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The recommendation system has become an indispensable information

technology in the real world. The recommendation system based on the

diffusion model has been widely used because of its simplicity, scalability,

interpretability, and many other advantages. However, the traditional

diffusion-based recommendation model only uses the nearest neighbor

information, which limits its efficiency and performance. Therefore, in this

article, we introduce the centralities of complex networks into the diffusion-

based recommendation system and test its performance. The results show that

the overall performance of heat conduction algorithm can be improved by

184%–280%, using the centrality of complex networks, reaching almost the

same accuracy level as the mass diffusion algorithm. Therefore, the

recommendation system combining the high-order network structure

information is a potentially promising research direction in the future.
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1 Introduction

With the development of information technology, people are overwhelmed by an

increasing amount of information. Although the development of technological

innovations has made our lives easier, meanwhile, overloaded information consumes

our time and efforts when we are searching online. Therefore, in response to this demand,

searching systems and recommendation systems are evolving accordingly, and they both

are the technologies that have been developed to deal with information overload. The

searching systems solve the problem of directed search, while the recommendation

systems can predict the possible preferences and interests of users based on the previous

data. Recommendation systems have been developed for decades, and each part has been

gradually improved and developed toward more multi-level and applicable models.

Collaborative filtering [1–3] is one of the most widely used, least computationally

complex, and most effective information-filtering algorithms. The CF algorithm provides

personalized recommendations for each user based on the user’s past purchase history

database and product search records. Breese et al. [2] classified CF into two broad categories,

namely, memory-based and model-based approaches. Memory-based methods predict

information and recommend products based on a measure of similarity between the user
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and the product [3–5]. Model-based algorithms use a collection of

user and object information to generate information-filtering

models [10, 11] through clustering [6], Bayesian approach [7],

matrix factorization [8, 9], and other machine learning methods.

Different from computer science, the application of physics

in the field of interdisciplinary science has also obtained some

successful complex network theories, and various classical

physical processes have provided some new insights and

solutions for the active field of information filtering in recent

years [1, 12, 13]. For example, the diffusion process like the heat

conduction process on a dichotomous complex network [14], the

principles of dynamic resource allocation in dichotomous

complex networks [15], opinion diffusion [16], and gravity

[17] have been applied in information filtering.

Overall, CF and other diffusion-based recommendation

algorithms have been successfully applied to many well-known

online e-commerce platforms. Meanwhile, in recent years, a lot of

research studies, such as the heat conduction, mass diffusion, or hybrid

method [20, 21], biased heat conduction [22, 23], multi-channel

diffusion [24], preferential diffusion [25, 26] based on the CF direct

random walk method [27], hypergraph models with social labels [28,

29], andmultilinear interactive matrix factorization [30],are devoted to

studying the two variations of the algorithm. These algorithms will

further improve the efficiency of information-filtering systems. In

addition, multiple explorations [31, 32] on information filtering

considering external constraints have also been made.

Meanwhile, we should note that the compressed network

structural information, including the information core and

information backbone, provides some enlightenment for the in-

depth understanding of information filtering [18, 19]. Some network

structural centralities, such as PageRank and eigenvector centrality,

can indicate the structural properties of networks in one-

dimensional metrics, while traditional network structure statistics,

such as degree, can only contain first-order structure information

(nearest neighbor information). We can conclude that it is highly

probable to obtain richer structural information about the network

by replacing the influence of first-level nearest neighbors with one-

dimensional complex network structural centralities, such as

coreness and PageRank. This structural information considers the

long-range correlations in the network structure, which is expected

to help improve the accuracy of recommendation systems and

improve the application prospect in real scenarios. In the

following part of this article, we will show that the adoption of

network structural information can greatly improve the

performance of some recommendation algorithms.

2 Materials and methods

2.1 Dataset description

We obtained seven commonly used datasets in the research

of recommendation systems. The datasets are listed in Table. 1.

2.2 Evaluation metrics

In the dataset, we know some of the items that users collect, and

we need to recommend other items for users. Therefore, to compare

the recommendation performance of recommendation algorithms

[33], we divide the dataset into two categories: training set and test set.

The training set is used for each user-recommended item, and then

the test set is used to evaluate recommendation algorithm. When

calculating the evaluation metrics, we will regard the selection of the

user from the user’s recommendation lists as a positive example, and

otherwise, a negative example. For each user, in accordance with the

actual results and predicted results of each item, 1 is expressed as a

positive case, and 0 is expressed as a negative case. We can define the

following three indicators: precision, recall, and F1-score.

Precision and recall are commonly used evaluation indices.

Precision is defined as the proportion of data in the dataset that

the label predicts correctly, and recall is the proportion of data that

we predict to be correct in a certain class. They are calculated as

Recall � TP

TP + FP
,

But for each user, what we obtain is a list of users, namely, the

TOP-K recommendations. So, we assume that the number of

items recommended to the user is K, the precision is the number

of recommended items in the test set, and the recall rate is the

correct number of recommended items in the test set. For a target

user, the precision and recall are defined as

Pi � di(K)
K

, Ri � di(K)
Di

,

where di(K) is the degree of the test set in the user i’s TOP-K

recommended list andDiis the length of the test set for the ith user.

After calculating the precision and recall of the TOP-K

recommendation list of all users, we can obtain the precision and

recall of the algorithm by calculating the average value of all users.

When recommending TOP-K items for users, what need to be

considered are the precision and recall rate of the reality (whether

the user likes it or not) and the predicted label (recommendation list)

of each item. Therefore, F1-score, also called balanced F-score, is an

index commonly used to express the precision rate of binary

classification problems in statistical data analysis. F1-score can be

regarded as the harmonic average result of two indices, and the value

range is [0, 1]. F1-score is defined as

f1 − score � 2 · precision · recall
precision + recall

.

2.3 The general Markovian form of
diffusion-based recommendations

In this section, we briefly introduce the three algorithms adopted

in this article. When they are applied to calculate the
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recommendation list of users on the dataset, it is necessary to

calculate the probability transition matrix on each training set,

but the time complexity is higher if the calculation is carried out

directly through the formula. Therefore, through observation, it is

found that the calculation form of the probability transitionmatrix is

to multiply the corresponding elements after row normalization and

column normalization of some two columns in the adjacent matrix.

Therefore, the calculation formula can be simplified into a matrix

form [34, 35] to reduce and improve the calculation efficiency of the

algorithm. For example, the calculation formula of the probability

transition matrix of the heat conduction algorithm is as follows:

WH
αβ �

1
kα

∑u
i�1

aiα · aiβ
ki

� ∑u
i�1

aiα · aiβ
kα · ki

.

Here, aiα and aiβ are the elements of the ith row in two

columns of the matrix a and β, respectively. The meaning of the

aforementioned expression is to first normalize the elements in

some two columns of the bipartite graph adjacency matrix, then

matrix multiplication is performed, and the vector elements

obtained are added after the multiplication step. Therefore,

the formula of the probability transition matrix can be

simplified to the following matrix form:

WH
αβ � D−1

o · AT ·D−1
u · A.

where

D−1
u �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d1

0 / 0

0
1
d2

/ 0

..

. ..
. ..

.

0 0 /
1
du

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, D−1

o �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d1

0 / 0

0
1
d2

/ 0

..

. ..
. ..

.

0 0 /
1
do

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, D−1
u and D−1

o represent a diagonal matrix formed by

calculating the reciprocal of the node degree values of the two

categories of users and items, respectively. If the node degree is 0,

the derivative value is not necessarily to be 0. di is the degree of

the ith user or item node. Similarly, the formulas of the other two

algorithms are analyzed and can be simplified into the following

matrix expressions:

WM
αβ � AT ·D−1

u · A ·D−1
o ,

WH+M
αβ � D−1

o λ · AT ·D−1
u · A ·D−1

o 1 − λ.

If a network graph corresponding to a dataset is defined as G �
(V,E) and the adjacency matrix of the corresponding bipartite

graph is defined as Au×o, then we can calculate the probability

transition matrix of the users and regard the user’s favorite vector in

the adjacency matrix as the initial heat or resource amount for the

item, so that we can calculate the initial heat or resource amount for

the item according to the following expression:

result � A ·WT,

where result is a matrix of size u × o and the ith row vector of the

matrix represents a score list of all items for the user i. It was

assumed that the set of all items in the dataset is VItem, the set of

items collected by the user is Vcollect, and the uncollected set is

VnotCollect � VItem − Vcollect.

According to the final rating result, some items that are not

collected by the user yet are sorted according to the score. Since

the TOP-K recommendation with the highest score is selected in

the dataset, it is the recommendation list of the user i that is

recorded as a matrix of resultK. The ith row of the matrix is the K

items recommended for the user i. According to the

recommendation list and the test set, the evaluation metrics

for the user i can be calculated.

2.4 A brief introduction to the centralities
of networks

2.4.1 Closeness centrality
The closeness [36] indicates the degree of difficulty in

arriving at other nodes from a certain node, and the larger

the value is, the farther the distance from other nodes is; a

TABLE 1 Introduction of datasets.

Dataset Number of users Number of items Number of records Sparsity

Movielens_latest small 610 9,784 100,836 1.70%

Movielens_100K 943 1,682 100,000 6.30%

Movielens_90K 2,113 10,109 855,598 4.00%

Movielens_1M 6,040 3,883 1,000,209 4.26%

Movielens_10M 69,878 10,681 10,000,054 1.33%

Last.fm 1,892 12,523 186,479 0.79%

Netflixdataset 5,967 16,977 1,261,097 1.24%
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lower value indicates a closer distance to other nodes. It is

calculated using the following equation:

Closeness(V) � 1∑n−1
q−1 d(p, q),

where p represents the node that is to be calculated, q

represents other nodes in the network, and d(p, q) is the

shortest path length from node p to node q. The idea of this

closeness is that the closer the nodes are to the network center,

the more quickly they can reach other nodes. Therefore, the

importance of each node obtained through closeness not only is

influenced by the number of adjacent nodes but also reflects the

minimum average shortest path to other nodes by utilizing the

characteristics of the whole network.

2.4.2 Eigenvector centrality
Eigenvector centrality [37] is a metric to measure the impact

of nodes on the network. This metric is used when nodes with the

same number of links are present. A high score for eigenvector

centrality means that the node is connected to a few nodes that

have high scores themselves. For a given network with an

adjacent matrix A, if two nodes i and j are not directly

connected, then Ai,j � 0, and otherwise Ai,j � 1. The

eigenvector of A must satisfy the following expression:

Ax � λx,

and eigenvector centrality is given by the eigenvector

corresponding to the largest eigenvalue of A.

2.4.3 Katz centrality
Like eigenvector centrality, Katz centrality [38] also measures

the importance of nodes. The difference is that it considers the

nodes that have an in-degree 0 by adding a decay coefficient α

and a bias term β. Also, with the help of the adjacency matrix A,

for a node i, Katz centrality xi is calculated as follows:

xi � α∑
j⊆G

ai,jxj + β.

In practice, the attenuation coefficient α< 1/λ is usually

chosen to ensure that the matrix is invertible and that

centrality can be obtained.

2.4.4 PageRank
PageRank [39] algorithm was originally a calculation

method for calculating weights to solve the ranking between

web pages, which was developed based on eigenvector

centrality. Although the method is proposed to solve the

problem of a directed graph, this method can be used in any

graph, and now it is often applied to the analysis of the

importance of various networks.

For a directed graph G � (V, E), we can define a Markovian

process that has the probability transition matrix M � (mi,j ) in

the graph, and the normalized initial centrality of all nodes is R0.

Thus, we can obtain the value after one-step transition as MR0

and then proceed in turn until t-step probability transition:

R0,MR0,M
2R0, . . . ,M

tR0, . . .

If this series converges, the final vector R represents the

stationary distribution of the Markov chain and satisfies MR =R.

Therefore, the value of the vector R is the PageRank value of the

nodes in the network. In practice, a random distribution term E is

added to ensure that the node with zero in-degree can also receive

incoming links, and the weight of this random term is usually set

to 0.15.

Finally, we can obtain the following expression:

PageRank � 0.85 × R + 0.15 ×
E
n
,

where n is the total number of nodes and E is a matrix whose

elements are all equal to 1.

3 Results

The degree is the most commonly used metric in the study

of a network structure model, which is defined as the number

of neighboring nodes of a given node, thus reflecting the

importance of a node in the network. In the diffusion-

based recommendation algorithm, the process of heat

conduction or mass diffusion of each node is completed

governed by the degree of each node. But this idea is, in

fact, too simple to be applied in the real world. In a social

network, if a member B knows only one influential member A,

although the node has a only degree that equals to 1, B’s

influence will increase due to the higher importance of node A.

From this point of view, there is a room for improvement in

the use of the network structure as an indicator for user

recommendation.

Therefore, the method proposed in this article is to improve

the recommendation algorithm based on the traditional diffusion

process by replacing the degree with the network structural

centralities like closeness, eigenvector centrality, PageRank,

and Katz centrality. These four types of network structural

centralities are used in this article.

3.1 The selection of test sets

We first randomly divide the dataset into 90% of the training

set and 10% of the test set according to the conventional practice

and use the algorithm to recommend items for users. However,

since the size of the dataset of each user is not average, in real life,

the length of the recommendation list required by each user is not

the same. Therefore, to compare the difference of the

recommendation performance among different algorithms, we
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only consider the TOP-K recommendation list of each user, if the

length of the recommendation list is K � 50. The hybrid

algorithm needs to set a weighting coefficient to determine the

weight of the two algorithms, and the weighting coefficient is set

to λ � 0.5. We obtain the performance of the data

recommendation system under random segmentation, as

shown in Table 1.

However, in the application of the recommendation

algorithm, the random selection of the test set is inconsistent

with the application of the recommendation system because it

neglects the temporal information and can violate causality.

Therefore, in this article, the test set can be selected in a

temporal way. As all datasets are sorted in accordance with

the timestamp in this article, we select the time of the latest

10% of the data as the test set of the data and the rest of the time

before as the training set.

3.2 Results of datasets with temporal test
sets

On the datasets, after selecting the test set with a temporal

sequence, the results are as follows:

For the test set selected in a temporal sequence, several

indicators of the performance are a bit lower than those of

the results of random selection (shown in Table 2 and

Table 3). This is mainly because of the following reason: if the

dataset is small and the timestamps of the users are not likely to

be evenly distributed, then it is likely that the user’s activity will

not be selected into the test set. This will reduce the number of

samples in the training set; these users will be less connected to

the whole system. This will also affect the algorithm for these

users of the prediction results, and the calculation of the precision

of the algorithm only considers this subset of the user’s TOP-K

recommended list. So, the accuracy of the four indicators will

decline. However, in this way, we obtain the training set and the

test set which are closer to the reality, and the result of the

algorithm is more meaningful and applicable than that of

random selection of test sets.

3.3 Results incorporating centralities

In the aforementioned Materials and methods section, it was

shown that for the original algorithm, calculation is directly

carried out through a probability transition matrix calculation

TABLE 2 Recommendation evaluations on seven datasets based on random selection of test sets.

Dataset Algorithm Precision (%) Recall (%) F1-score

ml_latest small Heats 0.92 7.12 1.63%

Probs 7.57 33.23 1.23%

Hybrid 8.03 35.73 1.31%

ml_90K Heats 0.12 0.57 0.20%

Probs 15.84 23.16 18.8%

Hybrid 16.16 23.93 19.3%

ml_100K Heats 11.37 15.53 13.1%

Probs 26.76 42.03 32.7%

Hybrid 28.84 45.70 35.4%

ml_1M Heats 5.10 18.88 8.04%

Probs 7.94 28.12 12.4%

Hybrid 8.99 33.27 14.14

Netflix Heats 0.03 0.16 0.04%

Probs 8.06 24.70 12.1%

Hybrid 8.71 27.82 13.3%

ml_10M Heats 5.58 29.84 9.40%

Probs 7.51 36.68 12.5%

Hybrid 7.94 39.40 13.2%

Last.fm Heats 0.08 0.63 0.14%

Probs 0.75 7.10 0.14%

Hybrid 0.72 5.86 0.13%
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formula, so that the time complexity is high; however, the

formula can be converted into a matrix form through

simplification, namely, the weight of heat or resource

allocation can be changed, so that the performance of the

algorithm can be improved. We calculate the five network

structural metrics, and the results of the movielens_latest

small dataset are as follows:

From the aforementioned Table 4, the following conclusions

can be obtained between different network structural centralities

and different algorithms:

1) The results of various network structural centralities basically

meet the common knowledge that the precision of the hybrid

algorithm is greater than that of the mass diffusion algorithm

and is greater than that of the heat conduction algorithm.

However, for the results of PageRank or eigenvector

centrality, it can be seen that the results of mass diffusion

algorithm are better than those of hybrid algorithm, mainly

due to the influence of the fixed weighting coefficient of the

hybrid algorithm.

2) More interestingly, by changing the network structural

centrality, the precision of the algorithm is improved,

especially the precision of the heat conduction algorithm is

greatly improved by 5.73–16.7 times, with the F1-score

measure, and almost reaches the level of mass diffusion.

The results of HC are marked in bold font.

TABLE 3 Recommendation evaluations on seven datasets with temporal selection of test sets.

Dataset Algorithm Precision (%) Recall (%) F1-score (%)

ml_latest small Heats 0.70 0.14 0.23

Mass 4.78 3.61 4.12

Hybrid 5.22 3.95 4.48

ml_90K Heats 0.78 0.48 0.59

Mass 6.31 6.53 6.42

Hybrid 6.41 6.69 6.59

ml_100K Heats 4.66 5.56 5.07

Mass 8.81 14.80 11.0

Hybrid 8.99 14.65 11.1

ml_1M Heats 5.22 5.16 5.19

Mass 18.95 15.72 17.2

Hybrid 19.23 16.52 17.8

Netflix Heats 0.15 0.22 0.18

Mass 4.68 7.56 5.78

Hybrid 4.55 8.15 5.84

ml_10M Heats 2.40 2.02 2.20

Mass 4.17 3.29 3.68

Hybrid 4.13 3.28 3.66

Last.fm Heats) 0.20 0.61 0.30

Mass 1.74 5.10 2.60

Hybrid 1.43 4.25 2.14

TABLE 4 Recommendation results adopting centralities.

Precision (%) Recall (%) F1-score (%)

Degree (heats) 0.70 0.14 0.23

Degree (mass) 4.78 3.61 4.12

Degree (hybrid) 5.22 3.95 4.50

Closeness (heats) 4.51 3.32 3.83

Closeness (mass) 4.62 3.38 3.90

Closeness (hybrid) 4.54 3.31 3.82

Eigenvector (heats) 0.54 0.08 1.32

Eigenvector (mass) 4.95 3.88 4.35

Eigenvector (hybrid) 5.08 4.14 4.56

PageRank (heats) 4.24 3.28 3.70

PageRank (mass) 4.68 3.65 4.10

PageRank (hybrid) 4.70 3.70 4.14

Katz (heats) 4.35 3.27 3.74

Katz (mass) 4.38 3.29 3.76

Katz (hybrid) 4.41 3.30 3.78

Frontiers in Physics frontiersin.org06

Kong et al. 10.3389/fphy.2022.1018781

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1018781


For further analysis, we choose the more comprehensive

index F1-score to compare the differences of recommendation

results obtained by different centralities on five datasets. As in the

aforementioned dataset, the F1-score results obtained by the heat

conduction algorithm using five network structural indicators are

shown in Figure 1.

From the aforementioned figure, we can see that the method

of introducing the network structural metrics improves the

performance when using the HC algorithm. Among these

metrics, Katz centrality and closeness centrality are the most

effective, but the eigenvector centrality greatly reduces the

precision of the original method. Moreover, we can see that

the F1-score of the algorithm is improved by about 280% by

using Katz centrality and closeness centrality on the

movielens_1M dataset, and the F1-score of the algorithm is

improved by 184% by using PageRank.

The results ofMD and hybrid algorithms are shown in Figure 2

and Figure 3, respectively. The figures show that the results of the

two algorithms are relatively similar, and the recommendation

results when different structural centralities are applied are basically

similar; also, there are a few small differences in different datasets.

But one can see that for each dataset, when using the three metrics,

the results of degree, eigenvector centrality, and PageRank are

better, while the results of the other two metrics are slightly

worse, but the differences between each metric are generally

within 5%. On some datasets, such as movielens_100K and

movielens_1M, we can see that the recommendation results

obtained by using eigenvector centrality are marginally better

than those obtained by using the degree.

4 Discussion

In this study, we mainly focus on the traditional collaborative

filtering (CF)-based recommendation systems to improve the

information-filtering technique by utilizing the network

structural centrality. This article focuses on the

recommendation systems that are based on the diffusion

processes: heat conduction algorithm and mass diffusion

algorithm, which are based on physics theories. However,

these two algorithms have their own focus in terms of

accuracy and diversity. Combining the two algorithms by a

weighting coefficient λ can lead to a hybrid algorithm that can

obtain better performance in both the metrics [20].

The recommendation results of the aforementioned three

algorithms that adopt degree information as the input of the

recommendation system are obtained on the movielens and

other datasets commonly used. Through the analysis, we find

that the degree contains network structural information of

nearest neighbors, which only reflects the number of

neighbors of each node. Therefore, this article proposes an

improved method that contains the information of higher-

dimensional network structural information to improve the

recommendation algorithm, by using metrics such as

closeness centrality, eigenvector centrality, Katz centrality, and

PageRank These metrics not only take the number of

neighboring nodes into account but also contain the

FIGURE 1
Results of different datasets using heat conduction.

FIGURE 2
Recommendation results of five datasets using mass
diffusion.

FIGURE 3
Recommendation results of five datasets using hybrid
algorithm.
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importance of neighboring nodes as well as their structural

information.

The method proposed in this article shows that applying

different network structural centralities improves the

recommendation performance. The results of the HC

algorithm obtained with all the tested network structural

centralities show an improvement in performance in the

range of 184%–280% (the only exception is that using

eigenvector centrality causes a decrease in accuracy). For the

MD algorithm, the differences in the results obtained after

applying different metrics are small. Among them, the

optimal results were obtained for three metrics: degree,

eigenvector centrality, and PageRank. Meanwhile, the hybrid

algorithm has overall better prediction results, but the results of

some metrics are likely to be influenced by the weighting factor λ,
and even better results could be obtained after adjusting the

parameters.

Overall, in this article, we show that the centrality of

networks contains higher-order structural information of the

network topology than the traditional adoption of degree.

Surprisingly, the recommendation algorithms incorporating

such centralities, especially the heat conduction algorithm will

have a significantly improved performance, almost comparable

to that of the mass diffusion algorithm.
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