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We investigate the input and propagation characteristics and geometric

parametric instability of the partial Gaussian beam limited by the fiber face

area in a graded-index multimode fiber. The theoretical simulation shows that

the energy of the partial Gaussian beam and the coupling efficiency of the fiber

face are restricted by the fiber face area for the different powers and spot sizes

of the input Gaussian beam. The spot intensity pattern of the partial Gaussian

beam exhibits a standard oscillating distribution in space as the beam

undergoes periodic oscillations with propagation. Also, the dynamic

evolution process from parametric sidebands to a supercontinuum is

affected by the peak power, the spot size of the partial Gaussian beam, and

the fiber length. Finally, the experimental output spectra with different powers

of the partial Gaussian beam and fiber lengths in a graded-index multimode

fiber confirm the prediction of theoretical simulations. This work provides

practical guidance for optimizing supercontinuum source expansion and

spectral power density.
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Introduction

Multimode fibers (MMFs) have drawn renewed attention owing to their versatile

platform to investigate the rich and complex phenomena in multimodal nonlinear

environments such as spatiotemporal dynamics [1–3], spatial beam self-cleaning [4,

5], rogue waves [6], supercontinuum generation [7, 8], spatiotemporal mode-locking [9,

10], multimode solitons [11–13], and geometric parametric instability (GPI) [14, 15].

These studies are expected to enhance the bandwidth of telecom systems through space-

division multiplexing as well as can offer a new route to mode-area scaling for high-power
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lasers in imaging systems [16–18], especially oriented toward the

biomedical imaging domain [19–22].

Graded-index (GRIN) MMFs play an important role in the

aforementioned studies for their arbitrary deviation of the

refractive index profile, so as to the mode propagation

constants happen to be equidistant [23, 24]. As a result, beam

revivals in the form of compressions and expansions periodically

occur during propagation. Under nonlinear conditions, these

natural oscillating periodic behaviors can give rise to the special

class of parametric instabilities that are called GPI. Recently, GPI

in GRIN-MMFs has been studied extensively from various

perspectives, including the first theoretical and experimental

observation [14, 15], the adjustment of sideband positions

[25], the rapid replication [26], Moiré-like patterns [27],

rigorous analysis [28], modal perspective [29], correlation in

energy [30], and higher-order dispersion effect [31]. These

reports are all basically studied by using the injected field of a

Gaussian beam.

Limited by the small face of the GRIN-MMFs, the incident of

a large Gaussian spot will bring the result of partial Gaussian light

injection, which makes the dynamic propagation complex. The

partial Gaussian beam can be represented properly by the finite

superposition of the Gaussian wavelet, and the propagation of the

partial Gaussian beam was calculated [32]. The analytical

expression for the kurtosis parameter of partially simplified

general-type beams was derived based on the second- and

fourth-order moment formalism [33]. The spatially partial

Gaussian pulsed beam is combined with the conventional

Gaussian pulsed beam decomposition method to enable the

modeling of diffraction of a general ultrashort pulse from an

arbitrarily shaped hard aperture [34]. Furthermore, when the

partial Gaussian beam is transmitted in the GRIN-MMFs, the

energy of the beam is partially transmitted because the Gaussian

beam does not enter the fiber completely and unlike the self-

similar transformation pattern of the complete Gaussian beam

[35]. Accordingly, the generated GPI sidebands will also be

affected by the partial Gaussian beam in transmission.

However, there are no reports on the propagation

characteristics of partial Gaussian beams in GRIN-MMFs to

the best of our knowledge.

In this study, we investigate the input and propagation

characteristics and GPI of the radially symmetric partial

Gaussian beam in a GRIN-MMF by employing the (3 + 1) D

NLSE in theory. The restriction of the fiber face area on the

Gaussian beam results in partial Gaussian beam production.

Meanwhile, the spatial distributions of the partial Gaussian

beam in GRIN-MMFs are observed, and it is found that it is

different from the case of a Gaussian beam. Also, the generations

of GPI sidebands are further studied, and the influence of the

power and spot size of the partial Gaussian beam on GPI

sidebands is revealed. Furthermore, the generated spectrum of

the partial Gaussian beam for different input powers and fiber

lengths is observed realistically and experimentally.

Theoretical model

The propagation of a spatiotemporal optical beam inside a

GRIN-MMF can be theoretically described by a (3 + 1) D NLSE

in the presence of a parabolic potential [14, 15].

i
zψ

zz
+ 1
2k0

∇2
⊥ψ + κ″

2
z2ψ

zt2
− k0Δ
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r2ψ + γ
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where ψ(x, y, z, t) represents the complex field envelope

measured in
��
W

√
/m and z and t denote the propagation

distance and the retarded time in a frame of reference moving

with the pulse at the group velocity vg (t � τ − z/vg),
respectively. ∇2

⊥ � z2x + z2y is the transverse Laplacian operator,

r2 � x2 + y2, k0 � ω0n0/c, n0 is the refractive index at the center

of the fiber core, Δ is the relative index difference, and a is the

core radius. In addition, κ″ denotes the group-velocity dispersion
evaluated at the carrier frequency ω0, γ � ω0n2/c, and n2 stands

for the nonlinear Kerr coefficient associated with silica glass.

In general, it is assumed as an infinite parabolic profile such

that the propagation constant of the modes is in equal spacing,

but the highest-order modes do not have the equidistant feature

arising from the effects of a cladded finite-size core. Thus, the

lower-order sets of modes will remain linearly stable with

periodic oscillations along the propagation [36], i.e., if a

Gaussian mode beam is injected, the field remains

approximately Gaussian [37]. To treat diverse practical cases,

we here investigate the spatiotemporal dynamic while inputting a

partial Gaussian beam in a GRIN-MMF. The analysis of

nonlinear light propagation in an MMF becomes complex

since it involves coupled spatial and temporal effects between

hundreds or thousands of modes. From a theoretical aspect,

solving the (3 + 1) D NLSE of Equation 1 is the most direct

method, but it is computationally the most expensive method

[11]. In this regard, several recent works have demonstrated with

the neural network and deep-learning methods to improve the

calculation speed [38–41]. More immediately, as suggested in

[26], the (3 + 1) D problem of Eq. 1 can be approximately reduced

to a (1 + 1) D NLSE through nonlinear pulse propagation. Along

their lines, we take the form ψ(x, y, z, t) � u(z, t)A(x, y, z)
while considering continuous wave (CW) excitation. Based on

perturbation schemes, we assume u(z, t) � 1 + ε(z, t), where
ε(z, t) describes a small complex perturbation (|ε|≪ 1). For

convenience, the amplitude of the background wave is taken

here to be unity. By inserting the Ansatz form ψ(x, y, z, t) in Eq.

1, we get

i
zA
zz

+ 1
2k0

∇2
⊥A − k0Δ

a
r2A + γ|A|2A � 0 , (2)

i
zε

zz
+ κ″

2
z2ε

zt2
+ γ

∫∫|A|4dxdy
∫∫|A|2dxdy (ε + ε*) � 0. (3)

Equation 2 is used to describe the self-imaging evolution of

the beam, which preserves the nonlinearity term slightly different
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from [26]. Exterminating the transverse spatial dependence, Eq. 3

manages the temporal evolution of the small perturbation, which

is influenced by the space field in the z-axis. If the self-imaging

field is approximately linear in the aforementioned derivation,

which means the absence of a nonlinearity term in Eq. 2, we can

get the envelope u(z, t) [26, 28]

i
zu
zz

+ κ″
2

z2u
zt2

+ γ
∫∫|A|4dxdy
∫∫|A|2dxdy|u|

2u � 0. (4)

Thus, Eqs. 2–4 can manage the propagation of the partial

Gaussian beam and the generated GPI sidebands in a GRIN-

MMF, respectively.

Input and propagation of the partial
Gaussian beam

First, we assume that the input field before entering the fiber

face is an on-axis Gaussian spatial beam as follows: G(x, y, 0) �

����
Ppσ

√
/wi exp[−r2/(2w2

i )] and σ � 2η0γa/(n0π
���
2Δ

√ ), with

η0 �
�����
μ0/ε0

√
, where μ0 and ε0 are the permeability and

permittivity of the vacuum, respectively. Here, Pp is the input

peak power and wi is the beam spot size (where the intensity

drops by e−2). The input field after entering the fiber face is

considered a radially symmetric partial Gaussian beam when the

on-axis Gaussian beam spot size is larger than the fiber face. Figures

1A,B present the intensity distribution of the Gaussian beam in a

transverse plane before and after entering the fiber face, respectively.

It can be seen directly that the partial Gaussian beam arises from an

effect of truncation on the Gaussian beam, and the distinct sharp

boundary is generated as shown in Figure 1B. We define the energy

of the complete Gaussian beam as E1 � ∫∫ |G|2dxdy � πPpσ,

the energy of the partial Gaussian beam as

E2 � ∫∫
s
|G|2dxdy � πPpσ(1 − exp(−a2/w2

i )), where s is the

area of the fiber face with the fiber radius a, and the coupling

efficiency of the fiber face as ηef f � E2/E1 � 1 − exp(−a2/w2
i ).

Figures 1C, D show the dependences of the energies E1, E2 and

the coupling efficiency of the fiber face ηef f on the initial power Pp,

respectively. It can be found that for a given larger spot size wi, the

energies E1 and E2 are both linearly increasing (Figure 1C), and the

coupling efficiency of thefiber face ηef f remains constant (Figure 1D),

while the energy E1 is consistent, the energy E2 is nonlinearly

decreasing and the coupling efficiency of the fiber face ηef f is

nonlinearly decreasing (is the same trend of change with E2) as a

function of the initial spot size wi for a given peak power Pp, which

are shown in Figures 1E,F. It is to be noted that, when the spot sizewi

is small, the energies E1 and E2 are the same and the corresponding

FIGURE 1
(Color inline) Spot intensity patterns before (A) and after (B)
entering the fiber face with the fiber core radius a � 25μm [the
white dotted lines in (A)]. The red lines are the cross-section
intensity profiles. Here, Pp � 142 kW, wi � 30μm, and
λ0 � 1064nm. Dependences of the energy of the complete and
partial Gaussian beam E1 and E2, and the coupling efficiency of the
fiber face ηeff on (C and D) the peak power Pp for a given wi �
30μm and (E and F) the spot size wi for a given PP � 142 kW.

FIGURE 2
(Color inline) Evolution intensity patterns and the
corresponding cross-section intensity profiles with the initial
partial Gaussian beam [as shown in Figure 1B] at the distances (A)
z1 � 0.007mm; (B) z2 � 0.091mm; (C) z3 � 0.183mm; and
(D) z4 � 0.275mm. Here, n0 � 1.46, Δ ≈ 0.01, and n2 �
1.2 × 1022 m2 · v−2.
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coupling efficiency of the fiber face ηef f is a hundred percent because

the complete Gaussian beam is fully coupled into the fiber.

We next analyze the evolution of the partial Gaussian beam in a

GRIN-MMF. The beam evolution in an MMF is a multimodal

pattern process in which principal mode propagation is a localization

of a group of guided modes and Gaussian mode represents the

fundamentalfibermode [42]. Under the parabolic index profile of the

MMF, any stationary nonlinearmode undergoes periodic oscillations

(also named the periodic self-imaging phenomenon) with a spatial

period of zp � πa/
���
2Δ

√
. Figure 2 shows the evolution intensity

patterns and the corresponding cross-section intensity

profiles with the initial partial Gaussian beam at different

distances in the first half spatial period. The patterns in

Figure 1B→Figure 2A–D→Figure 2D–A→Figure 1B

constitute a cycle of the self-imaging process. Unlike the

transformation pattern of the Gaussian beam (shown in

[35]), the distribution intensity pattern of the partial

Gaussian beam does not have the self-similar feature,

although it is linearly stable in transmission. The

distribution of the partial Gaussian beam is formed by the

edge-to-center oscillation, starting at the sharp boundary, as

seen in the change from Figure 1B to Figure 2A. From Figures

2B–D, one can see that the spot gradually shrinks while the

oscillating distribution intensity increases as the distance

increases, especially the intensity of the spot center changes

alternately and finally reaches a maximum value at the

distance of half a period.

We further demonstrate the periodic compressions and

expansions of the partial Gaussian beam with four

propagation cycles, as shown in Figure 3A. One can clearly

find that the cross-section intensity profile shows a distinct

oscillating distribution when the normalized intensity value is

below about five. Furthermore, we can also see that the self-

imaging is an approximately linear effect from Figure 3A

although the nonlinearity term is preserved in Eq. 2 and the

nonlinear Kerr coefficient n2 here is larger than the ones in [15,

26]. Meanwhile, the corresponding peak intensity Ppz is

presented in the black line of Figure 3B. It can be found that

both wings of maximum peak intensities exhibit oscillatory

characteristics, which indicates the alternating changes of the

spot center. Through solving Eq. 2 in the presence and absence of

the nonlinearity, we find that the evolutionary characteristics of

the corresponding peak intensities Ppz in both cases are

approximately uniform. Hence, we can use Eq. 4 to

investigate the generated GPI sidebands in GRIN-MMFs.

Physically, the periodic beam focusing enables spatial–temporal

coupling, which generates a z-varying energy E-related value

ΓE(Z) � (ʃʃ|A(x,y, z)|4dxdy)/(ʃʃ|A(x,y, z)|2dxdy). Also, it

couples the spatial evolution to the temporal envelope, resulting

in the periodic Kerr nonlinearity [the last term of Eq. 4]. By

numerically calculating the ratio of the two overlaps that integrate

over the z-varying transverse plane of the partial Gaussian beam,

one can get that the evolution plots of the related value ΓE � Ppz/2

as shown in Figure 3B with a red dotted line.

The generated GPI sidebands

We next analyze the GPI sidebands in the GRIN-MMF,

which play a prominent role in inciting supercontinuum

generation. The GPI sidebands at different distances for

two peak powers are obtained by solving Eq. 4 with a CW

excitation, as shown in Figures 4A,B. One can see that for the

case of high peak power, GPI first generates a series of narrow

spectral sidebands, which then gradually broaden

accompanying the increased intensity and eventually evolve

into a supercontinuum. For the low peak power case, the GPI

sidebands have the same evolutionary trend but at a slower

rate. It is concluded that the spectrum is favorable to be

broadened with higher peak power because of the enhanced

self-phase modulation and four-wave mixing effects. It is

worth noting that the frequency detuning of each sideband

center f1, f2, f3, . . . has a small shift for two different peak

powers.

We further consider the dependence of the intensity and the

frequency detuning of the sideband center f1 and f2 on the peak

power Pp and the spot size wi, respectively. It can be seen that the

intensities of f1 and f2 are linearly increasing and the frequency

detuning is linearly decreasing as a function of the peak power Pp

from Figures 5A,B, respectively. Conversely, the intensities are

nonlinearly decreasing and the frequency detuning is nonlinearly

increasing as a function of the spot size wi, as shown in Figures

FIGURE 3
(Color inline) (A) Evolution of the spot cross-section intensity
through a distance of 2.2 mm [the self-imaging period distance
zP � 0.55mm]. (B) Evolution of the corresponding peak intensity
Ppz and the energy-related value ΓE. The black dotted line
corresponds to the intensity value of 5. Here, the parameters are
the same as in Figure 2.
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5C,D, respectively. Those results indicate that the supercontinuum

generation and the frequency tendency from GPI sidebands to the

pump source are more favorable with increased peak power and

decreased spot size. Similar results of frequency shift and

supercontinuum generation in GPI sidebands with the increasing

fiber core radius were also found in [25].

FIGURE 4
(Color online) Spectrum profile at different distances excited by the partial Gaussian beam with the peak power (A) Pp � 300 kW and (B)
PP � 142 kW when spot sizewi � 30μm. The frequency detuning of the first, second, and third sideband centers f1, f2, and f3 is delineated with the
black dotted lines, respectively. Here, κ″ � 1.75 s−26/m, and the other parameters are the same as in Figure 2.

FIGURE 5
(Color online) Dependences of the intensity and frequency detuning of the first and second sideband center f1 and f2 at a distance z � 30mm on
(A and B) the peak power Pp withwi � 30μm and (C andD) the spot sizewi with PP � 142 kW. Here, the other parameters are the same as in Figure 4.

Frontiers in Physics frontiersin.org05

Yang et al. 10.3389/fphy.2022.1027845

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1027845


Experimental observation of the
frequency spectrum

In the experiment, an amplified Q-switched microchip laser

is used as a pump source, which delivers 94 μJ pulses at 1,064 nm

with a pulse duration of 400 ps and a repetition rate of 500 Hz.

The linearly polarized Gaussian pump pulses are launched into

the GRIN-MMF with a core diameter of 50 μm, NA = 0.200, and

a refractive index contrast of 1.482 (Thorlabs, GIF50C). Three

lenses with focal lengths of 50 mm, 50 mm, and 70 mm are used

for beam focusing. At the input face of the fiber, the beam has a

diameter of 200 μm, which is greater than the fiber core diameter.

A large set of transverse spatial modes is excited at the fiber input

by focusing the laser beam. Also, the output beam from the

GRIN-MMF is detected by using an optical spectrum analyzer

covering the spectral range from 600 to 1700 nm (Yokogawa,

AQ6370C).

The experimentally observed spectra for different average

powers and fiber lengths are shown in Figure 6. In the case of

Figure 6A, the 400-ps pump pulse at 1,064 nm is launched into a

30-m GRIN-MMF, which has a free space coupling efficiency of

40%. It can be found that the pump pulse experiences tiny

spectral broadening for relatively low average power (5 and

10 mW). Further spectral broadening is observed with the

increasing average power. When the average power reaches

35 mW, no more obvious spectral broadening occurred.

Similarly, in the case of Figure 6B, the pump pulse is

launched into a 10-m GRIN-MMF with 60% free space

coupling efficiency. It can be found that spectral broadening

can be observed at a low average power. Meanwhile, the spectrum

is further broadened with the increasing average power. The

experimental results confirm the numerical simulation results of

the influence of peak power on the spectral broadening as shown

in Figure 4. The influence of the fiber length on spectrum

broadening is not observed because the coupling efficiency of

the 30-m fiber is lower than that of the 10-m fiber.

Conclusion

In summary, we numerically explore the input and

propagation characteristics and GPI sidebands of the partial

Gaussian beam in GRIN-MMFs. The energy dependences of

the complete and partial Gaussian beams and the coupling

efficiency on the peak power and the spot size are shown,

respectively. The partial Gaussian beam with a sharp

boundary presents the spatial distribution of oscillation in

propagation. Our studies indicate that each GPI sideband

gradually strengthened and broadened with the increasing

fiber length and finally formed a supercontinuum. Also, the

intensity and frequency detuning of the sideband center

frequency depend on the peak power and the spot size.

Meanwhile, the generated supercontinuum spectra of the

partial Gaussian beam in GRIN-MMFs are observed

experimentally. Our studies provide actual operation guidance

for optimizing the spectral extent and spectral power density of

supercontinuum sources based on the GPI in GRIN-MMFs.

Data availability statement
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included in the article/supplementary material; further
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FIGURE 6
(Color online) Output spectra obtained from the (A) 30-mGRIN-MMFwith 40% coupling efficiency and (B) 10-mGRIN-MMFwith 60% coupling
efficiency at different average powers.
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