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Generation of nonlinear frequency combs in χ(3) optical microresonators has

attracted tremendous research interest during the last decade. Recently,

realization of the microcomb owing to χ(2) optical nonlinearity in the

microresonator promises new breakthroughs and is a big scientific

challenge. Moreover, it is of high scientific interest that the presence of both

second- and third-order nonlinearities results in complex cavity dynamics. In

particular, the role of χ(3) nonlinearity in the generation of the quadratic

microcomb is still far from being well understood. Here, we demonstrate

the interaction between the second- and third-order nonlinearity in the

lithium niobate microresonator, which can provide a new way of phase

matching to control the mode-locking condition and pulse number for the

quadratic microcomb. Our results verify that the Kerr nonlinearity can benefit

the quadratic microcomb. The principle can be further extended to other

material platforms to provide more manipulation methods for comb

generation based on χ(2) nonlinearity at mid-infrared.

KEYWORDS

quadratic soliton, frequency comb, third-order nonlinearity, microresonator, phase
modulation

1 Introduction

On-chip generation of optical frequency combs via the Kerr nonlinearity has

attracted significant interest in recent years [1–3] owing to their benefits for

applications ranging spectroscopy [4–6], optical communications [6, 7], ranging

[8, 9], frequency synthesis [10], astrocombs [11, 12], and optical clocks [13, 14]. In

such Kerr resonators, cascaded four-wave mixing (FWM) processes lead to the

formation, around the pump frequency, of a uniform frequency comb, where self-

and cross-phase modulation (SPM and XPM) compensate the unequal cavity mode

spacing induced by the group velocity dispersion [15]. Because of the relatively low

strength of third-order nonlinearity, generation of Kerr combs requires high pump

power. In addition, the pump frequency must be close to the zero-dispersion point for

the ideal phase-matching of the effective FWM, which limits the wavelength range of

the comb because the comb lines are generated near the pump. The dispersion of the
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microresonator will lead to a finite bandwidth of the comb

generation process because the cascaded FWM is less efficient

once the comb modes are not commensurate with the cavity

mode spectrum. Although SPM and XPM can compensate this

mismatching by nonlinear optical mode pulling, but the high

pump power is necessary.

Recently, it was shown that the generation of quadratic

combs is possible in noncentrosymmetric materials possessing

quadratic nonlinearity, such as LiNbO3 (LN) or LiTaO3 (LTO)

[16–21]. They potentially offer lower pump power thresholds

by using the generally stronger χ(2) nonlinearities [22] and

permit the direct generation of combs in spectral regions

where the generation of conventional Kerr combs is

difficult to achieve, for e.g., because no suitable pump

sources are available or because the dispersion properties of

the material are not conducive to comb generation [17,

23–25]. However, in general, the pure quadratic nonlinear

resonators also contain third-order nonlinearity. Compared

with the purely second-order system, the participation of the

third-order nonlinearity can affect the comb mode-locking

behaviors, resulting in complex dynamics that are far from

well understood. Here, we numerically demonstrate the

dynamics of quadratic soliton in a continuous wave (cw)-

driven doubly resonant degenerate micro-optical parametric

oscillator (DR-DμOPO) and focussed in particular our

attention on the role of χ(3) effect, which can benefit the

mode-locking situation. We can control the pulse number

of steady-state solitons by varying the magnitude of the χ(3)

nonlinear strength. Interestingly, there is a range for χ(3) in

which single soliton stably exists, and the peak power of the

soliton decreases with the increase in χ(3). This phenomenon

suggests that χ(3) nonlinear effect can not only manipulate the

relative phase between the comb lines for mode locking but

also affect the phase matching in the microresonator. Our

results provide a new way to control the quadratic soliton with

the help of third-order nonlinearity.

2 Theoretical model and simulation
results

Figure 1 shows a schematic of a cw-pumped z-cut-LN DR-

DμOPO system in which the field evolution in the retarded time

frame is simulated. We consider slowly varying electric field

envelopes A and B with their carrier frequencies ω0 and 2ω0,

respectively [17–19]. Optical fields A and B circling in the DR-

DμOPO with both quadratic and cubic nonlinearity obey the

coupled equations:

zA

zz
� −αs

2
− i

ks″
2

z2

zτ2
( )A + iκBApe−iΔkz + iγ1|A|2A + i2γ12|B|2A,

(1)
zB

zz
� −αp

2
− Δk′ z

zτ
− i

kp″
2

z2

zτ2
[ ]B + iκA2eiΔkz + iγ2|B|2B

+ i2γ21|A|2B, (2)
and the boundary conditions are:

Am+1 0, τ( ) �
�����
1 − θs

√
Am L, τ( )e−iδs , (3)

Bm+1 0, τ( ) �
�����
1 − θp

√
Bm L, τ( )e−iδp +

��
θp

√
Bin, (4)

where A and B is the signal and pump field envelopes,

respectively, z is the longitudinal coordinate, αs,p are the

propagation losses, Δk is the wave-vector mismatch, Δk′ is the
group velocity mismatch, ks,p″ are the group-velocity dispersion

(GVD) coefficients, τ is a fast time variable in a reference frame

moving at the group velocity of the fundamental frequency ω0, L

is the nonlinear cavity length, m is an integer means the mth

roundtrips, θs,p are the coupler transmission coefficients, and δs,p
are signal- and pump-resonance phase detuning. γ1 and γ2 are

the SPM coefficients, γ12 and γ21 are the XPM coefficients, γ1 =

γ12 = 2πn3/λsAeff, γ2 = γ21 = 2πn3/λpAeff, where n3 is the nonlinear

index, λs,p are the wavelengths of the signal and pump field, and

Aeff is the effective mode area. κ � �
2

√
ω0deff/(Aeff

�������
c3n2s npϵ0

√
)

is the normalized second-order nonlinear coupling coefficient,

where deff is the effective second-order nonlinear coefficient, c is

the speed of light, ϵ0 is the vacuum permittivity, and ns,p are the

linear refractive indices. High-order dispersion and nonlinearity

are neglected for simplicity. Bin is the cw pump power.

To elucidate the χ(3) nonlinear effect on quadratic comb

generation, we choose the physical parameters as follows: L =

1 mm, αs = 11.2 dB/m, αp = 23.6 dB/m, ks″ = −330.2 fs2/mm,

kp″ = −164.1 fs2/mm, κ = 17W−1/2 m−1, Δk′= 156 ps/m, FSR=

129 GHz, and |Bin|
2 = 0.3 W. We solve the coupled-wave

equations (Eqs. 1, 2) by using the split-step Fourier method

and the fourth-order Runge–Kutta method. We first consider the

case of pure χ(2) nonlinearity by setting γ1 = γ2 = γ12 = γ21 = 0 and

the quasi-phase-matched condition Δk = 0. Our simulations,

beginning from noise, are iterated for 0.5 million roundtrips and

the results are obtained during a sweep of the laser frequency

across the resonance, which is similar to the method commonly

FIGURE 1
Schematic of the deterministic single quadratic soliton
generation in the DR-DμOPO with both quadratic and cubic
nonlinearities.
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used for the excitation of cavity soliton states in Kerr resonators

[26]. Figure 2A shows the temporal evolution and spectral

dynamics of the signal field A during the pump frequency

scanning process. At the start, the intracavity power increases

and reaches above the OPO threshold with pump frequency

accessing the cavity resonance. The temporal profiles exhibit

Turing patterns corresponding to the superposition of optical

pulses in the microresonator, and the spectrum appears to have

two non-degenerate comb-like structures. The number of pulses

in the cavity decreases as the power further increases. For the

detuning δp = 1.8 GHz, we obtain two irregular solitons and the

corresponding narrow spectrum, as shown in Figure 2B. Then,

we use the same parameters as mentioned previously and add the

third-order nonlinear effect by setting γ1 = γ12 = 1.16W−1m−1 and

γ2 = γ21 = 2.32 W−1m−1 to simulate the waveform inner cavity

evolutionary processes. The temporal evolution of the signal field

A is shown in Figure 2C. In the beginning, the temporal envelop

for the non-degenerate OPO comb with an even number of

optical pulses is observed. After Turing patterns, the intracavity

pulse number decreases one by one with the increment of the

detuning (i.e., intracavity power). The spectral bandwidth

becomes broader than the pure second-order nonlinearity

comb because of the optimized phase matching. For the

detuning δp = 1.87 GHz, we obtain the single soliton and

smooth sech2 spectrum (Figure 2D). The relative phase

between the comb lines (red dots in Figure 2D) becomes

uniform compared with pure second-order nonlinearity (red

dots in Figure 2B), which means that the third-order

nonlinearity (SPM and XPM) can effectively manipulate the

relative phase to realize the mode-locking condition. It is

obvious that χ(3) nonlinearity can affect the dynamics and

benefit the mode-locking microcomb from second-order

nonlinearity.

For second-order nonlinear materials, for example, LN

and LTO, quasi-phase-matching (QPM) based on the period

polling technique provides an effective and controllable

FIGURE 2
Temporal and spectral dynamics versus pump detuning δp in the DR-DμOPO (A) without (γ1 = γ2 = γ12 = γ21 = 0) and (C) with(γ1 = γ12 =
1.16 W−1m−1 and γ2 = γ21 = 2.32 W−1m−1) third-order nonlinearity. Temporal profile and the corresponding spectrum (B) without third-order
nonlinearity for the detuning δp = 1.8 GHz and (D) with third-order nonlinearity for the detuning δp = 1.87 GHz. tR is the round-trip time.
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method to increase the nonlinear conversion efficiency.

Recently, third-order optical nonlinearities in graphene

have been demonstrated to be large [27, 28] and have been

predicted to be highly dependent on the Fermi energy of

graphene, which can be readily changed by chemical

doping or electrostatic gating [29, 30]. This prediction

suggests that graphene can be used to make integrated

optical systems with large and electrically tunable third-

order nonlinearities. Therefore, we have a chance to control

the second- and third-order nonlinearities simultaneously by

combining QPM and graphene in an LN microresonator. To

get a clear insight about what role χ(3) nonlinearity has played,

we investigate the intracavity dynamics with varied χ(3). For

simplicity, we set γ0 = 1.16 W−1m−1, γ2 = 2γ1, and change γ1
coefficient from 0 to 5γ0. The output pulse number has an

obvious step-like curve with the increment of χ(3) nonlinearity,

as shown in Figure 3. For small γ1, the pulse number is still two

(purple color). In the second step, the single soliton arises

when γ1 increases from γ0 to 2.5γ0 (green color). If γ1 further

increases, the pulse number becomes two (yellow color) and

three (blue color). It means there is a suitable value of phase

from third-order nonlinearity (SPM and XPM) to compensate

the phase difference between the OPO comb lines. In other

words, the phase difference between OPO comb lines is not

unlimited. The insets in Figure 3 show the temporal profiles,

spectrum, and relative phase for different γ1. It is obvious that

third-order nonlinearity can change the relative phase

(i.e., mode-locking situation). This is the reason that the

single pulse becomes a multiple pulse if γ1 is too large.

In addition, the third-order nonlinearity also affects the

phase matching and conversion efficiency of the OPO process.

It is worth noting that the peak power of the single pulse

decreases with the increment of χ(3) nonlinearity, as shown in

Figure 4A. In cw-driven DR-DμOPO, the energy of signal field

A is mainly from the pump field B through the OPO process

determined by the phase matching. Figure 4B shows the

relationship between the peak power of the single pulse and

phase mismatch Δk. By comparing the two curves in Figures

4A,B, we believe that the SPM and XPM play the same role

with phase mismatch for the generation of the quadratic

microcomb.

It is well known that third-order nonlinearity is not only

related to χ(3) nonlinear strength but also determined by the

intracavity field power. This provides a flexible method to control

the soliton state. As shown in Figure 3, there are two pulses for

γ1 = 3γ0. If we reduce the pump power to 0.15 W, the mode-

locked single soliton will be realized. Figures 4C,D show the

temporal profile and spectrum, respectively. It indicates that

FIGURE 3
Pulse number of the quadratic soliton in the DR-DμOPO varies with χ(3) nonlinearity. (I)–(IV) Spectral profile and the corresponding spectrum for
different χ(3) nonlinearity. tR is the round-trip time.
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modulating χ(3) nonlinear strength by adjusting the pump power

is the most feasible method for inducing single soliton

generation.

3 Discussion and conclusion

In summary, we theoretically study the quadratic soliton

generation in DR-DμOPO containing third-order

nonlinearity. We show, for the first time, that third-order

nonlinearity can benefit the mode-locking of the quadratic

soliton by manipulating the relative phase between the comb

lines. Then, we find that there is a range for χ(3) nonlinearity in

which single soliton can be generated deterministically.

Results of numerical simulations have also shown that

third-order nonlinearity can not only control the pulse

number but also affect the generation efficiency of the

quadratic soliton through phase matching. In the case of a

stable single pulse, small third-order nonlinearity will be

better for the output power. Technically, the heterogeneous

waveguide of LN and other materials [31] can be used to

balance second- and third-order nonlinearities in the

microresonator. In addition, by integrating the LN

waveguide with a monolayer of graphene, third-order

nonlinear depends on the Fermi energy in graphene, which

will provide another way to electrically control the nonlinear

optical response in the microresonator [32, 33]. The more

flexible method is to choose suitable pump power because the

SPM and XPM are also related to the intracavity power. We

expect that our results will be useful in understanding the

dynamics of the nonlinear processes in quadratic

microresonators and will contribute to the efficient

generation of the coherent frequency combs in such

systems. χ(2) and χ(3) microresonators provide a unique

opportunity for quadratic soliton generation at the mid-

infrared spectral range with high pump-to-comb

conversion efficiency that may lead to significant

enhancement of the precision measurements and optical

signal processing.
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