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In this work, we report quantum tunnelling effects on the confined water chain

flipping, different from the spatial size and even electronic correlation effects of

the confinement environment. First-principles calculations and analyses

confirm that quantum tunnelling from the water chain itself enhances the

hydrogen bond rotation. Importantly, the neglected resonant tunnelling can

result in tunnelling rotation of hydrogen bonds with a probability close to

1 through the provided 0.6 eV energy, while the probability of generally

recognized sequential tunnelling is only 10−6. Not only that, compared to

sequential tunnelling, resonant tunnelling leads to a 20 K higher flipping

temperature of the water chain. Additionally, the ratio of the resonant

tunnelling probability to the thermal disturbance probability at 200 K is at

least ten times larger than that of sequential tunnelling, which further

illustrates the enhancement of hydrogen bond rotation brought about by

resonant tunnelling.
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Introduction

To achieve effective regulation of the water transport process, an important goal is to

deeply understand the confined hydrogen bond (H-bond) rotation mechanism at the

atomic level. Quantum effects have been reported to be essential and should be carefully

considered on a microscopic scale [1–7], including quantum effects related to water, such

as properties of electronic correlation [8–10], nuclear quantum effects [11, 12] and

tunnelling [13, 14]. This suggests that quantum effects play an important role in

understanding the nature of water and even regulating its behavior. More

importantly, some studies show that the H-bond rotation of water is affected by

quantum effects [8, 15]. As a microstructure, a hydrogen atom has a very small mass,

which leads to the existence of tunnelling effects from the water chain itself during

H-bond rotation. Moreover, a recent experiment revealed that quantum coherence can

effectively improve the tunnelling effects [1]. This inspired us to explore the deep effect of

the quantum properties of a water chain on the H-bond rotation.
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Currently, many studies have been performed on the

transport and H-bonds of confined water [16–23], including

on the step-by-step rotation behavior of confined water and its

intrinsic mechanism [24]. Many studies have shown that the

flipping of confined water is affected by the spatial size [25–30].

For example, the transport of confined water has a high

conductivity [28, 29], and the water flux through a carbon

nanotube (CNT) has a linear relationship with the radius of

the CNT when the length is much larger than the radius [30].

However, due to the inherent complexity of the molecular

system, the understanding of the mechanism of water chain

flipping under confinement is still unclear. The experimental

technique has been greatly improved compared with the past,

which has resulted in water chains formed in CNTs with

diameters as small as 0.548 nm, and an extremely high

freezing temperature has been detected [31, 32]. However,

observing the details of the mechanism of water chain flipping

in a short time, much less regulating the mechanism of water

chain flipping, is still a great challenge. Considering that the

tunnelling effects, especially the previously often neglected

quantum coherence, have a more fundamental significance in

quantum physics, studying the resonance effects caused by the

coherence that exists when a water chain flips in a confined space

from the perspective of the basic principles of tunnelling is

necessary.

In this work, we study the possible flipping of a water chain

under quasi-one-dimensional (1D) confinement and find that

the quantum tunnelling cannot be ignored. Significantly,

quantum resonant tunnelling brings different effects than

generally recognized tunnelling and thermal processes. Here,

the calculation results show that the H-bond rotation of the water

chain in a 1D-CNT is obviously affected by tunnelling, especially

resonant tunnelling. Compared with the tunnelling without

considering quantum coherence, the resonant tunnelling with

considering quantum coherence can achieve a higher probability

with less provided energies, which leads to an increase of water

chain flipping temperature by 20 K. Therefore, our work opens a

new perspective for the quantum regulation of water chain

flipping in channels.

Computational methods

For first-principles calculations, the empirical-dispersion-

corrected hybrid Perdew-Burke-Ernzerhof (PBE0-D3) method

of density functional theory was carried out in the Gaussian

09 package [33–35]. The basis sets 6-311+G (d, p) and 6-31G (d)

were used for water and the CNT, respectively. The armchair-

type single-walled (6, 6) CNT was employed, and the diameter

and length were set to 8.20 Å and 20 Å, respectively. After CNT

preoptimization, we froze all of the atoms of the CNT to ensure

constant confinement effects on the water. In the CNT, three

water molecules were selected to form the water chain. The water

chain was along the tube axis, and the molecules were connected

to each other by H-bonds. Based on the different initial

geometries of the water chain, we searched the structures for

extreme points (including equilibrium and transition states) in

the rotation of water molecules in the CNT and traced the

reaction paths of the flipping for the water chain according to

the intrinsic reaction coordinate [36, 37]. The reduced masses are

1.0834 amu and 1.0955 amu for the water chain flipping along

the path containing L-type and D-type defective intermediates.

For the formula without considering quantum coherence, the

Wentzel-Kramers-Brillouin (WKB) approximation is used for

calculating the tunnelling probability for a single barrier using

the following formula [38, 39]:

P � Exp[ − 2
-
∫x2

x1

������������
2m(V(x) − E)√

dx] (1)

where - is the reduced Planck constant, V(x) represents the

potential energy surface (PES) function with the coordinate x as

the variable, expressed by a Gaussian fitting function, and x1 and

x2 are the two coordinates when V(x) and E are equal. The

tunnelling probability for double barriers is obtained by

multiplying the tunnelling probability of two single barriers.

For the formula considering quantum coherence, the steady-

state Schrödinger equation of N multiple barriers is strictly

solved. For the convenience of calculation, the equivalent

square barrier is used to fit the PES. In detail, we first take

the half-height width of the left-side barrier as the square barrier

width to obtain the approximate equivalent square barrier. Then,

the local minimum value is taken as the axis of symmetry to

obtain the ideal double barrier model. This equivalent square

barrier method is an approximation based on the principle that

original barrier and approximate square barrier have the same

tunnelling probability. The general expression of the Schrödinger

equation can be written as follows:

ψ j � C2j−1 exp(ikjx) + C2j exp(−ikjx) (2)

in which C2j-1 represents the transmission amplitude, C2j is the

reflection amplitude and kj is the wavenumber. The tunnelling

probability is defined as the ratio of the flow of particles out of the

barrier to the flow of particles into the barrier as follows:

T � |C4N+1|2
|C1|2 (3)

For the thermodynamic model, the Boltzmann distribution is

used to describe the probability of crossing the barrier from the

classical perspective as follows:

Pthermal � Exp(−ΔE
kT

) (4)

where k is the Boltzmann constant and T is the temperature. ΔE
represents the relative energy between the initial provided energy

and the barrier peak. Additionally, to compare the classical and
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quantum methods of crossing the barrier, the ratio of the

quantum tunnelling probability to the thermal disturbance

probability is studied.

Results and discussion

To study the possible flipping of a water chain under

confinement, the water molecules in a CNT that form a 1D

chain are examined (Figure 1A). We give two reaction paths,

and the corresponding PESs of flipping are shown in

Figure 1B. There are five extreme points along each

reaction path: two structures with lower energies (reactant

and product, labelled Min1 and Min2), two transition state

structures (labelled TS1 and TS2), and an intermediate

structure (labelled Int). These structures are shown in

Figure 1C. This suggests that the flipping of the water

chain is a step-by-step process, and the formation of the

intermediate is necessary, which is consistent with our

previous study [24]. For the two reaction paths, the main

difference lies in the structure of the intermediate. In detail,

when the water chain flips along the nanotube axis in the

opposite direction to the H-bonds, the heights of the energy

barriers of the two transition states to be overcome are

approximately 0.660 eV, and an intermediate with an

energy of approximately 0.524 eV is formed. This structure

has the two hydrogen atoms in the middle water molecule

forming H-bonds with the oxygen atoms of the two adjacent

water molecules. We call this the intermediate with an L-type

defect [40]. The H-bonds are oriented towards the middle

water molecule. When the water chain flips along the direction

of the H-bond, it needs to overcome two energy barriers with

FIGURE 1
Different mechanisms by which the water chain with three water molecules in the CNT achieves reorientation. (A)Model of the confined water
chain. (B) PESs of thewater chain flipping. Dotted lines are the equivalent square energy barriers obtained by fitting the double barriers of the PESs. (C)
Water chain structures corresponding to each extreme point on the PESs. (D) Variation in the quantum tunnelling probability with provided energy
without considering coherence. The dotted and solid lines indicate the tunnelling probability at provided energies below and above the
intermediate energies, respectively. (E) Variation in the quantum tunnelling probability with provided energy considering coherence. According to
the square barriers, the energy height provided are 0.477–0.597 eV and 0.524–0.634 eV, corresponding to the two reaction paths. The dotted lines
represent the provided energy at the start or end of the two reaction paths. Green and yellow represent the reaction paths containing D-type and
L-type defective intermediates, respectively.
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heights of approximately 0.640 eV. Additionally, the

intermediate formed has an energy of approximately

0.477 eV. In this structure, the oxygen atom in the middle

water molecule forms H-bonds with the hydrogen atoms of

the two adjacent water molecules. The H-bonds are oriented

towards both ends of the water molecules, which is called the

intermediate with a D-type defect [40]. The energy of the

intermediate with an L-type defect is approximately 10−2 eV

higher than that of the intermediate with a D-type defect. This

indicates that the water chain is more likely to flip along the

path of the intermediate with a D-type defect.

Reorientation of the water chain can be achieved not only

through step-by-step flipping by classical thermodynamic

perturbations but also by quantum tunnelling. Here, to

obtain the sequential tunnelling probability for double

barriers without considering the quantum coherence, the

WKB approximation is applied [39, 40]. We considered the

difficulty of the water chain to achieve reorientation by

quantum tunnelling at different provided energies. As

shown in Figure 1D, with an increase in the provided

energy, the tunnelling probability gradually increases.

Taking the path containing the L-type defective

intermediate as an example, the tunnelling probabilities are

approximately 10−25, 10−16 and 10−6 when the provided

energies are approximately 0.477 eV, 0.524 eV and

0.597 eV, respectively. For the two paths containing L-type

and D-type defective intermediates, when the provided energy

is approximately 0.477 eV, the two tunnelling probabilities are

almost equal. However, when the provided energy is larger

than 0.477 eV, the tunnelling probability of the water chain

along the path containing the L-type defective intermediate is

less than that along the path containing the D-type defective

intermediate. For example, at the provided energy of 0.597 eV,

the tunnelling probabilities are approximately 10−6 and 10−5

for the reaction paths containing the L-type and D-type

defective intermediates, respectively. When the provided

energy is less than 0.477 eV, the tunnelling probability of

the water chain along the path containing the L-type defective

intermediate is greater than that along the path containing the

D-type defective intermediate.

In addition to quantum tunnelling, thermal effects can

also cause the water chain to flip. To clearly show the

relationship between tunnelling and thermal disturbance

with temperature and provided energy, we treat thermal

disturbance and tunnelling as independent probability

events. Under this condition, we compare the probabilities

of the water chain achieving reorientation by quantum

tunnelling and thermal disturbance (25–200 K). As shown

in Figure 2A, when the provided energies at the double

barriers of the two reaction paths are given, the probability

of water chain flipping by thermal disturbance increases with

the temperature. When the temperature is lower than 84 K,

quantum tunnelling is more dominant than thermal

disturbance. At temperatures above 120 K, thermal

disturbance plays a dominant role, rather than quantum

tunnelling. Therefore, we infer that at room temperature,

thermal disturbance is more likely to cause the water chain

to flip.

FIGURE 2
Ratio of the tunnelling probability to the thermal disturbance probability for the water chain in the CNT to achieve reorientation at certain
provided energies and different temperatures. (A)Coherence is not considered in the tunnelling probability calculation. (B)Coherence is considered
in the tunnelling probability calculation. The temperature range is 25–200 K, and the interval is 25 K “~” is the magnitude.
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Remarkably, due to the narrow width (approximately 1.9 Å

and 2.5 Å for the reaction paths containing the L-type defect and

D-type defect, and the values are similar to the previous article

predicting hydrogen atom resonance tunneling [41]) of the well

between the double barriers along the reaction path, the quantum

coherence should not be ignored. Therefore, a discussion of the

quantum tunnelling effects while considering coherence, that is,

resonant tunnelling, is necessary. The tunnelling probability is

defined as the ratio of the flow of particles out of the barrier to the

flow of particles into the barrier. As shown in Figure 1E, with an

increase in the provided energy, the tunnelling probability

increases and decreases at times, showing a nonlinear change.

This is significantly different from the quantum tunnelling

probability without considering coherence. In addition,

according to the peaks in Figure 1E, compared with quantum

tunnelling without coherence, quantum tunnelling with

coherence can achieve a higher probability at smaller provided

energy. Taking the path containing the L-type defective

intermediate as an example, the probabilities of quantum

tunnelling without and with consideration of coherence are

approximately 10−15, 10−12, 10−10, 10−6, and 10−3 and 10−6, 10−3,

10−1, 100, and 100 when the provided energies at the double

barrier are approximately 0.529 eV, 0.543 eV, 0.566 eV, 0.597 eV

and 0.632 eV, respectively. In a word, at some specific provided

energies, such as about 0.6 eV (detailed value is 0.597 eV), the

resonant tunnelling with consideration of coherence greatly

improves the tunnelling probability compared with sequential

tunnelling (see in Figures 1D,E), which means that neglected

quantum coherence may play an important role in the process of

water chain flipping.

Our previous study has demonstrated that the persistent time

(t) of the H-bond alignment for the confined water chain was

closely related to the PES of flipping [24]. It is negatively

correlation with the probability that the water chain achieves

flipping by overcoming energy barriers. And the relationship

between the number of water molecules (n) and the persistent

time is written:

Log (t) � a × n + b (5)
where a is the dynamic parameter of thermodynamic flipping

under the traditional perspective. In this work, we found that the

quantum tunneling, especially resonant tunneling, from the

water chain itself has a positive impact on its flipping. This

means that the existence of quantum tunnelling effects will

reduce the persistent time (i.e., reducing the value of a),

thereby enhancing the effect of water chain flipping. It is

reported that with the increase of water molecules [24], water

chain rotation becomes more difficult, which is expected to lead

to relatively weak quantum tunneling effects.

Furthermore, we compare the probabilities of the water

chain achieving reorientation via two different mechanisms

(quantum tunnelling considering coherence and thermal

disturbance), as shown in Figure 2B. The results show that

when the temperature is lower than 105 K, tunnelling is

dominant compared with thermal disturbance. When the

temperature is higher than 155 K, thermal disturbance

gradually becomes dominant. This temperature is

approximately 20 K higher than that without considering

coherence, indicating that the neglect of quantum

coherence could lead to underestimation of the tunnelling

capability. In addition, the ratios of the tunnelling probability

to the thermal disturbance probability at 200 K are analyzed

(Figure 2). For example, the ratios with coherence and without

coherence are approximately 10−11 and 10−7 when the

provided energy is 0.5 eV for the reaction path containing

the D defect, respectively. This further suggests that H-bond

rotation is greater affected by quantum tunnelling than is

generally recognized due to the presence of quantum

coherence. Importantly, resonant tunnelling has been

experimentally observed in hydrogen atom systems with an

energy precision of 10−3 eV in previous report, which is

equivalent to the resolution when considering resonant

tunneling in this manuscript [1]. This suggests that there

are opportunities for experimental observation and even

regulation of water chain flipping in channels in the future,

and our work is expected to provide theoretical guidance.

Although the approximation method in one-dimensional

coordinates is widely used in the study of general tunnelling

[42], it necessarily has some potential drawbacks in the study

of resonant tunnelling. One of the problems neglected due to

simplification is decoherence, i.e., the coherence breaking

process caused by the interaction between the reaction

coordinates and other coordinates under the influence of

external environmental perturbations, which will

correspondingly attenuate the effect of resonance

tunnelling. However, it is well known that, the

multidimensional quantum dynamics has remained difficult

to describe properly with simulations up to now. We hope that

our work will provide understanding of physical images and

expect that further discussions on other factors can be

performed in the future.

Conclusion

In summary, we shown the quantum tunnelling effects from the

water chain itself under ideal conditions, which enhance theH-bond

rotation. Importantly, compared with the generally recognized

sequential tunnelling, the resonant tunnelling that considers

quantum coherence can achieve a higher probability given less

provided energy, which further enhances the rotation of the

water chain. This work enriches the understanding of quantum

tunneling effects on H-bonds and highlights the enhanced water

chain rotation effect of previously neglected resonant tunneling due

to quantum coherence, which is hoped to enable quantum

regulation of the H-bond rotation mechanisms for confined water.
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