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A popular measure for citation inequalities of individual scientists has been the

Hirsch index (h). If for any scientist the number nc of citations is plotted against

the serial number npof the papers having thosemany citations (when the papers

are ordered from the highest cited to the lowest), then h corresponds to the

nearest lower integer value of np below the fixed point of the non-linear citation

function (or given by nc= h= np if both np and nc are a dense set of integers near

the h value). The same index can be estimated (from h= s= ns) for the avalanche

or cluster of size (s) distributions (ns) in the elastic fiber bundle or percolation

models. Another such inequality index called the Kolkata index (k) says that (1 −

k) fraction of papers attract k fraction of citations (k = 0.80 corresponds to the

80–20 lawof Pareto). We find, for stress (σ), the lattice occupation probability (p)

or the Kolkata Index (k) near the bundle failure threshold (σc) or percolation

threshold (pc) or the critical value of the Kolkata Index kc a good fit to

Widom–Stauffer like scaling h/[ ��
N

√
/logN] = f( ��

N
√ [σc − σ]α), h/[ ��

N
√

/logN] �
f( ��

N
√ |pc − p|α) or h/[ ���

Nc
√

/logNc] � f( ���
Nc

√ |kc − k|α), respectively, with the

asymptotically defined scaling function f, for systems of size N (total number

of fibers or lattice sites) or Nc (total number of citations), and α denoting the

appropriate scaling exponent. We also show that if the number (Nm) of

members of parliaments or national assemblies of different countries (with

population N) is identified as their respective h − indexes, then the data fit the

scaling relation Nm ~
��
N

√
/logN, resolving a major recent controversy.
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1 Introduction

Monotonically and nonlinearly decaying inequality functions are

ubiquitous. When the number (np) of papers by any author (or, for

thatmatter, an institution) is arranged according to the number (nc) of

the citations they received, the citation inequality function becomes a

monotonically decaying one (see e.g. [1]). The same is true for

avalanches in material failure or in earthquakes (see e.g. [2]),

cluster size distributions in percolation problems (see e.g. [3]), etc.,

where the number (ns) of avalanches or clusters (giving the size

inequality function) decreases monotonically and nonlinearly with the

size (s) of the avalanche or cluster. Large avalanches, strong quakes, or

big size clusters come or occur in small numbers, while the smaller or

weaker the avalanches, quakes, or clusters, the larger is their abundance

in occurrence. How does one statistically measure these inequalities in

occurrence frequencies of citation numbers or avalanche or cluster

sizes? Obviously, the corresponding distribution functions for

inequalities in citations or sizes would contain the entire statistics.

However, they are not convenient to handle. One can consider the

citation number of the best cited paper (as sometimes carried out for

some unique awards, etc.) or study the statistical (self-similar) structure

of the biggest avalanche or the largest (percolating) cluster (as in

statistical physics [3]). Hirsch proposed [1] (Figure 1) an index to

measure these inequalities, by locating the fixed point of the nonlinear

inequality function. The Hirsch index (h) corresponds to the citation

number or occurrence frequency which is commensurate in

magnitude with the number of publications or avalanche cluster sizes.

Systems near their critical points, self-organized or tuned, have

mostly been studied in the self-similar limit of their divergent

correlations (see e.g. [2, 3]). The corresponding critical exponent

values arising out of such self-similarities have helped classify vastly

different physical systems based on their symmetries,

dimensionality, and such broad qualifiers. One powerful tool has

been the scaling relations among the critical exponents that helped

build an interconnected and precise relation between experimental

observables in such systems near criticality. In this work, however,

we focus on quantifying the response of near-critical systems

through the corresponding inequality statistics (for example, in

nc versus np of citations or in ns versus s for avalanches or clusters).

Specifically, we measure the widely used Hirsch index (h), which in

effect, gives ameasure of a size that is commensurate with its relative

abundance. It turns out to be possibly even more robust than the

critical behavior (characterized by a set of exponents). We

demonstrate this by choosing a wide variety of systems, namely,

citation statistics, percolation cluster statistics, and avalanche

statistics, in fiber bundle models (FBMs) and even in the

statistics of parliament sizes in different countries of the world.

They differ in their dimensionality (two dimensions for the

percolation model studied here, mean-field for the fracture

model, and possibly small-world networks for citation and

parliament statistics). They further differ in their measurement

variables and their size distribution statistics, making them

widely different in terms of their prominently apparent features.

FIGURE 1
Schematic drawing of the citation function of a typical
scientist. The h-index (an integer) is given by the lower value of the
paper serial number below the fixed point value (the intersection
point of the 45° line from the origin), when the papers are
ordered from the highest cited to the lowest cited one. When the
citation number and the serial number of the papers (having those
citations) are both sequential integers near the fixed point, the
citation number equals the number of papers and both become h.
Similar will be the case where citations are replaced by the failure
of the material avalanche sizes (or cluster sizes), and the paper
numbers are replaced by the number of such avalanches (or of the
clusters in pre- or post-percolating systems).

FIGURE 2
Finite size scaling analysis of the fiber bundle model h −index
(from avalanche size distribution). The scaling fit to the
Widom–Stauffer relations (Eq. 1) is obtained by making all the data
points of different sizes (N =1000,5000,10000, and 100000)
and stress level (different σ values) collapse together. It turns out that
the scaling form (Eq. 1b) with the exponent α =1 gives good data
collapse. The inset shows that the data collapse clearly gets
worsened by dropping the log N term in the scaling relation (Eq. 1b).
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However, we show here that in spite of their obvious differences, the

scaling behavior of the Hirsch index shows remarkable universality.
How does the h-index scale with a total number of publications

(Np) by the author (institution) or the total number (Nc) of citations

received by the author (institution)? Young [4] suggested analytically

that the h-index value should scale with the total number of citations

Nc (= ∑nc) as ��
N

√
c asymptotically. In [5], a brief analysis of the

Google Scholar data indicated independently that h ~
��
N

√
p for large

values of Np which corresponds to the highest value of np, the total

number of publications by the author. It should be noted that if both

these relationships are valid then, statistically speaking, for a prolific

author, the total number of citations would be linearly proportional

to the total number of papers published, and the proportionality

constant would perhaps be determined by the size of the existing

author network in the subject (suggesting an effective Dunbar

number [7, 8], for the community of authors).

In a recentMonte Carlo study [9], on the avalanche sizes and their

numbers in the fiber bundlemodels (FBMs) ofmaterial failure (see e.g.

[2, 10]) due to increasing stress on such bundles, the numerical analysis

of the data for the nonlinearly decaying numbers of avalanches with

their sizes (or released elastic energies) suggested h ~
��
N

√
/logN.

Our numerical study on avalanche size distributions in FBMs

(for stress or load per fiber σ less than its global failure stress σc) of

cluster size distributions for the lattice occupation concentration p

near the percolation point pc (for p both below and above pc) in the

percolating system and the previous analysis [5] of citation

FIGURE 3
Scaling behavior for the average h-index (in the range 4≤
h ≤20) at the breaking point (σ = σc) of the bundles with the total
number N (in the range 200≤ N ≤20000) of fibers in the equal-
load-sharing FBM (with uniform distribution of fiber breaking
thresholds) considered here (cf [9]). The figure shows the best fit of
h to

��
N

√
/logN. The inset shows statistical deviations Σ ��������������������

Σi(hd(i) − hγ(i))2/Σi1
√

to the scaling forms h ~ Nγ and h ~ Nγlog(N)
with respect to γ, where i represents the individual (random)
realization of the FBM with the corresponding h (= hd) value
obtained from the simulation result and the scaling fit (hγ) from the
aforementioned scaling relations. The inset shows that the
statistical deviation becomes minimum for the scaling with the log
correction term with the appropriate value of γ near 1/2.

FIGURE 4
Finite size scaling analysis of the 2D site percolation h −index (from the cluster size distribution). The scaling fit to the Widom–Stauffer relations
(Eq. 1) is obtained by making all the data points of different sizes (N =4000×4000,8000×8000, and 16000×16000) and concentrations (different p
values, pc =0.5927) collapse together. It turns out that the scaling form (Eq. 1b) with the exponent α=3 gives good data collapse. The inset shows that
the data collapse seems to get worsened by dropping the log N term in the scaling relation (Eq. 1b).

Frontiers in Physics frontiersin.org03

Ghosh et al. 10.3389/fphy.2022.1019744

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1019744


distributions of scientists with the Kolkata index k (see e. g, [6]

for a review, giving the fraction k of citations/wealth attracted/

possessed by 1 − k fraction of publications/people) near (both

above and below) the threshold point kc (= 0.86) both show an

excellent fit to a Widom–Stauffer like scaling relation between

the Hirsch index (h) and the system size N (or individual’s

total citation size Nc), following Widom scaling for the free

energy away from the critical point and the subsequent

Stauffer scaling [3] for the number of a particular sized

cluster, identified here as the equivalent Hirsch index, at

and away from the percolation point):

h��
N

√ /logN[ ] � f
��
N

√
σc − σ[ ]α( ), (1a)

h��
N

√ /logN[ ] � f
��
N

√ |pc − p|α( ), (1b)
h��

N
√ /logN[ ] � f

��
N

√
c|kc − k|α( ), (1c)

with the asymptotically well-defined finite size scaling function f

(f(x) = constant at x = 0 and f remaining continuous and finite as

x approaches infinity) for systems of size N (total number of

fibers or lattice sites/bonds) or size Nc (total number of citations

of all the publications by an individual scientist) and α denoting

the appropriate scaling exponent.

Traditionally, the Hirsch index h for different authors has

been fitted [4] to the scaling form
��
N

√
c. For cases where the

Kolkata index values of the authors are not known, we simply

fitted, following the scaling relation (Eq. 1), to the form

appropriate for the critical point:

h ~
��
N

√
c/logNc (2a)

~
��
N

√
p/logNp. (2b)

We also show that if the number (Nm) of members of the

parliaments or national assemblies of different countries (with

the corresponding population denoted byN) is identified as those

countries’ respective h indices, then the data fit well to the scaling

relation Nm ~
��
N

√
/logN. This helps comprehend the

discrepancies (c.f [11]) with the
��
N

√
relationship, reported in

a very recent analysis [12], resolving a recent major controversy.

2 Data analysis and numerical studies

2.1 Failure avalanches in the fiber bundle
model (FBM)

The fiber bundle model (FBM) is a generic model for

failure of disordered solids. An ensemble of N fibers is a set

FIGURE 5
Scaling behavior for the h-index (in the range 185≤
h ≤4421) for cluster size distributions at the percolation point
(with size N on the square lattice; 106< N <109). The figure shows
the best fit of h to

��
N

√
/logN. The inset shows the statistical

deviations Σ �
�������������������
Σi(hd(i) − hγ(i))2/Σi1

√
to the scaling forms h ~ Nγ

and h ~ Nγ/log(N) with respect to γ, where i represents the
individual (random) realization of the percolating system
with the corresponding h (= hd) value obtained from the
simulation result and the scaling fit (hγ) from the
aforementioned scaling relations. The inset shows that the
statistical deviation becomes minimum for the scaling with the
log correction term, although with a value of γ somewhat
above 1/2.

FIGURE 6
Finite size (Nc) scaling analysis of the citation distributions of
100 individual scientists (Table 1 of Ref. [5]). The scaling fit to the
Widom–Stauffer relation (Eq. 1c) is obtained by fitting all the data
for their h-index and the Nc values of total citations of the
publications by individual scientists and their corresponding
Kolkata index values k near the critical value kc ≃0.87 [5]. It turns
out that the scaling form (Eq. 1c) with the exponent α =0.7 gives a
good data collapse. The inset shows that the data collapse seems
to get worsened by dropping the logN term in the scaling relation
(Eq. 1c), although at the critical point k = kc, one gets h � a

���
Nc

√
,

with a=0.45±0.10, which includes the analytical prediction [4] that
a =0.54 in the largeNc limit. The continuous lines (in both themain
figure and the inset) represent the scaling functions for k < kc
(green) and k > kc (violet) and are drawn for a guide to the eye.

Frontiers in Physics frontiersin.org04

Ghosh et al. 10.3389/fphy.2022.1019744

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1019744


between two rigid parallel plates, and a load is applied on

the bottom plate. Each fiber is linear elastic with the

same elastic constant and has a failure threshold selected

randomly from a distribution. This failure threshold is the

source of the disorder and non-linearity in the otherwise

linear model.

When a small load (W) is applied, the weakest fiber

breaks and the load carried by that fiber is shared equally

by all the remaining fibers, which can trigger further failures.

Through gradual increase of the load, therefore, the model

goes through intermittent stable states, which are

subsequently perturbed by increasing the load slowly. In

going from one stable state to another, the number of

fibers that break is the avalanche size (s). The size

distribution of this follows a power-law statistics P(s) ~

s−5/2 for s → ∞ [13]. The avalanche dynamics continues

until the load per fiber value σ = W/N reaches a critical limit

σc, when the entire system breaks down.

The avalanches are arranged in the ascending order to

estimate h-index values for the stress level σ below σc. It was

shown ([9]) that the terminal value of h (= hf) at the critical

point (σ = σc) follows a scaling relation hf ~
��
N

√
/log(N). Here,

we look for the scaling of h with the critical interval (σc − σ). It

turns out that the scaling relation (Eq. 1a) fits very well with

our numerical data (see Figure 2). We also attempted the

scaling fit without the log(N) term in the aforementioned

relation (see inset of Figure 2), and it clearly worsens the

data collapse.

Figure 3 shows the scaling behavior for the average h-index

(in the range 4 ≤ h ≤ 20) at the breaking point (σ = σc) of the

bundles with the total number N (in the range 200 ≤ N ≤ 20000)

of fibers in the equal-load-sharing FBM (with uniform

distribution of fiber-breaking thresholds) considered here (cf

[9]). The figure shows the best fit of h to
��
N

√
/logN.

FIGURE 7
Scaling behavior for the h-index (in the range 20≤ h ≤222) of
100 scientists (data taken from [5]), with the total number of
citations Nc (in the range 1819≤ Nc ≤323473). Our analysis shows
the best fit to h ~

���
Nc

√
/logNc . The inset shows the statistical

deviations Σ �
�������������������
Σi(hd(i) − hγ(i))2/Σi1

√
to the scaling forms h ~ Nγ

c

and h ~ Nγ
c/log(Nc) with respect to γ, where i represents the

individual scientist with the corresponding h (= hd) obtained from
Google Scholar and the scaling fit (hγ) obtained from the
aforementioned scaling relations. The inset shows that the
statistical deviation becomes minimum for the scaling with the log
correction term with the value of γ a little higher than 1/2.

A

B

FIGURE 8
Scaling behavior for the h-index (in the range 17≤ h ≤221) of
1000 scientists with the total number of citations Nc (in the range
996≤Nc ≤348680) in (A) andwith the total number of papersNp (in
the range 100≤ Np ≤2987) in (B). The data are taken from
Google Scholar in June 2021. The figures show the best fits to
h ~

��
N

√
c/logNc in (A) and to h ~

��
N

√
p/logNp in (B). The insets show

the statistical deviations Σ �
�������������������
Σi(hd(i) − hγ(i))2/Σi1

√
to the scaling

forms h ~ Nγ
p (or h ~ Nγ

c) and h ~ Nγ
p/log(Np) (or h ~ Nγ

c/log(Nc))
with respect to γ, where i represents the individual scientist with
the corresponding h (= hd) value obtained from Google Scholar
and the scaling fit (hγ) from the aforementioned scaling relations.
The inset shows that although the statistical deviation does not
become minimum for the scaling with the log correction term
(presumably due to inclusion of some tail-end points), the best fit
for γ assumes the desired value 1/2.
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2.2 Percolation clusters in the 2D lattice

Here, we consider two-dimensional (2D) site percolation in a

square lattice with site occupancy probability p (0 < p < 1). For a

given p, we measure the cluster distribution, and hence, the

h-index is computed (here, h-index measures h number of

clusters each having cluster sizes greater than equal to h). In

our simulation, we took four different system sizes (N = 4000 ×

4000, 8000 × 8000 and 16000 × 16000), and the h-index was

estimated for different p values.

Here, we carry out the finite size scaling analysis [14] (see

also [15]) of the h-index for different system sizes. The

critical exponent α is determined by the fit to scaling

relation (Eq. 1b) for all the data points of different sizes

(N = 4000 × 4000, 8000 × 8000 and 16000 × 16000). We

obtain a good data collapse with α = 3 and different scaling

functions f for p > pc and p < pc while they converge to the

same value at p = pc (see Figure 4). The inset of Figure 4 shows

the scaling fit to relation (Eq. 1b) without the log(N) term,

and it is observed that the right hand side scaling fit is not

that well.

The cluster size distribution in the percolation problem

has also been studied for estimating h-index scaling with the

total number N of lattice sites at the percolation threshold of

site percolation on the square lattice. We, of course, find

here the best fit scaling form to be h ~
��
N

√
/logN (see

Figure 5).

2.3 Paper citations

We first analyze the data for the h-index and its

scaling with the total number of publications Np and of

citations Nc for the 100 scientists (in mathematics, physics,

chemistry, medicine, biology, economics, and sociology,

including those of 20 Nobel laureates in those

subjects) given in [5]. Next, we collected (from May to

June 2021) the same kind of data1 for 1000 scientists

(mostly physicists) in all the aforementioned subjects from

Google Scholar.

Figures 6, 7 show the scaling behavior for the h-index (in the

range 20 ≤ h ≤ 222) of the 100 scientists (data taken from [5]),

with the total number of citations Nc (in the range 1819 ≤ Nc ≤
323473). Our analysis shows the best fit to h ~

���
Nc

√
/logNc.

Figures 8A, B show the scaling behavior for the h-index (in

the range 17 ≤ h ≤ 221) of 1000 scientists with the total number of

citations Nc (in the range 996 ≤ Nc ≤ 348680) in Figure 8A and

with the total number of papersNp (in the range 100 ≤Np ≤ 2987)

in Figure 8B. The data are taken from Google Scholar in June

2021. The figures show the best fits to h ~
��
N

√
c/logNc in

Figure 8A and to h ~
��
N

√
p/logNp in Figure 8B.

2.4 Number of representatives in the
national assemblies

Finally, we note that if the number Nm of representatives

in the national assemblies or in the parliaments of different

countries of the world is identified as the h-index for

the respective country, having population N, then we find

(see Figure 9) that the data analyzed in [11] 2show the best

fit of Nm to
��
N

√
/logN. This also resolves the discrepancy

noted in the analysis of the same data ([12] and references

therein).

FIGURE 9
Scaling behavior for the number Nm (in the range 15≤
Nm ≤3040) of representatives in national assemblies or parliaments
of different countries of the world (1972 data from the original
study [11]; see also [12]) with total population N (in the range
19×104≤ N ≤70.5×107) of the respective countries. When Nm is
identified as the h −index for the countries, we getNm ~

��
N

√
/logNm

which is fitted here with the data. The inset shows the statistical
deviations Σ �

����������������������
Σi(Nmd(i) − Nmγ(i))2/Σi1

√
to the scaling forms Nm ~

Nγ and Nm ~ Nγ/log(N) with respect to γ, where i represents the
individual country with the corresponding members of
parliaments Nm (= Nmd) and the scaling fit (Nmγ) from the
aforementioned scaling relations. This resolves the discrepancy
noted in the analysis of the same data in [12]. Here again, as seen
from the inset, although the statistical deviation does not become
minimum for scalingwith the log correction term (presumably due
to inclusion of some tail-end points), the best fit for γ assumes the
desired value 1/2.

1 The data will be available on request to corresponding author.

2 The data extracted from this paper can be found in https://
sciencehistory.epfl.ch/physics-and-sociology/
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3 Summary and conclusion

We have studied here the scaling behaviors of the Hirsch

index h for inequalities [1] applied to the unequal distributions of

responses and statistics in different physical (fracture and

percolation) and social systems (citations and parliament

sizes). We have shown that the Hirsch index follows

remarkable off-critical Widom–Stauffer scaling in these

systems that are widely different in terms of their

dimensionality and symmetry.

We have studied avalanche or cluster sizes in physical systems

like the fiber bundlemodels (see e.g. [2, 10]) and percolating systems

(see e.g. [3, 14]). Indeed, surprising successes of such Hirsch-like

social inequality measures were already seen (see e.g. [9, 15]) in

predicting the global failures in fiber bundles and the self-organized

critical points of sand-pile systems. We show, in this study, from the

Monte Carlo simulation results (see Section 2.1 and Section 2.2) that

the Widom–Stauffer-like scaling relation (Eq. 1a,b) of the Hirsch

index h (defined here for the size s distributions ns, through h = s =

ns) fits remarkably well with the system sizeN (see Figures 2, 4). We

also show (see the insets of Figures 2, 4) that the scaling collapse

breaks down without the log N term in (Eq. 1) (visibly clear for the

fiber bundle results in Figure 2).

As it is well known, the Hirsch index (h) was introduced

originally to measure the inequalities in success (through

citations in the subsequent literature) of the contributions

(papers) of individual scientists. The citation function (see

Figure 1), is a well-documented non-linear and monotonically

decaying function (cf. Zipf law [16]). h corresponds to the fixed

point of this citation function. The analytical study [4] and

numerical data analysis (see e.g. [5]) suggested h ~
���
Nc

√
~

���
Np

√
for any author havingNp total papers andNc total citations. Since for

different scientists, we do not have any knowledge about the critical

intervals (like |σc − σ| or |pc − p| in relations (Eq. 1)); here, the

detailed data for h are fitted to the relations (Eq. 2) (see Section 2.3,

Figures 7, 8A,B), assuming the critical interval to be zero for the

chosen authors. We show that a better fit is

h ~
��
N

√
c/logNc ~

��
N

√
p/logNp (see relations (Eqs. 2a,b)). It may

be noted that analysis of a larger data set (see e.g. [17]) indicated a

significantly lower value (≃ 0.42) of γ. As may be seen from our

analysis (see Figures 7, 8), this is probably due to the choices of data

corresponding to very large deviations from the respective critical

points to fit the power law scaling form and the missing log N term

(in relations (Eq. 2)) in the scaling form. It suggests, in absence of

this information, extending the data sets for scientists who may not

be that competitive may lead to wrong conclusions. Although all the

data for the h-index of FBM avalanches and percolation clusters fit

so well with the Widom–Stauffer scaling (Eq. 2) with γ = 1/2, when

the data for their critical points are fitted to h ~ Nγ (see insets of

Figures 3, 5), one gets best fits for γ around 0.40 and 0.48,

respectively.

We also show that when the number Nm of the members of

national assemblies or of parliaments for different countries of the

world is identified effectively as their Hirsch index h, thenNm indeed

would scale (see Figure 9 in Section 2.4) with the total population N

as
��
N

√
/logN for the respective countries. This observation should

help comprehending the discrepancies with the proposed

Nm ~
��
N

√
relationship, reported in a very recent analysis [12].

For an additional check for the logN term in the scaling

behavior of the Hirsch index, we fitted the data for h in fiber

bundle models (Section 2.1, for stress values σ near the failure

point σc), for percolation systems (Section 2.2, for site

occupation concentrations p both above and below the

percolation threshold pc), paper citation data (Section 2.3,

for authors with Kolkata index values k both above and below

the critical value kc), and parliament membership data

(Section 2.4) to the scaling forms h � a
��
N

√
and

h � �a
��
N

√
/log(N), where N denotes the appropriate system

size (total number N of fibers in the FBM, total number N of

lattice sites, total number of citations Nc of the author, or the

total population N of the country). The estimated best fit

values of the pre-factors a or �a are given in Table 1. The range

of error bars in these estimates of a and �a is such that more

than 95% of the data points fall within the indicated ranges. If

we assume the value of the pre-factor to be the same across the

systems considered (Young’s asymptotic result [4] suggested

the value of the pre-factor a for citation to be about 0.54), the

observed fitting error ranges for other systems (see Table 1)

then clearly suggest the fit with the log N term to be

more appropriate. The average value of the pre-factor

(�a ≃ 3.0 in Table 1) fits reasonably across the systems

considered and also agrees with the values of f (0) in

Figure 2 (for FBMs), Figure 4 (for percolating systems),

and Figure 6 (for paper citations by an individual scientist).

The comparative agreements of the values of a (with large

percentile errors) and �a (= f (0) in Figures 2, 4, 6 having

smaller percentile errors) in Table 1 clearly indicate that the

fitting of the h-index to the scaling relation (Eq. 1) is much

better. These errors due to the fittings with scaling relations

(Eq. 2), therefore, have become much more prominent for

TABLE 1 Values of the pre-factors a and �a for the h −index scaling fits.

FBM avalanche size Percolation cluster size Citation size Parliament size

Fit to h � a
��
N

√
a = 0.15 ± 0.10 0.15 ± 0.10 0.45 ± 0.15 0.10 ± 0.08

Fit to h � �a
��
N

√
/log(N) �a � 2.00 ± 1.00 2.50 ± 1.00 3.50 ± 0.50 2.00 ± 1.25
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parliament member number data, where the critical intervals

or the country’s distance from the respective critical point are

completely unknown.

In conclusion, we have explored the best fit of the Hirsch

index values h for system sizes N (or Nc) with a

Widom–Stauffer like finite size scaling form (Eq. 1). This is

essentially based on the Monte Carlo simulation data collapse

in the fiber bundle model and percolating systems (for σ or p

away from σc or pc, respectively; see Figures 2, 4) and data

analysis for citations of 100 scientists (k away from kc; see

Figure 6) analyzed in [5]. Data for parliament member

numbers (identified as the corresponding country’s h index;

see Figure 9) are fitted to the relation (Eq. 2) as the equivalent

critical interval ([σc − σ], |pc − p|, or |kc − k|) is unknown. We

find the scaling fit (to relations Eqs 1, 2 deteriorate

considerably if the log N term is dropped. We give in

Table 1 the estimated error in the pre-factors a and �a, and

assuming the pre-factor to have the same value across the

systems considered here, we again find the finite size scaling

relation for the Hirsch index h with the log N term

(h � �a
��
N

√
/logN and �a ≡ f(0) of the Widom–Stauffer

relation Eq. 1 for finite system size N) to be more

appropriate for the scaling behavior of the Hirsch index

near the respective critical points.
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