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Higher-order networks can be used to describe the interaction of multiple

entities in real-world collective behaviors such as dining, conference

attendance, and public transportation use. Collective behavior is often one

of the main reasons for “super-spreading events” during epidemics. How to

propose effective immunization strategies is a Frontier research topic in

network science and public health. To the best of our knowledge, there is a

lack of systematic research on immunization strategies for epidemics on

higher-order networks. We use synthetic networks and real-world networks

as underlying structures to construct simplicial complexes to describe higher-

order interaction networks, including pairwise and group interactions, and then

propose a simplicial irreversible epidemic spreading model (i.e., simplicial

Susceptible-Infected-Removed model). The temporal evolution process of

nodes in different states in the system is described by extending the

Microscopic Markov Chain Approach. Based on the node degree index and

betweenness index, immunization strategies are proposed on the higher-order

networks. Through theoretical analysis and numerical simulations, we discuss

the effects of different higher-order infection rates, immunization ratios, and

immunization strategies on the simplicial irreversible epidemic spread. Under

some specific parameter configurations, we observe continuous growth,

discontinuous growth, reduction of outbreak threshold, etc.
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1 Introduction

With the rapid expansion of computer science and data science in recent years, the

research on the spread of network epidemics has entered a golden era, garnering

significant interest from academics in mathematics, physics, and public health [1–3].

Complex network theory provides a good framework for studying the structure and

dynamics of complex interactive systems, can effectively demonstrate the essential

characteristics of real-world social systems, demonstrates excellent mathematical
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performance, and is capable of performing rigorous

mathematical calculations [4–7]. In 2001, Pastor-Satorras et al.

[8] utilized complex networks to study for the first time the

dynamic spread process of computer viruses. This new

epidemiological framework ushered in the era of complex

network epidemic spread dynamics and received a great deal

of scholarly interest domestically and internationally. Since then,

complex network-based epidemiological spread research has

been the dominant approach in the field of epidemiological

spread research [9–12]. However, the majority of past

research has focused on the spread process of epidemics on

complex networks in order to provide quantitative analysis for

policy-making in the field of public health.

The Susceptible-Infected-Removed (SIR) model is one of the

classic models of epidemic spread. It is frequently applied to

epidemics with irreversible spread processes, such as chickenpox,

measles, whooping cough, etc. After the treatment of such

epidemics, patients can develop lifelong immunity, which is

prevalent in the actual world [13]. Nesteruk [14] predicted the

coronavirus epidemic in South Korea using the SIR model. Guo

et al. [15] investigated the impact of discontinuous treatment

strategies on the spread dynamics of SIR epidemics.

The majority of previous studies on network epidemic spread

dynamics are based on simple networks (i.e., classical complex

networks), but an increasing number of studies have

demonstrated that higher-order network structures have a

substantial effect on the epidemic spread process [16–18]. For

instance, Althouse et al. [19] discovered that the collective

behavior in higher-order networks is the primary cause of

“super spreading events” during the Covid-19. Higher-order

networks can be used to describe the interaction of multiple

entities in real-world collective behaviors such as dining,

conference attendance, and public transportation use.

Numerous attempts have been made by scientists to describe

networks with both pairwise and higher-order interactions.

Newman et al. [20] attempted to use a bipartite graph to

describe, and other researchers attempted to use clique

expansion and the threshold model to describe [21–24], but

neither method produced satisfactory results. To better

characterize higher-order network structures, scientists

propose simplicial complex, which describe higher-order

interactions by sets of interactions as opposed to pairs of

edges [25–27]. A simplicial complex Z is consisted of several

simplexes, and if a simplex θ is contained within Z, then all the

sub-simplexes σ ⊂ θ of simplex θ are also included in Z [28,29].

The purpose of studying the pathogenesis and spread rules of

epidemics is to control the wanton spread of epidemics, so as to

reduce or avoid the harm caused by them. The spread of

epidemics depends to a large extent on the structure of

population contact networks. The strategy of how to screen

out some key points for immunization based on network

information (local or global), so as to suppress the large-scale

spread of epidemics is called immunization strategy.

Immunization is a crucial topic in the field of epidemiology

and has been investigated for a variety of epidemiological models

in complex networks [30–34].

Pastor-Satorras et al. [35] were the pioneers in investigating

immunization strategies in uniform and scale-free networks. For

a uniform network, the nodes are roughly equivalent, so they

proposed a simple and effective immunization strategy, random

immunization, in which each node in the network has the same

probability of being immune, and disease cannot continue to

spread in the network when the immunization ratio exceeds a

certain critical value. For a scale-free network with an uneven

degree distribution of nodes, the random immunization strategy

is currently invalid. They proposed a another effective

immunization strategy, target immunization, which involves

selecting the network nodes with the higher degree for

immunization [36]. Target immunization needs to obtain the

global information of the network, and it is often difficult to

obtain the global information of the real population exposure

network, which severely limits the practical application of this

method. By randomly selecting a certain proportion of nodes as

auxiliary nodes and then randomly selecting a neighboring node

for immunization for each auxiliary node, a new immunization

strategy known as acquaintance immunization was proposed by

Cohen et al. [30]. The acquaintance immunization strategy does

not require global network information and is simple to

implement, but its immune effect is not the best. Gallos et al.

[37] enhanced the acquaintance immunization strategy, which is

to randomly select a certain proportion of individuals and then,

for each individual, select the individual whose degree in the

neighbor node is greater than its own or greater than a given

threshold as the final immune object. The structure of the contact

network often determines the efficacy of the immunization

strategy. Bridge nodes are the two end nodes that connect the

edges of different modules in a network; bridge nodes do not

necessarily have a high degree value, so the degree-based target

immunization strategy or the acquaintance immunization

strategy may fail [38]. Considering that bridge nodes often

have high betweenness, Freeman [39] proposed another

effective immunization strategy, betweenness immunization,

that is, selecting nodes with larger network betweenness

values for immunization. In addition, Newman [40] proposed

a random walk-based node-centricity immunization strategy,

Salathe et al. [41] proposed the Community-Bridge-Find

algorithm, and a novel utility model of vaccination game was

formulated by Jin et al. [42], etc.

The development of higher-order networks has aroused great

interest in the research community. Jhun [43] investigated the

spread of epidemics on hypergraphs and proposed an

immunization strategy for hyperedges with high simultaneous

infection rate (SIP), i.e., the probability that all nodes in a

hyperedge are in the infected state, which is derived from

individual-based mean-field theory. To the best of our

knowledge, there is a scarcity of systematic study on
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epidemiological immunization strategies on higher-order

networks.

The main contributions of this paper are as follows: 1) We

characterize higher-order networks by constructing simplicial

complex and present a simplicial model for the spread of

irreversible epidemic on simplicial complex. 2) On the basis of

this model, we validate and compare the performance of

traditional random immunization, target immunization, and

betweenness immunization strategies, and we investigate the

impact of higher-order network structures on their immune

effects.

This paper is structured as follows: In Section 2, we describe

how to construct simplicial complex using synthetic

(heterogeneous network) and real-world networks, and then

we present a simplicial irreversible epidemic spread model on

the simplicial complex. Next, we perform numerical simulations

in Section 3 to investigate the influence of higher-order network

topologies on the spread process and the immune effects of

various immunization strategies. In addition, we introduce the

theoretical model framework in Section 4 and derive the

temporal evolution equations of individuals in different states

in the network. Conclusions are drawn and discussed in

Section 5.

2 Model description

In this paper, a simplicial complex is constructed to

characterize higher-order networks containing both pairwise

interactions (i.e., 1-simplex) and higher-order interactions

(e.g., 2-simplex), and a simplicial irreversible epidemic spread

model is proposed on it. Next, we first introduce the basic

concepts of simplicial complex, and then describe how to

build simplicial complex with synthetic and real-world

networks as the underlying network structures. Finally, to

describe the spread dynamics of irreversible epidemics and

explore the impact of higher-order network structure on the

immune effect of different immunization strategies, a new spread

model is proposed on the higher-order network based on the

simplicial complex.

2.1 Simplicial complex

A simplicial complex Z is specified by two parameters (N,

M), where N is the set of nodes and M is the set of simplexes

constituting Z. A m-simplex θ ⊂ Z is made up of a filled clique

of a set ofm + 1 nodes (i.e., θ = [n0, n1, . . . nm]), which defines a

(m + 1)-body interaction. Specifically, a m-simplex describes

the simultaneous interaction between m + 1 nodes, where a 0-

simplex designates an separate node without any interaction

(e.g [n0], [n1],. . . [nm]), a 1-simplex illustrates the pairwise

interaction between two nodes (e.g [n0, n1], [n0, nm]), a 2-

simplex describes three nodes connected pairwisely by edges

and form a ‘full’ triangle (e.g., [n0, n1, nm]), and so on, as

shown in Figure 1A. A simplicial complex Z consisted of a set

of nodes is a set of simplexes, matching the following

requirements: If a simplex θ ⊂ Z, then any simplex σ

composed of subsets of simplex θ are also included in Z,

e.g., a 2-simplicial complex Z is a collection of 0-, 1- and 2-

simplexes.

2.2 Synthetic simplicial complex

We build a simplicial complex with heterogeneous

network and real-world network as the underlying network

structure, respectively. The Random Simplicial Complex

(RSC) model permits the formation of simplicial complex

with a specified average degree [29], we initially employed this

model to construct synthetic simplicial complex. Using the

RSC model to generate a K-simplicial complex requires K + 1

parameters, which are N vertices and K probabilities

p1, . . . , pK{ } p1 and pK govern the creation of 1-simplex

and K-simplex, respectively. In this paper, K = 2, hence the

generation of a 2-simplicial complex necessitates three

parameters (N, p1, p2). For a given collection V of N nodes,

1-simplexes are constructed by linking any pair of nodes o, p ∈
V with probability p1 ∈ [0, 1], where the average degree of the

1-simplexes is k+ = (N − 1)p1. Then, 2-simplexes are

constructed by linking any three nodes o, p, q ∈ V with

probability p2 ∈ [0, 1], where the average degree of 2-

simplexes is k* = (N − 1) (N − 2)p2/2 (i.e., the average

amount of ‘full’ triangles connecting to a node). Since the

2-simplicial complex is composed of 1-simplexes and 2-

simplexes, the average degree κ of the final network is

jointly determined by k+ and k*, k ≈ (N − 1)p1 + 2k*(1 − p1).

2.3 Real-world simplicial complex

Using a publicly available dataset that depict face-to-face

interactions between individuals collected by the

SocioPatterns Collaboration [44], we then design a real-

world simplicial complex. We use data collected from two

real social scenarios: a conference (SFHH) and a workplace

(InVS15). Every 20 seconds, face-to-face interaction data is

gathered for each scenario. We begin by aggregating the data

using a sliding time window with a period of Δt = 5 min, then

search for 2- and 3-cliques in each window and weight them

according to the frequency with which they occur. Then, 20%

of the most frequent simplexes are preserved and aggregated

to produce the 2-simplicial complex. The size of each real

simplicial complex is 403 and 214, with the average degree of

2-simplexes κ* = 9.4, 5.8 and the average degree of 2-simplicial

complex κ = 26.6, 20.8.
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2.4 Simplicial spread model

Peer effects and reinforcement effects are extremely prevalent

in social contagion, from which emerge higher-order network

interactions. With this in mind, we propose an epidemic spread

model on the simplicial complex, assuming that the spread of the

disease conforms to the Susceptible-Infected-Removed (SIR)

model. There are three possible states for a node in the

network: Susceptible state S, infected state I and removed state

R, as shown in Figure 1B. The spread of the epidemic is controlled

by two parameters β and β*. Initially, a proportion ρ0 of nodes are

infected. If a node o is in S state, an infected neighbor p can infect

it via their pairwise interaction (o, p) with rate β, as shown in

Figure 1C. Node o can also get infection from node p and q via a

2-simplex (o, p, q) with rate β*, where both node p and q are in the

infected state, and this event can be seen as a synergistic

reinforcing effect, as shown in Figure 1D. In addition, infected

nodes can recover to the removed state with rate μ, as shown in

Figure 1E. Individuals who reverted to the R state are immune to

future infections.

3 Numerical simulation

Taking into account the varying average degrees of 1-

simplexes and 2-simplexes across networks, we combine k+,

k*, β, β*, and μ into a single infection rate parameter.

Specifically, there are λ = βk+/μ and λ* = β*k*/μ. λ and λ*

denote the 1-simplex infection rate and 2-simplex infection rate,

respectively. Next, based on the simplicial complex constructed

from heterogeneous network and real-world networks, we

investigate the effect of higher-order interactions on the

process of irreversible epidemic spread and the immune

effects of various immunization strategies. We stipulate that

every node joining the network chooses M = 4 vertices to

connect links, up until the network size N reaches 500, when

building simplicial complex based on heterogeneous network. Set

k+ = 20 and k* = 6 to change the connection probability p1 and p2.

Finally, the average degree of the network κ is determined to

be 20.

In this study, epidemic spread from initial infection seed

density of ρ0 = 0.02, and we set the recovery rate μ = 0.02. The

final infection density ρ* in the figure represents the density of

nodes in the R state in the network when the spread process

reaches the ultimate state. The symbols in the figures represent

the average results of 200 numerical simulations, and the solid

lines represent the theoretical results calculated from Eq. 9.

Due to a shortcoming intrinsic to the theoretical approach, the

results of theory and simulation cannot match precisely. We

employed the Microscopic Markov Chain Approach, which

assumes that the probability of two neighbors infecting the

same individual is independent and disregards the dynamical

correlations between the states of nodes. Higher-order

interactions serve to exacerbate these dynamical

correlations, making it difficult for theory to represent the

simulation process in its entirety. The observable phenomena

in the figures is primarily demonstrated by theoretical results

in our explanation.

3.1 The effect of 2-simplex infection rates

To study the effect of higher-order interactions on the

irreversible epidemic spread process, we investigate the

epidemic final infection density ρ* as a function of the 1-

simplex infection rate λ on synthetic and real-world simplicial

complex, as shown in Figure 2. This figure displays both

continuous and discontinuous growth. In addition, the 2-

simplex infection rate exerts varying degrees of effect on the

spread process in different ranges of 1-simplex infection rate. As

depicted by the red solid lines and circles in the figure, we first

conduct theoretical analysis and numerical simulations on the

heterogeneous network. As illustrated in Figures 2A,B,C, when

the 2-simplex infection rate is relatively low, the growth of ρ*

FIGURE 1
Illustration of the model description. The composition of the simplicial complex is shown in (A). (B) Depicts the classic SIR model. Epidemic
infection and recovery processes are shown in (C–E). The “full” triangle denotes the 2-simplex structure, while the green, red, and yellow circles
indicate susceptible, infected, and removed individuals, respectively, as shown in (F).
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with λ is always continuous. As depicted in Figure 2D, when the

2-simplex infection rate is high, there is a discontinuous increase

in the growth of ρ* with λ. In particular, as demonstrated by

Figure 2D, when λ* = 12 and 0 < λ < 0.5, the growth of ρ* with λ is

continuous. When 0.5 < λ < 1, growth of ρ* with λ goes from

continuous to discontinuous as λ increases. We also find that as

λ* increases, the outbreak threshold of the epidemic decreases, as

shown in Figures 2A–D. For instance, when λ* = 0.5, λ needs to

increase to around 3 for the epidemic to break out, as shown in

Figure 2A. When λ* = 12, λ only has to increase to about 1 for the

outbreak of the epidemic, as shown in Figure 2D.

In addition, we find that the 2-simplex infection rate exerts

varying degrees of effect on the spread process of the epidemic in

different ranges of λ. When the 1-simplex infection rate is small

(e.g., λ = 0.5), the increase in the 2-simplex infection rate has

almost no effect on the spread process, as shown in Figures

2A–D. When 0.5 < λ < 1.5, the 2-simplex infection rate has the

greatest impact on the spread process, which causes the growth of

ρ* with λ to gradually become discontinuous with the increase of

λ*, as shown in Figures 2A–D. When 1.5 < λ < 3, the 2-simplex

infection rate has less of an impact on the spread process, as

shown in Figures 2A–D.

Next, we repeat the same investigation on real-world

simplicial complex constructed from a conference and

workplace, respectively, and observe similar phenomena as on

synthetic simplicial complex. Due to the small size and complex

structure of real-world networks, a high 2-simplex infection rate

leads to large error fluctuations in the simulation results. On the

real-world networks, we reduce the 2-simplex infection rate, so

no obvious discontinuous growth is observed.

3.2 The effect of immunization strategies

Then, we investigate the impact of higher-order interactions

on epidemic spread under various immunization strategies. Based

on the node degree index and betweenness index, we categorize

network nodes. First, we select 10% of the nodes at random for

immunization, which is the random immunization strategy

(Random). Select 10% of the nodes with the greatest degree, the

smallest degree, the greatest betweenness, and the smallest

betweenness for immunization, i.e., the maximum degree

strategy (Degree _ max), the minimum degree strategy (Degree

_ min), the maximum betweenness strategy (Betweenness _ max),

and the minimum betweenness strategy (Betweenness _ min).

Figure 3 shows the evolution of ρ* with λ under different

immunization strategies and 2-simplex infection rates.

We first perform theoretical analysis and numerical

simulations on the heterogeneous network, as shown in

Figures 3A–D. We find that the immunization strategy based

on node degree has the same immune effect as the betweenness

immunization strategy. When selecting the node with the highest

degree and betweenness for immunization, the effect is definitely

superior to when selecting the node with the lowest degree and

betweenness for immunization, however the effect of the random

immunization strategy is intermediate. Furthermore, in some

special parameter scenarios, we observe similar phenomena to

those in Figure 2. When the node with the smallest degree or

betweenness of 10% is selected for immunization, the increase in

the 2-simplex infection rate has a significant impact on the spread

of the epidemic. When the 2-simplex rate is large enough, there is

an obvious discontinuous growth in the growth of ρ* with λ, as

FIGURE 2
Evolution of the final infection density ρ* with λ under varying rates of 2-simplex. The spread of the epidemic on the heterogeneous network and
two real-world networks are represented by circles, triangles and squares, respectively. For the spread on the heterogeneous network, we set λ* =
0.5 in (A), λ* = 3.5 in (B), λ* = 6.5 in (C) and λ* = 12 in (D). For the spread on the real-world networks, we set λ* = 0.5 in (A), λ* = 1.5 in (B), λ* = 2.5 in (C)
and λ* = 4.5 in (D).
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FIGURE 3
Evolution of the final infection density ρ* with λ under varying 2-complex infection rates and immunization strategies. Subgraphs (A–D), (E–H)
and (I–L) represent the spread of epidemics on the synthetic network and two real-world networks, respectively. Different colors and symbols have
been used to depict different immunization strategies. For the spread on the heterogeneous network, we set λ* = 0.5 in (A), λ* = 3.5 in (B), λ* = 6.5 in
(C) and λ* = 12 in (D). For the spread on the real-world networks, we set λ* = 0.5 in (E) and (I), λ* = 1.5 in (F) and (J), λ* = 2.5 in (G) and (K), λ* = 4.5
in (H) and (L).
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shown by the green and yellow lines in Figures 3A–D. When 10%

of nodes are randomly selected for immunization, the effect of the

increase in the 2-simplex rate on the spread of the epidemic is

diminished, and the growth of ρ* with λ gradually becomes

discontinuous, as illustrated by the gray lines in Figures 3A–D.

When the node with the largest degree and betweenness of 10% is

selected for immunization, the increase in 2-simplex infection rate

has no discernible effect on the spread of the epidemic, and the

growth process of ρ* with λ is always continuous, as depicted by the

red and blue lines in Figures 3A–D. Regardless of the

immunization strategy, an increase in the 2-simplex infection

rate leads to a reduction in the outbreak threshold of the

epidemic. Similar to the phenomenon depicted in Figure 2, the

increase in the infection rate of the 2-simplex has varying degrees

of impact on the spread process of the epidemic in various λ

ranges. Furthermore, when λ is small (e.g., λ = 0.5), the epidemic

cannot break out under either immunization strategy. When 2 <
λ < 3, λ* = 12, the epidemic spread under different immunization

strategies has the same spread size. In other words, when both the

1-simplex rate and the 2-simplex rate are large and 10% of the

nodes are selected for immunization, alternative immunization

strategies have the same effect, as shown in Figure 3D.

Likewise, we conduct research on two real-world networks, a

conference and workplace, and observe similar phenomena.

However, as shown in Figures 3H,L, when the infection rates

of 1-simplex and 2-simplex are both large, the spread size of

epidemics under various immunization strategies varies, which

may be related to the ratio of immunized nodes and the network

structure. Furthermore, since we set the 2-simplex infection rate

relatively small on real-world networks, we do not observe

obvious discontinuous growth.

3.3 The effect of immunization ratios

Finally, to further investigate the effect of different

immunization strategies on the spread of the epidemic on

higher-order networks, we examine the effect of different

immunization strategies on the spread size of the epidemic under

different 2-simplex infection rates and different immunization ratios

on the simplex complex constructed based on the heterogeneous

network. Figure 4 depicts the evolution of final infection density ρ*

as a function of immune ratio g and 1-simplex infection rate λ for

various 2-simplex infection rates λ*. We first investigate the case of

random immunization strategy, as shown in Figures 4A–D. We

discover that when g is small (about less than 0.3), the increase of λ*

will cause the growth of ρ* to become discontinuous with the

increase of λ, hence decreasing the outbreak threshold. When

both g and λ* are small, the interval between different colors is

large, and the growth of final infection density with λ is continuous,

as shown in Figures 4A–C.When g is small and λ* is large, brown is

squeezed toward blue, and the interval between different colors

becomes smaller. At this time, the growth of final infection density

with λ is discontinuous, and a slight change in λ can lead to the

FIGURE 4
Evolution of the final infection density with λ and g under varying 2-simplex infection rates. g represents the ratio of immune nodes. Colors
indicate theoretical results for final infection density. Four subgraphs (A–D) at the top represent random immunization strategy, four subgraphs
(E–H) in the middle represent the maximum degree immunization strategy, and four subgraphs (I–L) at the bottom represent the maximum
betweenness immunization strategy. From the left to the right, λ* corresponds to 0.5, 3.5, 6.5 and 12.
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outbreak of the epidemic. When g exceeds around 0.3, the increase

of λ* has little effect on the increase of ρ* with λ. In addition, we

discover that the epidemic cannot spread when g is approximately

0.8 or when λ is small (approximately less than 0.5).

Next, we discuss the case of the maximum degree strategy

and the maximum betweenness strategy, as demonstrated in

Figures 4E–L. Similar phenomena are observed as with the

random immunization strategy. When g is relatively small, the

increase of λ* will cause the process of ρ* to grow discontinuously

with λ, as shown in Figure 4H. When g is relatively large, an

increase in λ* will have little effect on the process of increasing ρ*

with λ, as shown in Figures 4E–H. Compared with the random

immunization strategy, the g required to fully sustain the

epidemic outbreak with the maximum degree immunization

strategy is smaller, about 0.5. When g is small (about 0.1) and

both λ* and λ are large, different immunization strategies have

the same immune effect and have less impact on the spread size

of the epidemic, as shown in Figures 4D,H,L when λ* = 12 and

λ = 3. In addition, the maximum degree immunization strategy

and the maximum betweenness immunization strategy have the

same immune effect.

4 Theoretical method

To the best of our knowledge, existing studies mostly use

Mean-Field theory to study the dynamics of epidemic spread on

higher-order networks. This method regards the individuals in

the network as equivalent nodes, which ignores the heterogeneity

between individuals, cannot fully reflect the complete structural

information of the contact network, and cannot track the

evolution of individual nodes. In order to more accurately

describe the irreversible epidemic spread process on higher-

order networks and track the state evolution of each node in

the network, we use the Microscopic Markov Chain Approach to

construct the theoretical model [45–47].

As mentioned in Section 2, our model contains a total of N

nodes, each node has three possible existence states (S, I, R) at any

time. The spread process can be performed by 1-simplex or 2-

simplex. We use pT
i (t), T ∈ S, I, R{ } to denote the probability that

a node i is in state T at time t. The temporal evolution process of

pT
i (t) is as follows:

pS
i t + 1( ) � pS

i t( ) 1 −mi( )Zi t( )Zti t( ) (1)
pI
i t + 1( ) � pI

i t( ) 1 −mi( ) 1 − μ( ) + pS
i t( ) 1 −mi( )

1 − Zi t( )Zti t( )[ ] (2)
pR
i t + 1( ) � pR

i t( ) 1 −mi( ) + pI
i t( ) 1 −mi( )μ (3)

The left side of Eq. 1 represents the probability that a node i in

the system is in the S state at time t + 1, the right side represents the

probability that a node i is in the S state at time t and is not infected

and immune. Zi(t) and Zti(t) represent the probability that an S

state node i is not infected by an I state node through the 1-simplex

and 2-simplex at time t, respectively. mi is the immunization

coefficient, mi = 1 when node i is selected as the immune node,

otherwisemi = 0. For Eq. 2, the left side represents the probability

that a node i in the system is in the I state at time t + 1, the first term

on the right side represents the probability that the node i is in the I

state at time t and has not recovered and been immune, the second

term represents the probability that an S state node i is not immune

but is infected at time t. For Eq. 3, the left side represents the

probability that a node i in the system is in R state at time t + 1, the

first term on the right side represents the probability that node i is

in R state at time t and is not immune, the second term represents

the probability that a node i in state I is not immune at time t but

returns to state R. The expressions for Zi(t) and Z
t
i(t) are as follows:

Zi t( ) � ∏
m∈τi

1 − βpI
m t( )[ ] (4)

Zt
i t( ) � ∏

m,n∈Δi

1 − βtpI
m t( )pI

n t( )[ ] (5)

For Eq. 4, the right side represents the probability that an S

state node i is not infected by its I state neighbor nodem through

1-simplex at time t, τi represents the set of neighbor nodes

connected by node i through 1-simplex. For Eq. 5, the right

side represents the probability that an S state node i is not

infected by its two I state neighbors m and n through a 2-

simplex at time t, and Δi represents the set of neighbor nodes

connected by node i through 2-simplex.

When N is large enough, we define ρT(t) to represent the

proportion of individuals who are in state T at time t in the

system, which can be approximated as the average of the

probability that individuals are in state T, T ∈ S, I, R{ } ρT(t)

can be expressed as:

ρT t( ) � 1
N

∑
N

i�1
pT
i t( ) (6)

Correspondingly, the proportion of nodes in the S, I and R

state in the system at time t can be expressed as:

ρS t( ) � 1
N

∑
N

i�1
pS
i t( ) (7)

ρI t( ) � 1
N

∑
N

i�1
pI
i t( ) (8)

ρR t( ) � 1
N

∑
N

i�1
pR
i t( ) (9)

When t → ∞, the system reaches the final state, we denote

ρ(t → ∞) as ρ, at this time, ρI = 0.

5 Conclusion

In this work, we construct simplicial complex to represent

higher-order networks and propose a simplicial irreversible
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epidemic spread model (SIR) on it. On the basis of the degree

index and betweenness index of nodes, we compare and analyze

the impacts of five different immunization strategies on the

spread of the epidemic using this model. We first construct

simplicial complex containing both pairwise interactions and

higher-order interactions on synthetic networks and real-world

networks. By extending the Microscopic Markov Chain

theoretical analysis model, the temporal evolution equations of

nodes in three distinct states are then determined. Finally, the

effects of 1-simplex infection rate, 2-simplex infection rate, and

different immunization strategies on the epidemic spread process

are examined by numerical simulations.

We first investigate the effect of different 2-simplex

infection rates on the process of epidemic spread in the

absence of immunization strategies. We discover that when

λ* is relatively small, the growth of ρ* with λ is always

continuous. When λ* is relatively large, there is a

discontinuous growth of ρ* along with the growth of λ. As

λ* increases, the outbreak threshold of the epidemic decreases.

In addition, we discover that the 2-simplex infection rate

exerts variable degrees of effect on the spread process of

the epidemic in different ranges of λ.

Then we discuss the impact of higher-order interactions on

the spread of the epidemic under five different immunization

strategies with a fixed immunization ratio of 10%. We find that

the immunization strategy based on the node degree index has

the same immune effect as the one based on the node

betweenness index. Selecting the node with the largest degree

and betweenness for immunization has the best effect, followed

by the random immunization strategy, and finally the

immunization strategy with the smallest degree and

betweenness. When nodes with a ratio of 10% are selected for

immunization, the increase in 2-simplex infection rate has a

significant impact on the spread of epidemics under the degree

and betweenness minimum immunization strategy, resulting in

discontinuous growth in the system. The impact on the epidemic

spread under the random immunization strategy is weakened,

and there is no significant impact on the epidemic spread under

the degree and betweenness maximum immunization strategy.

Regardless of the immunization strategy, an increase in the 2-

simplex infection rate leads to a reduction in the outbreak

threshold of the epidemic.

Finally, we examine the evolution of the final infection

density with the immunization ratio and the 1-simplex

infection rate for various 2-simplex infection rates. We find

that when the immunization ratio and 2-simplex infection

rate are both small, the growth of the final infection density is

always continuous with 1-simplex infection rate. When the ratio

of immune is small and the infection rate of 2-simplex is large,

there will be a discontinuous growth in the growth of final

infection density with the 1-simplex infection rate. Compared

with the random immunization strategy, the ratio of

immunization required to fully sustain the outbreak of the

epidemic is smaller when the degree and betweenness

maximum immunization strategies are adopted. When the

immunization ratio is small and both the 2-simplex and 1-

simplex infection rate are large, different immunization

strategies have the same immune effect and have less impact

on the spread size of the epidemic.

In summary, this paper investigates the effects of different

immunization strategies, 2-simplex and 1-simplex infection rates

on the spread of the irreversible epidemic on higher-order

networks. This research has certain practical significance for

epidemic prevention and control. For example, in the early stage

of an outbreak, when vaccines are lacking, it is more effective to

immunize a large number of exposed persons than to randomly

choose individuals for immunization. This work has limitations

as well. Our conclusions are primarily supported by theoretical

analysis. However, due to the inherent limits of the theoretical

method, our theoretical results do not precisely correspond to the

simulation results. How to develop a more accurate theoretical

method to simulate the spread process is a direction worthy of

consideration.
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