 6
B E A 9
2 2 F B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
1 0 0 0
2 1 0 0
6 2 1 0
9 6 2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
4 1 2 2
0 4 1 2
0 0 4 1
0 0 0 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Similarly, we can easily obtain that 6 · (a3, a2, a1, a0) = (a2 ⊕ a1, a3
⊕ a1 ⊕ a0, a2 ⊕ a0, a3 ⊕ a2) and 9 · (a3, a2, a1, a0) = (a0, a3, a2, a1 ⊕
a0), which can be achieved with 5 and 1 CNOT gates respectively.

Then, we can know that the matrix L and U require 4×([(1 + 4 +

1) + (5 + 4 + 5) + (1 + 4 + 1)] + [(5 + 4 + 5) + (1 + 4 + 1)] + (1 + 4 +

1)) = 208 and 4 × ([2 + 4 + (1 + 4 + 1) + (1 + 4 + 1)] + [2 + 4 + (1 +

4 + 1)] + (2 + 4) + 2) = 152 CNOT gates respectively. Therefore,

the resource estimation for operation MixColumnsSerial is

208 + 152 = 360 CNOT gates in second scheme. Comparing

these two schemes, we adopt first one to implement the

operation MixColumnsSerial since it requires fewer CNOT

gates.

Taking all these into consideration, we can derive that the

resource estimation of one round AES-like permutation costs

Toffoli depth 19, 304 Toffoli gates, 368 CNOT gates, 64 NOT

gates and 80 qubits. Then the quantum circuits of 2-step

LED-64 and 2-step LED-128 are presented in Figure 4. In

such a case, the quantum circuit of 2-step LED-64 requires

Toffoli depth 152, 2432 Toffoli gates, 3136 CNOT gates,

512 NOT gates and 144 qubits. The quantum circuit of 2-step

LED-128 costs Toffoli depth 152, 2432 Toffoli gates,

3136 CNOT gates, 512 NOT gates and 208 qubits.

TABLE 7 Resource estimation for proposed quantum attacks on target ciphers, where all figures are in log base 2. The values of u of OS algorithm in
Q1 model for 2-step LED-128 and AES2 are 47 and 90, respectively.

Algorithm Model Target cipher Toffoli depth #Toffoli #Clifford #NOT width

GMS Q2 2-step LED-128 47.6 53.8 53.8 51.2 14.6

GMS Q2 AES2 87.2 90.0 92.1 85.5 18.5

OS Q2 2-step LED-128 43.9 53.1 52.6 50.0 14.7

OS Q2 AES2 79.4 88.6 90.3 83.6 18.0

OS Q1 2-step LED-128 52.4 61.6 61.1 58.5 14.7

OS Q1 AES2 98.4 107.6 109.3 102.6 18.0

TABLE 6 Resource estimation for iterative oracle of GMS algorithm and OS algorithm, where Clifford gate denotes the CNOT gate and Hadamard
gate.

Algorithm Model Target cipher Toffoli depth #Toffoli #Clifford #NOT width

GMS Q2 2-step LED-128 62327 4759241 4516500 762376 25152

GMS Q2 AES2 12508008 83407802 368607419 3734666 365444

OS Q1&Q2 2-step LED-128 4954 2887806 1966081 327809 26880

OS Q1&Q2 AES2 53626 31698174 105088001 1044737 270848
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4.1.2 Resource estimation of AES2

The construction of AES2 is defined by fixing two randomly

chosen 128-bit AES-128 keys, which specify the permutations P1
and P2. The subkeys are comprised of three independently

chosen 128-bit secret keys K1, K2 and K3. Let AES[K] denotes

the whole AES-128 encryption with the 128-bit key K. Hence, the

encryption of AES2 is defined as

AES2 x( ) � AES π2[ ] AES π1[ ] x ⊕ K1( ) ⊕ K2( ) ⊕ K3,

where two 128-bit keys π1 and π2 are defined based on the first

256 bits of the binary digit expansion of π. Recently, the

implementation of AES quantum circuit received more and

more attention [33–35]. Based on the fewer qubits principle,

we take the quantum circuit of AES-128 from Ref. [35] for

quntum circuit design of AES2. As shown in Figure 5A, this

quantum circuit costs Toffoli depth 11008, 16508 Toffoli gates,

81652 CNOT gates, 1072 NOT gates and 270 qubits. In Ref. [35],

the XOR of a 128-bit plaintext in first round of AES-128 is

considered as XOR-ing of a 128-bit constant, which is achieved

by performing 128 NOT gates on the key of AES-128 first and

then canceled by 128 NOT gates again. However, the 128-bit

plaintext is a quantum superposition in our proposed quantum

attacks. Hence, we need to adopt 128 × 2 CNOT gates instead of

128 × 2 NOT gates here. Therefore, the quantum circuit of AES-

128 used in the quantum circuit design of AES2 requires Toffoli

depth 11008, 16508 Toffoli gates, 81908 CNOT gates, 816 NOT

gates and 270 qubits. In such a case, we can easily design the

quantum circuit of AES2 in Figure 5B and obtain the resource

estimation of AES2 with Toffoli depth 22016, 33016 Toffoli gates,

164328 CNOT gates, 1632 NOT gates and 1038 qubits. Note that

the ancilla qubits involved in first AES quantum circuit can be

reused in second AES quantum circuit.

4.2 Resource estimation of Grover
algorithm on 2-step LED-64

In order to adopt Grover algorithm on 2-step LED-64, we

need to design the Grover oracle for 2-step LED-64 first. When

designing the Grover oracle, the number of plaintext-ciphertext

pairs required to recover the correct key uniquely should be

considered. At EUROCRYPT 2020, Jaques et al. [34] stated that

when the number of required plaintext-ciphertext pairs ]≥ �mn�,
the probability of uniquely recovering the correct key is about

e−2m−]n
, where n and m are block size and key size for a block

cipher respectively.

Hence, the number of required plaintext-ciphertext pairs for

2-step LED-64 should be ] ≥ 1 since m = n = 64. Then the

probability of finding a unique key is around 0.37 for ] = 1. For

] = 2, the probability is about 0.99. Thus, we consider the case of

] = 2 when designing the Grover oracle for 2-step LED-64.

Therefore, the quantum circuit of the Grover oracle for 2-step

LED-64 is illustrated in Figure 6, which requires Toffoli depth

317, 9981 Toffoli gates, 12672 CNOT gates, 2304 NOT gates and

383 qubits. In the quantum circuit of Grover oracle for 2-step

LED-64, each comparison of n-bit known ciphertext and n-qubit

output of 2-step LED-64 oracle requires Toffoli depth 2�log2n�, 2
(n − 1) Toffoli gates, 2n NOT gates and (n − 1) ancilla qubits.

In the process of Grover algorithm, �π42m/2� iterations of

Grover operator are performed. While estimating the resources,

we only consider the cost incurred by Grover oracle. Since

compared with the cost incurred by Grover oracle, the cost

imposed by other operations in Grover operator is relatively

small in terms of magnitude and can be ignored. In such a case,

the resources of Grover oracle for 2-step LED-64 are multiplied

by �π42m/2� for estimating the resources of Grover algorithm on 2-

step LED-64, which costs Toffoli depth 240.0, 244.9 Toffoli gates,

245.3 CNOT gates, 242.8 NOT gates and 28.6 qubits. Note that the

width is still the same as in Grover oracle since we assume that no

parallelization is involved.

4.3 Resource estimation of proposed
quantum attacks on 2-step LED-128 and
AES2

The resource estimation of proposed quantum attacks on 2-

step LED-128 and AES2 can be considered in a similar way as

Grover algorithm since that Grover algorithm, GMS algorithm

and OS algorithm all need to perform an iterative operator. Thus,

we should consider the resource estimation of iterative oracle for

target ciphers first. Here, the resource estimation of constructed

functions for target ciphers in proposed quantum attacks is given

in Table 5 and the corresponding quantum circuits see

Supplementary A.

Now, the quantum circuits of iterative oracle for GMS

algorithm and OS algorithm are designed in Figure 7 and

Figure 8 respectively.

In Figure 7, the classifier β for GMS algorithm contains Test

1 and Test 2 (see also Supplementary Figure S5 of Supplementary

B). When both two test conditions are satisfied, the phase of

target qubit will be flipped. Test 1 of classifier β. The Test 1 of

classifier β includes the checking of dim (〈u1, . . . , uℓ〉) and the

calculation of candidate period s′. The first phase includes the

computation of triangular basis and the rank checking of

triangular basis. Based on Algorithm 4 of Ref. [36], we can

obtain that the computation of triangular basis requires

Toffoli depth ℓ(4 + �log2n�) +∑n
i�2(4 + �log2(n − i + 1)�), ℓn2

+ ℓn Toffoli gates and ℓ + n (n + 1)/2 + n (n − 1) ancilla

qubits, where the value of ℓ is 2(n + �
n

√ ) [24]. For the rank

checking of triangular basis, it requires Toffoli depth 2�log2n�, 2
(n − 1) Toffoli gates, 2nNOT gates and (n − 1) ancilla qubits. The

second phase is the calculation of the candidate period.

Bonnetain et al. [36] showed that the realizing of computing

orthogonal vectors (i.e., Algorithm 5 in Ref. [36]) costs Toffoli

depth n(n − 1), n(n − 1) Toffoli gates, nCNOT gates and n ancilla
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qubits. However, there is a mistake that the Toffoli depth and

Toffoli gates should be n (n − 1)/2. Thus, we can obtain that the

resource estimation for Test 1 of classifier β requires Toffoli

depth ℓ(4 + �log2n�) + ∑n
i�2(4 + �log2(n − i + 1)�) + 2�log2n�+

n(n − 1)/2, ℓn2 + ℓn + 2 (n − 1) + n (n − 1)/2 Toffoli gates, n

CNOT gates, 2n NOT gates and ℓ + n (n + 1)/2 + n (n − 1) + n

ancilla qubits by combining all these terms. Note that there are

(n − 1) ancilla qubits missing since the ancilla qubits in the

process of rank checking can be reused in the computation of

orthogonal vectors. In this case, we only need max{n − 1, n}

ancilla qubits in these two processes. Test 2 of classifier β. The

quantum circuit of Test 2 of classifier β for 2-step LED-128 is

given in Supplementary Figure S7 of Supplementary B, which

costs

Toffoli depth 147 × 76 × 4 + 2 log264 + 49( ) + 5 � 53660
147 × 1216 × 8 + 2 × 64 − 1( ) + 49[ ] + 13 � 1455754 Toffoli gates
147 × 1472 × 8 + 64 × 10 + 1( ) � 1825299 CNOT gates
147 × 256 × 8 + 64 × 2( ) + 8 � 319880 NOT gates
64 × 2 + 63 + 6 + 8 + 1 � 206 qubits

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
,

since t � 1, 2, . . . , 147(i.e., 3n+nℓn ) [24] in Supplementary Figure

S7. Here |i〉 and the candidate period |s′〉 are not included in the

qubits. The quantum circuit of Test 2 of classifier β for AES2 is

provided in Supplementary Figure S8 of Supplementary B, which

requires

Toffoli depth 282 × 11008 × 4 + 2 log2128 + 64( ) + 7 � 12439027
282 × 16508 × 8 + 2 × 128 − 1( ) + 64[ ] + 15 � 37331739 Toffoli gates
282 × 81908 × 8 + 128 × 10 + 1( ) � 185145690 CNOT gates
282 × 816 × 8 + 128 × 2( ) + 10 � 1913098 NOT gates
128 × 10 + 127 + 9 + 7 + 1 � 1424 qubits

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
,

where t = 1, 2, . . . , 282 in Supplementary Figure S8. Here |i〉 and |
s′〉 are not included in the qubits.

Hence, the classifier β for 2-step LED-128 costs

Toffoli depth 2 × 2007 + 6 + 2016( ) + 53660 + 1 � 61719
2 × 599040 + 63 + 2016( ) + 1455754 + 1 � 2657993 Toffoli gates
2 × 64 + 1825299 + 1 � 1825428 CNOT gates
2 × 64 + 319880 � 320008 NOT gates
6256 + 64 + 206 + 1 + 1 � 6528 qubits

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
,

where |u1〉, |u2〉, / , |uℓ〉 and |i〉 are not included in the qubits.

The classifier β for AES2 costs

Toffoli depth 2 × 4339 + 7 + 8128( ) + 12439027 + 1 � 12463976
2 × 4606848 + 127 + 8128( ) + 37331739 + 1 � 46561946 Toffoli gates
2 × 128 + 185145690 + 1 � 185145947 CNOT gates
2 × 128 + 1913098 � 1913354 NOT gates
24791 + 128 + 1424 + 1 + 1 � 26345 qubits

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
.

Altogether, the resource estimation for iterative oracle of

GMS algorithm is summarized in Table 6.

In Supplementary Figure S6 of Supplementary B, the classifier

oracle of OS algorithm consists of the computation of triangular basis

and rank checking. Therefore, the classifier oracle costs Toffoli depth

2* [cn*(4 + �log2n�) + ∑n
i�2(4 + �log2(n − i + 1)�) + �log2n�],

2*[cn*n
2 + cn*n + (n − 1)] Toffoli gates, 1 CNOT gates, 2n + 1 NOT

gates and cn + n (n + 1)/2 + n (n − 1) + (n − 1) + 1 ancilla qubits,

where cn≃ 2.5n [25]. Then, the corresponding resource estimation for

iterative oracle of OS algorithm is listed in Table 6. Here, the resource

estimation for iterative oracle of OS algorithm in Q1model is same as

the case of OS algorithm in Q2 model, except that the width in

Q1 model should consider extra (n − u) qubits.

Similarly, �π42n/2� iterations for the iterative operator of

proposed quantum attacks are required. Here, we only

consider the cost incurred by the iterative oracle and assume

that the iterative oracle is applied in serial. Hence, the resources

(except the number of qubits) in Table 6 are multiplied by

�π42n/2� for estimating the resources of mounting presented

quantum attacks on 2-step LED-128 and AES2. The resource

estimation is summarized in Table 7. From Table 7, it is obvious

that the proposed quantum attacks based on GMS algorithm

cost more than ones with OS algorithm in Q2 model. The main

reason for this is caused by Test 2 of classifier β in GMS

algorithm, which needs to check whether f (i, z) = f (i, z ⊕
s′) for fixed i, the given t pairs of z and thus requires more

resources. Note that the cost incurred by proposed quantum

attacks with OS algorithm in Q1 model is more than the ones in

Q2 model because guessing the value of j requires another

2(n−u)/2 iterations. Moreover, we also give the resource

estimation for Grover algorithm on 2-step LED-128 and

AES2 in Supplementary C. Compared with the proposed

quantum attacks on 2-step LED-128 and AES2, the

corresponding Grover algorithm costs much more since the

Grover algorithm requires more iterations, except for the width.

Besides, it is worth noting that the resource estimation for OS

algorithm in Q1 model should also consider the cost of preparing

the quantum state |ψg〉 � ⊗cn(∑x∈{0,1}n |x〉|g(x)〉) with quantum

read-only memory (QROM). According to Theorem 2 of Ref.

[37], we can obtain that the transform

∑
x∈ 0,1{ }u

|x〉|0〉↦ ∑
x∈ 0,1{ }u

|x〉|g x( )〉

costs Toffoli depth �2u/ω� + n(ω − 1), �2u/ω� + n(ω − 1) Toffoli
gates and n(ω − 1) + �log(2u/ω)�) ancilla qubits, where ω is a

power of 2 such that 1 < ω < 2u. Therefore, the preparing of the

quantum state |ψg〉 in OS algorithm for 2-step LED-128 requires

Toffoli depth 246, 253.3 Toffoli gates and 214.1 ancilla qubits when

ω = 2. The preparing of the quantum state |ψg〉 in OS algorithm

for AES2 costs Toffoli depth 288, 296.3 Toffoli gates and 217.2 ancilla

qubits when ω = 4. In such a case, we can easily prepare the

quantum state |ψg〉 under the resources of the iteration in OS

algorithm. Therefore, the cost incurred by preparing the

quantum state |ψg〉 of OS algorithm in Q1 model can be

ignored. Similarly, the cost imposed by recovering the period

K1 of GMS and OS algorithms can also be ignored since it is

relatively small in terms of magnitude compared with the

iteration in GMS and OS algorithms.

5 Conclusion

In this study, we consider the security of two-round Even-

Mansour constructions in quantum setting. Compared with the
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classical attack with optimal query complexity, the presented

quantum key-recovery attack on 2EM1 construction reduces the

query complexity by a factor of 2n/6. For 2EM2 and 2EM3

constructions, we design quantum key-recovery attacks in

Q1 and Q2 model respectively. The comparison in Table 2

shows that our attacks are more efficient than Grover search

and QMITM attack no matter in Q1 or Q2 model. Furthermore,

we also give the applications of proposed quantum attacks and

analyze the corresponding resource estimation.

Data availability statement

The original contributions presented in the study are included in

the article/Supplementary Material, further inquiries can be directed

to the corresponding author.

Author contributions

These authors contributed equally to this work.

Funding

This work was supported by National Natural Science

Foundation of China (Grant Numbers 61972048, 61976024),

Henan Key Laboratory of Network Cryptography Technology

(LNCT2021-A10), BUPT Excellent Ph.D. Students Foundation

(Grant Number CX2019207) and China Scholarship Council

(Grant Number 202006470082).

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphy.

2022.1028014/full#supplementary-material

References

1. Even S, Mansour Y. A construction of a cipher from a single
pseudorandom permutation. J Cryptology (1997) 10(3):151–61. doi:10.1007/
s001459900025

2. Orr D, Keller N, Shamir A. Minimalism in cryptography: The even-mansour
scheme revisited. In: D Pointcheval T Johansson, editors. Advances in cryptology -
EUROCRYPT 2012 - 31st annual international conference on the theory and
applications of cryptographic techniques. Cambridge, UK: Springer (2012).
p. 336–54. April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in
Computer Science.

3. Bogdanov A, Knudsen LR, Leander G, Standaert F-X, Steinberger JP,
Tischhauser E. Key-alternating ciphers in a provable setting: Encryption
using a small number of public permutations - (extended abstract). In:
D Pointcheval T Johansson, editors. Advances in cryptology -
EUROCRYPT 2012 - 31st annual international conference on the theory
and applications of cryptographic techniques. Cambridge, UK: Springer
(2012). p. 45–62. April 15-19, 2012. Proceedings, volume 7237 of Lecture
Notes in Computer Science.

4. Lampe R, Patarin J, Seurin Y. An asymptotically tight security analysis of the
iterated even-mansour cipher. In: X Wang K Sako, editors. Advances in cryptology -
ASIACRYPT 2012 - 18th international conference on the theory and application of
cryptology and information security. Beijing, China: Springer (2012). p. 278–95.
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science.

5. Chen S, Steinberger JP. Tight security bounds for key-alternating ciphers. In:
PQ Nguyen E Oswald, editors. Advances in cryptology - EUROCRYPT 2014 - 33rd
annual international conference on the theory and applications of cryptographic
techniques. Copenhagen, Denmark: Springer (2014). p. 327–50. May 11-15, 2014.
Proceedings, volume 8441 of Lecture Notes in Computer Science.

6. Jordan SP, Liu Y-K. Quantum cryptanalysis: Shor, grover, and beyond. IEEE
Secur Priv (2018) 16(5):14–21. doi:10.1109/msp.2018.3761719

7. Bennett CH, Brassard G. Quantum cryptography: Public key distribution and
coin tossing (2020). arXiv preprint arXiv:2003.06557.

8. Deng FG, Long GL. Bidirectional quantum key distribution protocol with
practical faint laser pulses. Phys Rev A (2004) 70(1):012311. doi:10.1103/PhysRevA.
70.012311

9. Ye T-Y, Li H-K, Hu J-L. Semi-quantum key distribution with single photons in
both polarization and spatial-mode degrees of freedom. Int J Theor Phys (Dordr)
(2020) 59(9):2807–15. doi:10.1007/s10773-020-04540-y

10. Ye T-Y, Geng M-J, Xu T-J, Chen Y. Efficient semiquantum key distribution
based on single photons in both polarization and spatial-mode degrees of freedom.
Quan Inf Process (2022) 21(4):123–1. doi:10.1007/s11128-022-03457-1

11. Zhandry M. How to construct quantum random functions. In: 53rd annual
IEEE symposium on foundations of computer science. New Brunswick, NJ, USA:
FOCSIEEE Computer Society (2012). p. 679–87. October 20-23, 2012.

12. Kaplan M, Leurent G, Anthony L, Naya-Plasencia M. Breaking symmetric
cryptosystems using quantum period finding. In: M Robshaw J Katz, editors.
Advances in cryptology - CRYPTO 2016 - 36th annual international cryptology
conference. Santa Barbara, CA, USA: Springer (2016). p. 207–37. August 14-18,
2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science.

13. Kuwakado H, Morii M. Security on the quantum-type even-mansour cipher.
In: Proceedings of the international symposium on information theory and its
applications, ISITA 2012. Honolulu, HI, USA: IEEE (2012). p. 312–6. October
28-31, 2012.

14. Alagic G, Chen B, Katz J, Majenz C. Post-quantum security of the even-
mansour cipher. In: Orr dunkelman and stefan DziembowskiAdvances in cryptology
- EUROCRYPT 2022 - 41st annual international conference on the theory and
applications of cryptographic techniques. Trondheim, Norway: Springer (2022).
p. 458–87. May 30 - June 3, 2022, Proceedings, Part III, volume 13277 of Lecture
Notes in Computer Science.

Frontiers in Physics frontiersin.org13

Cai et al. 10.3389/fphy.2022.1028014

https://www.frontiersin.org/articles/10.3389/fphy.2022.1028014/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.1028014/full#supplementary-material
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
https://doi.org/10.1109/msp.2018.3761719
https://doi.org/10.1103/PhysRevA.70.012311
https://doi.org/10.1103/PhysRevA.70.012311
https://doi.org/10.1007/s10773-020-04540-y
https://doi.org/10.1007/s11128-022-03457-1
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1028014


15. Kaplan M. Quantum attacks against iterated block ciphers. CoRR abs (2014)
1410–34.

16. Brassard G, Høyer P, Tapp A. Quantum cryptanalysis of hash and claw-free
functions. In: CL Lucchesi AV Moura, editors. Latin ’98: Theoretical informatics,
third Latin American symposium. Campinas, Brazil: Springer (1998). p. 163–9.
April, 20-24, 1998, Proceedings, volume 1380 of Lecture Notes in Computer
Science.

17. Nikolic I, Wang L, Wu S. Cryptanalysis of round-reduced LED. IACR Cryptol
Eprint Arch (2015) 429.

18. Dinur I, Orr D, Keller N, Shamir A. Key recovery attacks on 3-round even-
mansour, 8-step led-128, and full AES2. In: K Sako P Sarkar, editors. Advances in
cryptology - ASIACRYPT 2013 - 19th international Conference on the Theory and
Application of Cryptology and information security. Bengaluru, India: Springer
(2013). p. 337–56. December 1-5, 2013, Proceedings, Part I, volume 8269 of Lecture
Notes in Computer Science.

19. Dinur I, Orr D, Keller N, Shamir A. Key recovery attacks on iterated even-
mansour encryption schemes. J Cryptol (2016) 29(4):697–728. doi:10.1007/s00145-
015-9207-3

20. Isobe T, Shibutani K. New key recovery attacks on minimal two-round even-
mansour ciphers. In: T Takagi T Peyrin, editors. Advances in cryptology -
ASIACRYPT 2017 - 23rd international Conference on the Theory and
Applications of Cryptology and information security. Hong Kong, China:
Springer (2017). p. 244–63. December 3-7, 2017, Proceedings, Part I, volume
10624 of Lecture Notes in Computer Science.

21. Leurent G, Sibleyras F. Low-memory attacks against two-round even-
mansour using the 3-xor problem. In: S Barbara, editor. Alexandra boldyreva
and daniele MicciancioAdvances in cryptology - CRYPTO 2019 - 39th annual
international cryptology conference. CA, USA: Springer (2019). p. 210–35.
August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes in
Computer Science.

22. Hosoyamada A, Aoki K. On quantum related-key attacks on iterated even-
mansour ciphers. IEICE Trans Fundamentals (2019) 102(1):27–34. doi:10.1587/
transfun.e102.a.27

23. Grover LK. A fast quantum mechanical algorithm for database search. In:
GL Miller, editor. Proceedings of the twenty-eighth annual ACM symposium on the
theory of computing. Philadelphia, Pennsylvania, USA: ACM (1996). p. 212–9. May
22-24, 1996.

24. Leander G, May A. Grover meets simon - quantumly attacking the fx-
construction. In: T Takagi T Peyrin, editors. Advances in cryptology - ASIACRYPT
2017 - 23rd international Conference on the Theory and Applications of Cryptology and
information security. Hong Kong, China: Springer (2017). p. 161–78. December 3-7,
2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science.

25. Bonnetain X, Hosoyamada A, Naya-Plasencia M, Sasaki Y, Schrottenloher A.
Quantum attacks without superposition queries: The offline simon’s algorithm. In:
SD Galbraith S Moriai, editors. Advances in cryptology - ASIACRYPT 2019 - 25th
international Conference on the Theory and Application of Cryptology and

information security. Kobe, Japan: Springer (2019). p. 552–83. December 8-12,
2019, Proceedings, Part I, volume 11921 of Lecture Notes in Computer Science.

26. Brassard G, Hoyer P, Mosca M, Tapp A. Quantum amplitude amplification
and estimation. Contemp Math (2002) 305:53–74. doi:10.1090/conm/305/05215

27. Simon DR. On the power of quantum computation. SIAM J Comput (1997)
26(5):1474–83. doi:10.1137/s0097539796298637

28. Kilian J, Rogaway P. How to protect DES against exhaustive key search. In:
K Neal, editor. Advances in cryptology - CRYPTO ’96, 16th annual international
cryptology conference. Santa Barbara, California, USA: Springer (1996). p. 252–67.
August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science.

29. Guo J, Peyrin T, Poschmann A, Matthew JB. Robshaw. The LED block cipher.
In: Bart preneel and tsuyoshi TakagiCryptographic hardware and embedded systems
- CHES 2011 - 13th international workshop. Nara, Japan: Springer (2011). p. 326–41.
September 28 - October 1, 2011, Proceedings, volume 6917 of Lecture Notes in
Computer Science.

30. Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A, Matthew J, et al.
Present: An ultra-lightweight block cipher. In: Pascal paillier and ingrid
VerbauwhedeCryptographic hardware and embedded systems - CHES 2007, 9th
international workshop. Vienna, Austria: Springer (2007). p. 450–66. September 10-
13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science.

31. Rahman M, Paul G. Grover on present: Quantum resource estimation. In:
IACR cryptol. ePrint arch. (2021). p. 1655.

32. Stein W. Sage mathematics software (2007). Available at: http://www.
sagemath//org.

33. Zou J, Wei Z, Sun S, Liu X, Wu W. Quantum circuit implementations of AES
with fewer qubits. In: S Moriai H Wang, editors. Advances in cryptology -
ASIACRYPT 2020 - 26th international Conference on the Theory and
Application of Cryptology and information security, daejeon. South Korea:
Springer (2020). p. 697–726. December 7-11, 2020, Proceedings, Part II, volume
12492 of Lecture Notes in Computer Science.

34. Jaques S, Naehrig M, Roetteler M, Virdia F. Implementing grover oracles for
quantum key search on AES and lowmc. In: A Canteaut Y Ishai, editors. Advances
in cryptology - EUROCRYPT 2020 - 39th annual international conference on the
theory and applications of cryptographic techniques. Zagreb, Croatia: Springer
(2020). p. 280–310. May 10-14, 2020, Proceedings, Part II, volume 12106 of
Lecture Notes in Computer Science.

35. Li ZQ, Cai BB, Sun HW, Liu HL,Wan LC, Qin SJ, et al. Novel quantum circuit
implementation of advanced encryption standard with low costs. Sci China Phys
Mech Astron (2022) 65(9):290311–6. doi:10.1007/s11433-022-1921-y

36. Bonnetain X, Jaques S. Quantum period finding against symmetric primitives
in practice. IACR Trans Cryptogr Hardw Embed Syst (2022) 2022(1):1–27. doi:10.
46586/tches.v2022.i1.1-27

37. Berry DW, Craig G, Motta M, McClean JR, Ryan B. Qubitization of arbitrary
basis quantum chemistry leveraging sparsity and low rank factorization. Quantum
(2019) 3:208. doi:10.22331/q-2019-12-02-208

Frontiers in Physics frontiersin.org14

Cai et al. 10.3389/fphy.2022.1028014

https://doi.org/10.1007/s00145-015-9207-3
https://doi.org/10.1007/s00145-015-9207-3
https://doi.org/10.1587/transfun.e102.a.27
https://doi.org/10.1587/transfun.e102.a.27
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1137/s0097539796298637
https://doi.org/10.1007/s11433-022-1921-y
https://doi.org/10.46586/tches.v2022.i1.1-27
https://doi.org/10.46586/tches.v2022.i1.1-27
https://doi.org/10.22331/q-2019-12-02-208
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1028014

	Quantum attacks on two-round even-mansour
	1 Introduction
	2 Preliminaries
	2.1 Quantum algorithms
	2.1.1 Grover algorithm
	2.1.2 Simon algorithm
	2.1.3 Grover-meets-simon algorithm
	2.1.4 Offline Simon algorithm

	2.2 Target ciphers
	2.2.1 LED
	2.2.2 AES2


	3 Quantum attacks
	3.1 Quantum key-recovery Attack on 2EM1 construction
	3.1.1 The Application to 2-step LED-64

	3.2 Quantum key-recovery Attacks on 2EM2 and 2EM3 constructions
	3.2.1 The applications to 2-step LED-128 and AES2


	4 Resource estimation
	4.1 Resource estimation of target ciphers
	4.1.1 Resource estimation of 2-step LED-64 and 2-step LED-128
	4.1.2 Resource estimation of AES2

	4.2 Resource estimation of Grover algorithm on 2-step LED-64
	4.3 Resource estimation of proposed quantum attacks on 2-step LED-128 and AES2

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


