
Different coherent states for
lightly supported coupled
pendula

Dawid Dudkowski*, Patrycja Jaros and Tomasz Kapitaniak

Division of Dynamics, Lodz University of Technology, Lodz, Poland

In this paper we discuss and explain the phenomenon of synchronization in

lightly supported mechanical systems. The investigations are focused on the

models of self–excited pendula hanged on the horizontally oscillating beam,

which is lightly connected with the external support. Our results are based on

the Centre-of-Mass (CoM) Theorem, which can be applied to the considered

systems and allows to analytically confirm the observed behaviours. We present

typical dynamical solutions, including periodic and quasiperiodic oscillations,

within which the oscillators synchronize. The possible synchronous

configurations are analyzed and examined, depending on the number of the

pendula creating the system, their parameters and the initial conditions. We

discuss bifurcations between different types of solutions, determining the

regions and the conditions supporting the synchronization. Our

investigations exhibit, that with the increase of the size of the network, the

number of co–existing attractors also increases, leading to possible

multistability and new types of behaviours (e.g., the traveling phase one).

The results obtained numerically match with the analytical ones obtained

from the CoM Theorem, which explains the existence of particular types of

dynamical configurations. The study presented in this paper involves classical

lightly supported pendula systems and due to their basic character, one can

expect to observe similar behaviours in other types of mechanical models.
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1 Introduction

Synchronization is one of the most fundamental types of behaviours found in nature

[1]. The appearance of the coherent motion of dynamical systems has been reported in

nonlinear vibrations [2], robotics [3], complex networks [4–6] or small–world systems

[7], just to mention a few. In [8] one can find the study on the synchronization stability in

mechanical networks with unstable local dynamics, while in [9, 10] the Authors

investigate the phenomenon in the class of chaotic systems. Analysis of the noise

effect on the synchronized oscillators and possible applications in Lagrangian systems

have been discussed in [11, 12], respectively. The phenomenon is naturally related to

control problems [13] and has been widely applied in signal processing, e.g. for secure
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communication [14]. A large part of synchronization problems

refers to fundamental mechanical systems based on coupled

pendula. The studies on synchronous dynamics have been

performed for various pendula–type models, e.g. rotor-

pendula [15], chaotic pendula [16] or Huygens’ coupling

schemes [17], just to mention a few. In [18] Authors

investigate the problem of controlled synchronization in

coupled nodes, while in [19] one can find the discussion on

pendula systems over digital communication channels.

The synchronous dynamics of nonlinear systems usually

arises in various configurations, leading to the phenomenon of

multistability [20, 21], when various attractors co–exist,

depending on the system’s parameters and properties. The

co–existence of solutions has been reported in many types of

complex models, e.g. chaotic flows [22], mechanical oscillators

[23] or brain dynamics [24]. Depending on the character of the

considered system, such behaviour can be desired or not, which

leads to the problem of control [25, 26] and basin stability [27]. In

particular cases, one can even observe an expansion of

co–existing stable solutions, i.e. extreme multistability, which

has been found in both single [28] and coupled [29, 30] scenarios.

The phenomenon is closely related to hidden oscillations [31],

when the localization of possible attractors in the system’s phase

space becomes not straightforward.

In this paper we investigate the dynamics and possible

synchronous configurations for coupled pendula arranged in a

lightly supported system. The considered model is schematically

shown in Figure 1.

The system shown in Figure 1 consists of the beam of massM

[kg], which is connected with the support by the spring of

stiffness k [N/m] and the damper of damping coefficient c

[Ns/m]. The beam can oscillate in the horizontal direction

and its position is denoted by variable x [m]. The considered

structure supports the network of n pendula (nodes) with masses

mi [kg] and lengths li [m], as shown in Figure 1 (i = 1, . . . , n). The

pendula are equipped with the van der Pol type drives [32–34]

(not shown in the figure) and their self–excited oscillations

induce the motion of the beam, which allows to transfer the

energy between the pendula. The angular displacement of the

i–th node is given by variable φi ∈ (−π, π].

The dynamics of the system presented in Figure 1 can be

investigated using the following equations of motion:

M +∑n

i�1 mi( )€x + kx + c _x+∑n

i�1 mili €φi cosφi − _φi
2 sinφi( ) � 0,

mil
2
i €φi +mili€x cosφi+

cφi _φi μφ2
i − 1( ) +migli sinφi � 0,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

where i = 1, . . . , n.

During the analysis we have fixed the following parameters of

system (1):M = 10 [kg] (the mass of the beam), k = 4 [N/m] (the

stiffness of the spring), c = 1.53 [Ns/m] (the damping coefficient

of the damper), g = 9.81 [m/s2] (the standard gravity term) and

μ = 32.88 (the van der Pol type drive parameter). The damping of

the i–th pendulum cφi
has been selected depending on the

pendulum’s mass mi and its length li to preserve fixed

logarithmic decrement for each node.

The research presented in this paper continues the studies

published in previous works [35–39]. In Refs. [35, 36] we have

investigated model (1) with two nodes (n = 2), while in [37] the

influence of the direction of the beam’s oscillations (horizontal,

vertical and mixed) on the dynamics of two pendula has been

studied. The clustering and experimental synchronization have

been discussed in [38, 39], respectively.

In this paper we focus on a possible synchronization schemes

for lightly supported systems, underlying the analytical solutions,

which explain the observed behaviours and the results. We use

the Centre-of-Mass (CoM) Theorem to show, that the performed

analysis can be applied to any type of coupled oscillators

arranged in a lightly supported model. The results uncovered

in this paper expand the ones presented previously [35–39] and

FIGURE 1
The model of n oscillating pendula with masses mi and lengths li suspended on the horizontally oscillating beam. The beam of mass M is
connected with the support by the spring of stiffness k and the damper of damping coefficient c. Variable x stands for displacement of the beam,
while φi is angular displacement of i–th pendulum. The paper uncovers various types of behaviours than can be found for different sizes of the
network.
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include new types of behaviours (e.g., the traveling phase

solution), the appearance of the transient dynamics problems

and possible multistability.

The analytical and the numerical investigations on system (1)

are discussed in Section 2.

2 The results

When the beam in Figure 1 is lightly supported, i.e. k ≈ 0 [N/

m] and c ≈ 0 [Ns/m], we can approximate system (1) as an

isolated one. In such a case, the centre of mass of the model (the

beam and the suspended pendula) is not moving, according to

the Centre-of-Mass (CoM) Theorem. Consequently, the

horizontal position of the centre of mass of the system shown

in Figure 1 equals:

σ � 1

M̂
Mx +∑n

i�1
mi x + li sinφi( )⎛⎝ ⎞⎠ � const, (2)

where M̂ � M + ∑n
i�1mi is the total mass of the system (the beam

and the pendula).

Excluding fixed coefficient M̂, linearizing sinφi ≈ φi and

differentiating Eq. 2 we obtain:

dσ
dt

� M _x +∑n
i�1

mi _x + li _φi( ) � 0. (3)

Assuming similar pendula lengths li ≈ l = const, i = 1, . . . , n,

one gets:

M̂ _x +∑n
i�1

mil _φi � 0. (4)

The solutions of Eq. 4 depend on the number of pendula n

and possible synchronous configurations. To compare the

analytical results obtained using Eq. 4 with the numerical

simulations, we have studied networks of different size, which

is presented in the following Subsections.

To physically connect the beam with the external support

(see Section 1. for details), we have analyzed model (1) with

parameters k = 4 [N/m] and c = 1.53 [Ns/m]. Our analysis

exhibits, that such scenario can be approximated by the CoM

Theorem and Eq. 4 for isolated systems, as the numerical and the

analytical results match with a good precision.

2.1 The case n = 2 pendula

In this Subsection we investigate system (1) with two pendula

of identical masses, i.e. m1 = m2 = 1.0 [kg]. The lengths of the

oscillators are fixed at l1 = 0.24848 [m] and l2 = 0.24849 [m]. A

slight difference between the lengths is used to exclude

coincidental synchronization of the nodes induced by the lack

of numerical differentiability. According to formula Ti �
2π

���
li/g

√
[s], the natural period of each pendulum equals T ≈

1 [s], which has been used for determining the time scales for the

simulations.

Two classical solutions of model (1) with n = 2 nodes are

shown in Figure 2.

Depending on the initial conditions, the pendula can stabilize

on one of two possible synchronous configurations, i.e. the

in–phase or the anti–phase solution.

In the first case, φ1 = φ2 =A sin(αt), whereA [rad] and α [rad/

s] denote the amplitude and the frequency of the oscillations,

respectively, while t [s] is the dynamical time. For the in–phase

scenario, the beam is moving, i.e. _x ≠ 0 [m/s] and Eq. 4 allows to

calculate its velocity:

_x � −Alα m1 +m2( )cos αt( )/M̂. (5)

Integrating Eq. 5 we obtain harmonic oscillations of the

beam, with the same frequency α [rad/s] as the pendula and

FIGURE 2
(Colour online). The in–phase synchronization of two
pendula (variables φ1, φ2) oscillating in the anti–phase to the beam
(variable x) (A) and the anti–phase synchronization of the nodes
with the unmoving beam (C). The oscillations of the system’s
centre of mass σ for case (A) are shown in panel (B). The results
relate to classical synchronous behaviours found for coupled
oscillators. System (1) with n = 2 (m1 = m2 = 1.0 [kg]).
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the anti–phase motion with respect to them. This scenario is

presented in Figure 2A, where the displacements of the nodes are

marked in red (φ1) and blue (φ2), while the movement of the

beam is shown in black (x). The numerical time plots exhibit

good match between the oscillations (φ1 = φ2) and allow to

determine parameters A = 0.345 [rad] and α = 6.81 [rad/s]. The

amplitude of the beam obtained from the simulations equals

Xsim = 0.01412 [m], while the one calculated theoretically from

Eq. 5 is given by Xtheor � lA(m1 +m2)/M̂ � 0.01429 [m], which

shows a good match between the analytical and the numerical

results. Indeed, as we have presented in Figure 2B, the centre of

mass of the numerical model (the pendula and the beam

considered as one system) is slightly oscillating, which is

caused by the light support of the beam. As one can see, the

amplitude of coefficient σ (see Eq. 2 for details) is below

0.3 [mm]. The (almost) stationary position of the centre of

mass of the whole system is possible due to the movements of

the beam, which oscillates in the anti–phase to the synchronized

pendula as shown in Figure 2A.

The case of two pendula with equal masses includes also the

anti–phase synchronous configuration, when φ1 = A sin(αt), φ2 =

A sin(αt + π) = −A sin(αt) and the beam is not moving ( _x � 0 [m/

s]). This scenario is presented in Figure 2C and can be explained

using the CoM Theorem, since centre σ is stationary due to the

symmetric oscillations of the nodes and the unmoving beam.

Indeed, when the beam is not moving ( _x � 0 [m/s]), Eq. 4

transforms into the following one:

m1l _φ1 +m2l _φ2 � 0. (6)

Assuming that the pendula have synchronized with phase β ∈
[0°, 180°], i.e. φ1 = A sin(αt) and φ2 = A sin(αt + β), one gets from

Eq. 6:

m1 +m2 cos β � 0,
m2 sin β � 0.

{ (7)

System (7) has two solutions: (i) β = 0°, when m1 = −m2 < 0,

which is physically contradictory and (ii) β = 180°, whenm1 =m2,

which is exactly the scenario of the anti–phase synchronization

shown in Figure 2C. In this case A = 0.349 [rad] and α = 6.24

[rad/s].

When the masses of the pendula in model (1) are different

(m1 ≠ m2), one can observe also the in–phase synchronization

patterns with different amplitudes and quasiperiodic motion,

depending on the parameters of the system. The discussion of

such scenarios can be found in [40].

2.2 The case n = 3 pendula

In this Subsection we investigate model (1) with three

pendula suspended on the beam (n = 3). The lengths of the

units are fixed at l1 = 0.24848 [m], l2 = 0.24849 [m] and l3 =

0.2485 [m], while the masses m1, m2, m3 have been varied,

depending on the considered synchronous scenario.

Due to the fact, that the lengths of the pendula are almost

equal, the natural periods of the oscillators remain similar and it

becomes natural to assume, that the pendula can synchronize with

equal amplitudes and two phases locked, i.e. φ1 = A sin(αt), φ2 =

A sin(αt + β2), and φ3 = A sin(αt + β3), where β2, β3 ∈ [0°, 360°) are
the phases between the nodes (β2–the phase between the 1st and

the 2nd node, β3–the phase between the 1st and the 3rd node). If
_x ≈ 0 [m/s], then Eq. 4 transforms into the following system:

m1 +m2 cos β2 +m3 cos β3 � 0,
m2 sin β2 +m3 sin β3 � 0.

{ (8)

System (8) consists of two equations with two variables β2, β3
and allows to determine the synchronous configurations (the

values of the phases) when the distribution of masses m1, m2, m3

is given. The examples of the behaviours observed in the

considered case are shown in Figure 3.

FIGURE 3
(Colour online). The periodic synchronous configurations for
the identical masses (A)m1 =m2 =m3 = 1.0 [kg] and non–identical
masses (B) m1 = 1.0, m2 = 0.7, m3 = 0.5 [kg]. The scenario of
quasiperiodic synchronization between the 2nd (blue) and
the 3rd (green) node is shown in panel (C) for m1 = 1.0, m2 = 0.5,
m3 = 0.2 [kg]. In the case of three oscillators, both regular and
irregular dynamics can arise, leading to more complex
synchronous scenarios. System (1) with n = 3 pendula.
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The scenario of identical massesm1 =m2 =m3 = 1.0 [kg] can

be found in Figure 3A. The motion of the pendula has been

marked in red (1st), blue (2nd) and green (3rd), while the small

oscillations of the beam are shown in black (the latter time plot is

multiplied 100 times–100x). Assuming that the velocity of the

beam’s oscillations is small compared to the pendula, we can

apply system (8) for finding the attractors. Indeed, Eq. 8 form1 =

m2 =m3 = 1.0 [kg] have two solutions: (i) β2 = 120°, β3 = 240°and

(ii) β2 = 240°, β3 = 120°, which indicate the same state, since the

masses of the pendula are equal. The example of the

phase–locked synchronization pattern shown in Figure 3A

corresponds to analytical result (i), with the phases calculated

numerically at β2 = 120.21°and β3 = 240.68°. The centre of mass of

the system is almost stationary, with the amplitude of its

oscillations equal to Aσ = 3.17 · 10–6 [m].

When the pendula are non–identical, the values of phases β2,

β3 strictly depend on the distribution of the masses and possible

solutions of system (8). The example of the phase–locked state for

m1 = 1.0, m2 = 0.7 and m3 = 0.5 [kg] is presented in Figure 3B,

where the numerical values of the phases equal β2 = 207.63°, β3 =

139.08°. The analytical solution that can be obtained using Eq. 8

matches with the numerical one, exhibiting phases β2 = 207.72°and

β3 = 139.32°. In this case, the amplitude of the centre of mass does

not exceed Aσ = 2.62 · 10–6 [m]. It should be noted, that one can

observe also the second synchronous configuration, for which β2 =

152.37°and β3 = 220.92°. The appearance of the pair of

phase–locked states is associated with the following property of

system (8): if (β2*, β3*) is the solution of Eq. 8, then (360 °- β2*, 360
°- β3*) is also the solution of (8).

The pendula of model (1) can also synchronize in the

in–phase, similar to n = 2 scheme (see Section 2.1. for

details). In this case, the applicability of system (8) is

excluded, since the beam is oscillating against the pendula (to

keep the centre of mass stationary) and consequently _x ≠ 0 [m/s].

Depending on the parameters, both the in–phase and the

phase–locked solutions can co–exist, which has been shown in

Figure 4A.

The results presented in Figure 4A correspond to the case of

m1 = 1.0,m2 = 0.7,m3 = 0.5 [kg] (see the time plots in Figure 3B)

and uncover the basins of attraction of three possible solutions: 1)

the in–phase synchronization (IN–yellow), 2) the first

phase–locked configuration with β2 = 152.37°, β3 =

220.92°(marked as PL–dark blue) and 3) the second

phase–locked configuration with β2 = 207.72°, β3 =

139.32°(marked as PL*–light blue; to distinguish that the

observed phase–locked solutions are different in the sense of

β2, β3 phases distribution, we denote the second state by asterisk).

The basins in Figure 4A are shown in subspace (φ2, φ3) ∈ (−π,π]2

(the initial positions of the 2nd and the 3rd pendulum), with the

remaining conditions fixed at zeros, i.e. x, _x,φ1, _φ1, _φ2, _φ3 � 0.

The structure of the basins indicates, that the prediction of the

final synchronous solution can become not straightforward,

when the precision of the initial state is insufficient.

As we have shown, the analytical solutions of system (8) for

the chosen distribution of the pendula masses indicate possible

attractors of model (1) with a good precision (differences

between the analytical and the numerical phases β2, β3).

Moreover, it can be easily shown, that for particular masses

FIGURE 4
(Colour online). The basins of attraction for different distribution of the pendula masses. In (A) the scenario of three co–existing periodic
synchronous states is shown (IN: in–phase state, PL: the first phase–locked state and PL*: the second phase–locked state), while in (B) the case of
bi–stability of the in–phase (IN) and the quasiperiodic (Q) configurations is presented. The values of the masses in panels (A) and (B) correspond to
the ones considered in Figure 3B and Figure 3C, respectively. The results show, that depending on the initial conditions, various types of
behaviours co–exist.
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mi, i = 1, 2, 3, system (8) may not have any solution, which

suggests the disappearance of phase–locked configurations. The

example of such scenario is discussed in Figure 3C and

Figure 4B for m1 = 1.0, m2 = 0.5 and m3 = 0.2 [kg]. Due to

the fact, that Eq. 8 have no solution for the chosen masses, the

oscillations of the pendula shown in Figure 3C become

quasiperiodic and grouped into two clusters: 1) the 1st

pendulum (red; φ1) and 2) the quasiperiodic, synchronous

motion of the 2nd and the 3rd node (blue and green; φ2 =

φ3). The quasiperiodic character of the vibrations has been

confirmed using Poincare sections, which are included in the

inbox in Figure 3C. The 1st (red) pendulum has been chosen as

the reference node for creating the maps, i.e. the points have

been collected every time it reached the local maximum. The

observed quasiperiodic state co–exists with the in–phase

synchronization and the basins of these two possible

behaviours are shown in Figure 4B (the in–phase state–I in

yellow; the quasiperiodic state–Q in brown). It should be noted,

that the almost stationary position of the centre of mass in the

case of quasiperiodic oscillations is preserved, with the

amplitude Aσ = 1.2 · 10–4 [m].

To investigate possible transitions between different

synchronous configurations of model (1) with n = 3 pendula,

we have performed the bifurcation analysis in relation to system

(8). The example of the bifurcation scenario for fixedmassesm1 =

1.0, m2 = 0.5 [kg] and varied m3 is shown in Figure 5.

The bifurcation diagrams shown in Figure 5A are split into

seven regions: I–VII, depending on the dynamics of the

pendula and possible synchronous configurations. The

procedure applied for collecting the points for the diagrams

is the same as the one used for the Poincare section shown in

the inbox in Figure 3C (the 1st pendulum is chosen as the

reference one).

The analysis begins atm3 = 0.2 [kg], when the behaviour of

the system is quasiperiodic as shown in Figure 3C. This type of

dynamics can be observed in a narrow region labelled as II for

0.1885 < m3 < 0.2158 [kg], which has been enlarged in the

inbox in Figure 5A. Decreasing the mass of the 3rd pendulum,

at m3 = 0.1885 [kg] the system bifurcates into region I, where

all three pendula synchronize in the in–phase. Further

decrease of parameter m3 does not change the dynamics of

the model, since the synchronized pendula act as one clustered

node, which oscillates in the anti–phase to the beam of a

fixed mass. In both regions I and II, system (8) has no

solutions.

Bifurcating model (1) in the opposite direction, i.e.

starting from case II for m3 = 0.2 [kg] and increasing

parameter m3, one can observe the vanishing of the

quasiperiodic solution, which finally bifurcates into the

periodic one for m3 = 0.2158 [kg] (region III). In this case,

the 2nd (blue) and the 3rd (green) pendula are still

synchronized (forming a cluster) but the amplitude of

their oscillations is greater than the amplitude of the 1st

(red) node. This scenario corresponds to the case of two

pendula with different masses, which synchronize with

various amplitudes [35, 40]. The reported dynamics

resides in region III for 0.2158 ≤ m3 < 0.5 [kg], where the

relation m1 > m2 + m3 is satisfied. With the increase of mass

m3, the amplitude of the clustered pendula (blue and green)

also increases and finally reaches the amplitude of the red

node at m3 = 0.5 [kg], when m1 = m2 + m3. The system

bifurcates into stage IV, where all of the pendula are

oscillating with the same amplitude and system (8) has

two analytical solutions leading to the phase–locked

synchronous states. The phases between the pendula (β2,

β3) observed in this scenario are shown in Figure 5B for

0.5 ≤ m3 ≤ 1.5 [kg]. In the beginning of stage IV, for m3 = 0.5

[kg] the phases are equal: β2 = β3 = 180°; this corresponds to

the anti–phase pattern between the clustered nodes (blue and

green) and the solitary one (red), since m1 = m2 + m3. With

the increase of mass m3, the cluster breaks as the 2nd

pendulum begins to converge to the 1st one (β2 decreases

as shown in Figure 5B). The system resides on the

phase–locked attractor with the phases depending on the

value of m3. The convergence of the blue node to the red one

is continued in a wide range of parameterm3, until the critical

point at m3 = 1.5 [kg], for which β2 = 0°and β3 = 180°. In this

FIGURE 5
(Colour online). The bifurcation diagrams of model (1) for
fixedm1 = 1.0,m2 = 0.5 [kg] and variedm3 ∈ [0.16, 2.92] [kg] (A). The
interval is split into seven cases (I–VII), depending on the behaviour
of the pendula and possible solutions of system (8). The
bifurcations of phases β2 and β3 corresponding to the
phase–locked synchronous configurations during stage IV are
shown in panel (B). Using bifurcation analysis, one can trace
transitions occurring in the system and the arise of different types
of states.
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scenario the 1st (red) and the 2nd (blue) pendula clustered,

leaving the 3rd (green) one solitary. The synchronization

becomes anti–phase, according to equality m1 + m2 = m3.

With further increase of mass m3, the system bifurcates

into stage V, where Eq. 8 have no solutions and the pendula

oscillate with different amplitudes. For 1.5 < m3 < 2.732 [kg]

(region V), the amplitude of the clustered nodes (red and

blue) is higher than the one observed for the 3rd (green)

pendulum, as m1 + m2 < m3. The scenario changes from

periodic to quasiperiodic motion for m3 = 2.732 [kg], when

the dynamics reaches region VI. In this case, the clustered

character of the pendula is preserved, as shown in the

diagram in Figure 5A. With further increase of mass m3

[kg], the model finally stabilizes on the in–phase

synchronization pattern for m3 ≥ 2.887 [kg], which has

been labelled as region VII.

Scenarios I and VII are qualitatively the same. In scenarios (II

and VI) and (III and V) one can observe the clustering of the

pendula and their quasiperiodic or periodic dynamics,

respectively. The clustering configuration depends on the

distribution of masses m1, m2, m3 and one can obtain

different patterns varying these parameters. The remaining

case IV allows to observe phase–locked synchronous motion,

which can be described by the analysis of the centre of mass, i.e.

system (8).

To examine possible phase–locking patterns between the

pendula, we have investigated Eq. 8 for fixed mass m1 = 1.0

[kg] and varied m2, m3. Our results are presented in Figure 6.

In Figures 6A,B one can see the values of phases β2 (panel a)

and β3 (panel b) obtained analytically using system (8) form2,m3

∈ [0, 3] [kg] (mass m1 = 1.0 [kg] fixed). The results have been

limited to the case, when β2 ∈ [0, 180°] (as described above,

system (8) has a pair of solutions, i.e. (β2, β3) and (360° − β2,

360° − β3)). Using the maps presented in Figures 6A,B one can

identify the regions of the pendula masses, for which

phase–locked synchronization is possible. We have also

calculated analogous maps by the numerical examination of

model (1) for m2, m3 ∈ [0, 3] [kg] and the obtained results

FIGURE 6
(Colour online). The values of the phases within the phase–locked synchronization patterns for fixedm1 = 1.0 [kg] and variedm2,m3: values of β2
and β3 are shown in panels (A) and (B), respectively. The possible phases β2, β3, which can be realized by model (1) due to the solvability of system (8)
are shown in (C). The results determine regions, where particular types of behaviours can be found, as well as their properties.
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(phases) match with the ones observed for the analytical case. It

should be noted, that the regions left blank in Figures 6A,B

correspond to the in–phase synchronization and/or

quasiperiodic motion, depending on the parameters.

The relation between the pendula masses mi, i = 1, 2, 3 and

phases β2, β3 can be also inverted, i.e. one can investigate what

values of the masses should be selected for the desired

phase–locked configuration (particular values of the phases).

Indeed, fixing the mass of a selected pendulum, e.g. m1 and

considering β2, β3 as the parameters, we can calculate the values

of the remaining masses m2 and m3 from Eq. 8 in the

following way:

m2 � −m1 sin β3
sin β3 − β2( ),

m3 � m1 sin β2
sin β3 − β2( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (9)

Using Eq. 9 one can calculate the values ofm2 andm3, which

allow to obtain the desired (β2, β3) phase–locked synchronous

configuration. The solutions of (9) have the physical sense only

when both formulas are greater than zero; the regions of (β2, β3)

values corresponding to such scenario are shown in Figure 6C in

black. The presentedmap allows to determine which values of the

phases (the ones corresponding to the black domain) can be

FIGURE 7
(Colour online). Possible behaviours of the pendula for (A)m1 =m2 =m3 =m4 = 1.0 [kg] (identical masses and the traveling phase state), (B)m1 =
1.0,m2 = 0.99,m3 = 1.01,m4 = 0.985 [kg] (slightly different masses and the phase–locked state) and (C)m1 = 1.0,m2 = 0.7,m3 = 0.5,m4 = 0.45 [kg]
(different masses and the clustering of the pendula). System (1) with n = 4 nodes. In the case of four coupled pendula, one can identify new types of
states and even more complex synchronous scenarios.
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realized by system (1) within the phase–locked state. It should be

noted, that close to the borders of the region shown in Figure 6C,

masses m2, m3 in Eq. 9 converge to zero or infinity, which may

influence the dynamics of system (1) and lead to unexpected

behaviours.

2.3 The case n = 4 pendula

In this Subsection we study the case of model (1) with four

pendula suspended on the beam (n = 4). The lengths of the

oscillators are chosen as l1 = 0.24848 [m], l2 = 0.24849 [m], l3 =

0.2485 [m] and l4 = 0.24851 [m]. If the pendula synchronize with

equal amplitudes and phases locked, i.e. φi = A sin(αt + βi), i = 1,

2, 3, 4, where β1 = 0°and β2, β3, β4 ∈ [0°, 360°), then for _x ≈ 0 [m/s]

(the beam slightly oscillating) Eq. 4 transforms into the following

system:

m1 +m2 cos β2 +m3 cos β3 +m4 cos β4 � 0,
m2 sin β2 +m3 sin β3 +m4 sin β4 � 0.

{ (10)

Depending on the values of masses mi, i = 1, 2, 3, 4, system

(10) can have no solutions or infinitely many solutions (two

equations with three variables β2, β3, β4). The considered scenario

is more complex than the one observed for n = 3 pendula, where

the number of solutions of Eq. 8 has been limited (see Section 2.2.

for details).

To investigate model (1) with four nodes, we have varied

pendula masses in different scenarios. The examples of possible

dynamical patterns are discussed in Figure 7.

We have investigated three main schemes of the masses

distribution, i.e. identical masses, slightly different masses and

different masses, which are discussed below.

If the pendula are identical, i.e. mi = const, i = 1, 2, 3, 4, then

system (10) can be simplified by dividing the equations by the

masses. It can be easily shown, that in such scenario, the solutions

of (10) are given as follows: β2 = 180°, β3 � β̂ and β4 � β̂ + 180°,

where β̂ ∈ [0°, 360°) becomes the parameter of system (10) (the

order of the values of phases β2, β3 and β4 can be arbitrarily

chosen since the pendula are identical). In this case, system (10)

indicates infinitely many phase–locked synchronous states along

parameter β̂ ∈ [0°, 360°), within which pendula form two

clusters: 1) the cluster of the 1st and the 2nd pendulum

oscillating in the anti–phase and 2) the cluster of the 3rd and

the 4th pendulum also oscillating in the anti–phase. The phase

shift between the clusters is given by parameter β̂, which also

determines the phase between the 1st and the 3rd pendulum.

The example of the described scenario is presented in

Figure 7A for m1 = m2 = m3 = m4 = 1.0 [kg], where the time

plots of the nodes are marked in red (1st), blue (2nd), green (3rd),

and grey (4th), while the beam is shown in black. Since the

oscillations within the clusters are anti–phase (red vs. blue and

green vs. grey), the beam is not moving (as have been described

previously for n = 2 pendula in Figure 2C; see Section 2.1. for

details). As we have observed, the phase between the clusters

(parameter β̂) changes continuously with time, leading to the

solution, which can be called the “traveling phase” state. The

traveling character of the observed configuration is shown in

Figure 8A.

The diagrams included in Figure 8A present the values of β2,

β3 and β4 phases in a long time interval of model (1) simulations.

As one can see, the numerical solution matches with the

analytical one (β2 = 180°, β3 � β̂, β4 � β̂ + 180°) and the

configuration of the clusters (the 1st and the 2nd pendulum

clustered; the 3rd and the 4th pendulum clustered) is preserved,

except for short disruptions around β3 = 180°, when the clusters

overlap in the phase space. The results shown in Figure 8A

include three cycles of phase traveling, which has been indicated

by the vertical, dashed lines; the approximated length of one full

cycle equals 25 644 T.

As we have observed during various simulations, the

configuration of the clusters can be correlated with the lengths

of the pendula, i.e. the slight differences in lengths li and their

distribution within the nodes determine the pairs, which will

cluster. For the considered l1 = 0.24848 [m], l2 = 0.24849 [m], l3 =

0.2485 [m] and l4 = 0.24851 [m], system (1) has always finally

converged to the scenario shown in Figure 8A and the observed

clustering has been independent of the initial conditions. The

described property has not been observed when varying the

conditions from and between the clusters, which has been

shown in Figures 8B,C for the basins of attraction. The

scenarios of varied (φ3, φ4) ∈ (−π,π]2 and (φ2, φ4) ∈ (−π,π]2

(the remaining conditions equal to zeros) are presented in

Figure 8B and Figure 8C, respectively and correspond to the

initial conditions of the pendula forming the cluster (b) and the

initial conditions of the pendula from different clusters (c). As

one can see, the “traveling phase” state (TP, brown) co–exists

with the in–phase synchronization pattern (IN, yellow) but the

regions of convergence for both scenarios (b) and (c) are

qualitatively indifferent.

The traveling character of the phases between the pendula is

possible due to the identity of the masses. When the masses

become slightly different, system (10) cannot be simplified as

previously but its solutions are close to the ones described above

(two clusters), since m1 ≈ m2 ≈ m3 ≈ m4. The example of such

scenario is shown in Figure 7B form1 = 1.0,m2 = 0.99,m3 = 1.01,

m4 = 0.985 [kg]. As one can see, the 1st (red) and the 4th (grey)

pendulum are synchronized almost in the anti–phase (the first

cluster) and the 2nd (blue) and the 3rd (green) pendulum are also

synchronized close to the anti–phase state (the second cluster).

The slight shifts in the oscillations of the pendula within the

clusters are shown in the enlargement in Figure 7B. Since the

motion is not precisely anti–phased, the beam exhibits slight

oscillations, which magnitude has been increased 1000 times for

better clarity (1000x in the figure).
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The slight differences in the masses of the pendula lead to the

disappearance of the TP state and stabilization of the nodes on

particular phase–locked synchronous configuration. The

example of the evolution of phases β2, β3 and β4 for such

scenario is presented in Figure 9A.

The points for the diagrams included in Figure 9A have been

collected after 1000 T [s], which has been considered as possible

transient time for the stabilization of the system. As one can see,

the time necessary for the full stabilization has reached around

500 000 T [s], as the phases are changing for a long time interval

(time below 250 000 T [s] in Figure 9A). Our analysis for various

initial conditions exhibits, that for slightly different masses of the

pendula, system (1) finally converges to particular phase–locked

state but the transient time of such stabilization can become very

long (even exceeding 500 000 T [s]). These results uncover

possible transient dynamics problems [41–43], which can arise

when studying complex networks and become misleading for the

researcher trying to determine the attractor(s) of the considered

model.

As we have described above, system (10) can have infinitely

many solutions for the fixed masses, leading to the possibility of

the infinitely many phase–locked configurations. To investigate

this property for the considered slightly different masses, we have

performed a series of trials, simulating model (1) from random

initial conditions and determining the final synchronous

configuration. The results of our analysis are discussed in

Figure 9B and are based on 1000 trials in total.

For each numerical trial we have simulated system (1) for

500 000 T [s], after which the observed pattern has been

examined for stability (if the phases β2, β3 and β4 are still

changing or not). In the case of the stable phases, the

obtained phase–locked configuration has been included in

Figure 9B in the form of the red dot, which coordinates

indicate values β2 (horizontal axis) and β3 (vertical axis),

while the dot’s label (in grey text) equals the value of phase

β4. As one can see, the points marked in Figure 9B exhibit linear

relation (the dashed red line along the points) and the values of

the obtained phases are close to the solution, which can be

FIGURE 8
(Colour online). In (A) the traveling of phases β2, β3 and β4 for identical pendula mi = 1.0 [kg], i = 1, 2, 3, 4 is shown. The basins of attraction of
possible dynamical patterns (IN and TP) for varied (φ3, φ4) ∈ (−π,π]2 and (φ2, φ4) ∈ (−π,π]2 are presented in panels (B) and (C), respectively. The arise of the
traveling phase state is related to the similarities in the pendula properties (the masses).
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calculated from system (10) for the identical masses, i.e. β4 ≈ 180°,

β2 � β̂ and β3 ≈ β̂ + 180°(the order is determined by the

distribution of the slightly different masses).

To prevent the overlapping of the states, when the phases β2,

β3 and β4 for two particular trials are slightly different (which

may be caused by numerical inaccuracies), we have applied the

following criterion for distinguishing the states: “Configuration

1” with phases β1*2 , β
1*
3 , β

1*
4 is considered as different from

“Configuration 2” with phases β2*2 , β
2*
3 , β

2*
4 when |β1*2 − β2*2 |> δ,

|β1*3 − β2*3 |> δ and |β1*4 − β2*4 |> δ, where parameter δ determines

the chosen accuracy. The results included in Figure 9B have been

obtained for δ = 1.8°, i.e. 1/200–th of the full angle. As we have

observed, by loosening the criterion (decreasing the value of

coefficient δ), the number of the points increases, filling the

dashed red line in Figure 9B. The described observation suggests,

that when the masses of the pendula are slightly different, system

(1) can produce many stable co–existing phase–locked

synchronous configurations (according to Eq. 10 and their

possible stable solutions), converging to the case of even

extreme multistability [28–30] when the differences in the

masses become shrinked.

In the last considered scenario we have studied model (1)

with different masses, fixingm1 = 1.0,m2 = 0.7,m3 = 0.5 andm4 =

0.45 [kg]. The phase–locked pattern obtained for the given

distribution is shown in Figure 7C, where the 2nd (blue) and

the 3rd (green) pendulum formed the cluster (φ2 ≈ φ3) and the

scenario is similar to the one observed for n = 3 coupled nodes

(see Section 2.2. for details). Indeed, when the masses of the

pendula are different, the system (apart from the in–phase

synchronization) tends to the clustering of the nodes [44–47].

This property has been also observed for larger networks, when

the oscillators group into three clusters [38].

In the case of clustering, possible phases between the pendula

can be easily obtained using CoM Theorem and system (10).

Indeed, when two of the pendula form a cluster, e.g. the 3rd and

the 4th, we obtain φ3 = φ4, β3 = β4 and the simplification of Eq. 10

in the following form:

m1 +m2 cos β2 + m3 +m4( )cos β34 � 0,
m2 sin β2 + m3 +m4( )sin β34 � 0,

{ (11)

where β34 = β3 = β4. The above system is analogous to system (8)

for n = 3 pendula and possesses solutions depending on the

values of m1, m2 and (m3 + m4).

For four pendula one can obtain six different configurations

of clustering (m1 +m2,m1 +m3,m1 +m4,m2 +m3, m2 +m4 and

m3 + m4), of which three lead to solutions of system (10) for the

considered masses m1 = 1.0, m2 = 0.7, m3 = 0.5 and m4 = 0.45

[kg]. Each clustering configuration involves a pair of

phase–locked synchronous solutions (see Section 2.2. for

details), which results in six different synchronization patterns

in total. The latter ones have been listed as “phase–locking

(1)–(6)” in Table 1, where in the first column the labels of the

states are shown (attractor type), while in the second one the

values of the phases obtained analytically from (10) are presented

FIGURE 9
(Colour online). The evolution of phases β2, β3, β4 (left panel) and possible synchronous configurations in (β2, β3) plane (right panel). Results (A,B)
correspond to the case of slightly different masses: m1 = 1.0, m2 = 0.99, m3 = 1.01, m4 = 0.985 [kg], while results (C,D) have been obtained for
different masses m1 = 1.0, m2 = 0.7, m3 = 0.5, m4 = 0.45 [kg]. The results exhibit, that the distribution of the pendula masses plays a major role in
possible behaviours of the system.
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(analytical phases). The table includes also the in–phase

synchronization pattern and the “phase–locking (*)” state,

which is discussed further.

The example of the phases convergence for “phase–locking (2)”

state is included in Figure 9C and shows the evolution of phases β2,

β3 and β4 for 50 000 T [s] (the points collected after 1000 T [s]). In

this case, the phases stabilize faster than for the slightly different

masses scenario (compare Figure 9A and Figure 9C) and the

transient motion becomes easier to omit. The phases of the 2nd

(blue, β2) and the 3rd (green, β3) node are very similar, which

exhibits a good match between the analytical results and the ones

obtained from the numerical simulations. The comparison of both

cases can be found in Table 1 in the second (analytical phases) and

the third (numerical phases) columns.

As one can see in Table 1, two patterns “phase–locking (1)”

and “phase–locking (3)” are labelled as unstable. Even though

system (10) can have particular solution (e.g., the “phase–locking

(1)”state), its stability has to be examined numerically by

simulating the model. To investigate the attractors of system

(1) for different masses, we have performed a series of

40 000 trials, determining the synchronous configurations

after 10 000 T [s]. The obtained results are discussed in

Figure 9D in (β2, β3) plane, with the values of β4 labeling the

points (see also the description of Figure 9B above). Four black

dots correspond to solutions “phase–locking (2), (4), (5) and (6)”

described in Table 1, while the single red dot indicates the

solution “phase–locking (*)” (the last row in Table 1), for

which the pendula have not clustered. During the simulations

we have not observed the stability of patterns “phase–locking (1)”

and “phase–locking (3)”, which suggest that these solutions are

unstable. It should be noted though, that the phases obtained for

the “phase–locking (*)” state are close to the analytical ones for

“phase–locking (3)”, which may indicate that these

configurations are closely related and the difference between

the analytics and the numerics results from the assumptions of

the considered model (not completely isolated).

The probability analysis performed for the solutions included

in Table 1 shows, that the in–phase synchronous configuration is

the most probable state (probability around 43%), while the

phase–locked patterns appear with similar probabilities ranging

from 5% to 15%. The presented results are based on a series of

40 000 trials as mentioned above; for each trial, the initial

positions of the pendula have been sampled from the uniform

distribution U[ − π, π), with the remaining initial conditions of

the system considered zeros.

It should be noted, that the considered scenario of four

coupled pendula includes also other possible behaviours, such

as quasiperiodic dynamics or synchronous patterns with

different amplitudes. When the pendula group into three

clusters (as shown in Figure 7C), the scenario is analogous to

the synchronization of three oscillators (n = 3 in Section 2.2.) and

we can perform similar bifurcation analysis as the one presented

in Figure 5.

Generalizing the results, when model (1) consists of n > 4

pendula synchronized within the phase–locked state, i.e. φi =

A sin(αt + βi), i = 1, . . . , n, β1 = 0°and β2, . . . , βn ∈ [0°, 360°),

system (4) transforms into the following equations:

m1 +∑n

i�2 mi cos βi � 0,∑n

i�2 mi sin βi � 0.

⎧⎨⎩ (12)

System (12) can possess infinitely many solutions and

generalizes system (10) considered for n = 4 nodes. In this

case, one can expect to obtain similar synchronous

configurations and dynamics, depending on the parameters of

the pendula and the beam, as well as the initial conditions. The

increased number of nodes can lead to the appearance of more

complex behaviours, including chimeras [48, 49] and

chimera–like states [50, 51], which occur naturally in the

networks of coupled oscillators.

3 Conclusion

In this paper we have investigated the dynamics of coupled

self–excited pendula, arranged in a lightly supported system.

TABLE 1 The comparison of the analytical and the numerical phases for the phase–locked synchronous configurations (1)–(6). The probabilities of the
occurrence of possible states are given in the last column. System (1) with different masses: m1 = 1.0, m2 = 0.7, m3 = 0.5, m4 = 0.45 [kg].

Attractor type Analytical phases Numerical phases Probability
of the occurrence

In–phase sync — β2 = 0°, β3 = 0°, β4 = 0° 0.433

Phase–locking (1) β2 = β3 = 201.24, β4 = 74.88° unstable 0

Phase–locking (2) β2 = β3 = 158.76, β4 = 285.12° β2 = 157.63°, β3 = 159.78°, β4 = 285.75° 0.1107

Phase–locking (3) β2 = β4 = 205.56, β3 = 85.68° unstable 0

Phase–locking (4) β2 = β4 = 154.44, β3 = 274.32° β2 = 152.91°, β3 = 274.53°, β4 = 156.02° 0.1555

Phase–locking (5) β2 = 245.16, β3 = β4 = 137.88° β2 = 245.64°, β3 = 137.84°, β4 = 138.73° 0.1513

Phase–locking (6) β2 = 114.84, β3 = β4 = 222.12° β2 = 115.29°, β3 = 221.23°, β4 = 223.02° 0.097

Phase–locking (*) — β2 = 198.25°, β3 = 88.49°, β4 = 216.91° 0.0525
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Depending on the network’s size (the number of the nodes

suspended on the beam), one can observe different types of

synchronous configurations and behaviours. Our results are

based on the Centre-of-Mass (CoM) Theorem, which can be

applied to the considered, almost isolated system. We have

described typical dynamical structures, including the

in–phase and the anti–phase synchronization, as well as

more complex patterns like the clustering of the pendula or

the phase–locked solutions. The basins of attraction included

in the study uncover possible co–existence configurations of

the system’s states, while the bifurcation analysis allows to

trace the transitions between different synchronous solutions.

The analysis can be further applied for determining the

relations between the pendula masses and their phases

within the phase–locking scenarios, which has been

included in the results. During the research we have

uncovered the “traveling phase” state, which is

characterized by the continuous change of the phases

between the synchronized oscillators and transient

dynamics problems, leading to the uncertainty about the

stabilization of the observed synchronous states. The

analysis of the considered models has exhibited possible

high multistability with many co–existing attractors, that

can be observed for slightly different nodes.

The analytical results obtained from the CoM Theorem

match with the numerical ones calculated during simulations.

The former results explain and allow to understand the

dynamics that is observed within the models, especially the

synchronous configurations between the pendula. As we have

shown, the theory approximates lightly supported systems

with a good precision and can be applied for studying

similar networks of the mechanical type. The latter can be

especially beneficial in the case of experimental investigations,

since the structure of presented model allows to

confirm the results practically with the use of simple

mechanical setup.
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