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We propose a passenger flow detection method for dense areas of subway

stations to address the current situation that existing pedestrian detection

models cannot meet the real-time performance requirements in subway

applications and lack validation in multiple subway scenarios. First, we

designed the MPDNet model, which uses PVT-small to extract features and

an improved feature pyramid network (FPN) for upsampling using the adaptively

spatial feature fusion (ASFF) algorithm to retain more local information in the

output of the FPN. Second, to better evaluate the performance of models in the

metro, we collected subway surveillance video data and proposed the

MetroStation dataset. Finally, we trained and evaluated the performance of

the MPDNet model on the MetroStation dataset. We compare our method with

several common object detection models on the MetroStation dataset, using

mAP and frames per second (FPS) to verify its accuracy. The experiments on the

MetroStation dataset demonstrated that the MPDNet performed well and

satisfied inference speed requirements in metro passenger flow detection.
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Introduction

The demand for transportation capacity increases with the continuous expansion of

the scale of cities. As an integral part of public transportation in large cities, the metro

system plays an important role in improving traffic capacity and relieving traffic pressure.

Therefore, metro construction has become the focus of many cities. Rail transportation

has gradually won the approval of passengers because of its high capacity, punctuality,

safety, and comfort.

At present, the scale of the metro network is expanding. It shows the uneven

distribution of passenger flow in the metro network, with high traffic volume and

passenger flow during the morning and evening rush hours. This means the

instantaneous passenger flow of a metro station has a large peak that could lead to

trampling accidents during the peak period. This peak affects the safe and stable operation

of the subway. Therefore, obtaining passenger flow data in a timely and accurate method
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plays an important role in supporting operational decisions and

ensuring the safe and efficient operation of the metro.

The automatic fare collection system (AFC) is the most

common and widely used method to get passenger flow

information. The core of the AFC is to collect data from gate

machines and then process the data to obtain the location and

timing of passengers entering and exiting the stations, thus

analyzing the spatial and temporal distribution of passenger

flow. The flow data obtained in this way is accurate, but it

takes time to process and analyze after collecting raw data

from the AFC. In addition, this method cannot obtain the

passenger flow data from internal areas of stations such as

station halls, transfer channels, and platforms.

In China, metro stations are fully covered by video

surveillance systems. Many metro operators assign specialized

staff to observe the surveillance video in real time to obtain

information about the passenger flow in each area of the station

[1]. This labor-based approach not only relies heavily on staff

experience but also does not enable quantifying passenger flow

data. Moreover, this type of passenger flow information contains

subjective information that can produce bias in the information

propagation [2]. Therefore, many researchers have began to use

real-time surveillance video systems to get passenger flow data.

Hu et al. [3] proposed a crowd counting method on subway

platforms. It combined a weighted area feature that considers

perspective and an improved gradient feature that could indicate

crowd density to calculate the number of passengers. This

method solves the problem of overlapping passengers and

calculates the number of people in a dense crowd more

accurately. However, its performance is easily affected by the

quality of the images and different crowd density levels. Xie et al.

[4] used the Dempster–Shafer theory (D–S theory) to improve

the average background model for background modeling,

reduced the weight of irrelevant background caused by

moving objects, and then used the feature of image connected

domain for passenger flow recognition. This method has fast

inference speed but is greatly influenced by the environment and

has different performance under different passenger flow

densities.

With the concepts of intelligent transportation and the

development of deep learning in recent years, many

researchers have started to use convolutional neural network

(CNN) methods for passenger flow detection. The deep learning-

based methods have greatly improved the accuracy of passenger

flow detection and reduced the influence of environmental

changes on the performance of models. Zhang et al. [5]

proposed MPCNet, which uses CNN to extract features and

then uses a multi-column atrous CNN with atrous spatial

pyramid pooling to estimate the crowd size. It can aggregate

multi-scale contextual information in crowded scenes. This

method has high detection accuracy but slow inference speed,

so it is difficult to meet the requirement of real-time detection in

metro stations. Later, Guo et al. [6] proposed MetroNet to detect

highly obscured passengers efficiently and also proposed Tiny

MetroNet to achieve a better balance of accuracy, memory, and

speed on resource-constrained platforms. Liu et al. [7] designed a

novel MSAC block to generate informative and semantic

convolutional features and proposed MetroNext based on

MSAC. This method can achieve real-time detection of

passengers on and off the subway by combining MetroNexts

and an optical flow algorithm. Yang et al. [8] used the attention

mechanism CBAM to improve yolov4 and decrease the effect of

light on the detection performance. The passenger flow detection

methods in these studies are based on CNNs owing to their good

trainability and generalization capabilities. Getting real-time

passenger flow data both reduces the risk of emergencies and

influences passengers’ travel decisions through social network

propagation [9]. However, many of these methods do not satisfy

the required real-time performance in metro applications and

lack validation in the context of multiple metro scenes.

In response to the above problems, we propose the metro

passenger detection network (MPDNet) based on a transformer

model. It can achieve dense passenger flow detection in metro

stations with multiple scenes, focusing on the passenger

distortion caused by the installation angle of the metro video

surveillance system and inter-passenger occlusion problems. We

implement pyramid vision transformer (PVT) as the feature

extraction network on RetinaNet. We also improve the feature

fusion module with the adaptively spatial feature fusion (ASFF)

algorithm. This improvement compensates for the loss of spatial

information caused by PVT. Finally, we replace an L1 loss with a

generalized intersection over union (GIoU) loss as the regression

loss of the bounding box. In addition, we propose the

MetroStation dataset based on the video surveillance system

data of Beijing metro stations. The MetroStation dataset fills

the gap of lacking station scene data in metro station passenger

flow detection. The dataset contains images from different

camera angles of various areas within the rail stations, with

passengers at different sparsity levels labeled in each image. This

dataset is of great value for improving the performance and

robustness of the model in metro passenger flow detection.

Finally, we test our model on the MetroStation dataset and

compare it with various other object detection models. The

experiments show that our method has both better accuracy

and good real-time performance.

Related work

CNN-based objection detection

The development of object detection algorithms can be

divided into two stages: methods based on manual feature

construction and methods based on deep learning models.

After 2012, the performance of manual feature methods

became saturated, and methods based on manual feature
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construction entered a bottleneck. The emergence of AlexNet

[10] changed the situation. AlexNet was the first method to adopt

convolutional neural networks for image classification tasks and

achieved better performance than the manual feature-based

methods. Since then, computer vision has entered a new era

dominated by CNNs. In 2014, Girshick et al. [11] proposed

region-based CNN (RCNN), a representative of the two-stage

method, which first applied convolutional neural networks to

object detection. Later, Fast RCNN [12], and Faster RCNN [13]

were proposed to have better detection accuracy and inference

speed than RCNN. However, the two-stage method based on

classification has a serious drawback of slow inference speed

despite its high detection accuracy, so it is not suitable for real-

time object detection. This restriction was later removed by

YOLO [14]. It directly regresses all information of the

bounding box in the output layer and greatly improves the

inference speed. After YOLO, one-stage detectors, such as

SSD [15] and RetinaNet [16], have emerged continuously.

Their excellent detection performance is based on high

resolution and multi-scale feature maps.

Transformer-based objection detection

Transformer is a self-attention-based model originally

applied in natural language processing (NLP). The excellent

performance of bidirectional encoder representations from

transformers (BERT) and generative pre-trained transformer

3 (GPT-3) in NLP demonstrates that transformer-based

methods have strong computational performance and

scalability. Based on the existing model growth, transformer

methods show no sign of saturation. Considering the great

success of transformer methods in the field of NLP, many

researchers started to think about introducing it in computer

vision tasks. Carion et al. proposed DETR [17], a full end-to-

end detector. It abandoned the anchor generator and non-

maximum suppression (NMS) that were commonly used in

previous CNN-based detectors and used the transformer

encoder-decoder structure to directly consider object

detection as a direct set prediction problem. Inspired by the

transformer in NLP, vision transformer (ViT) [18] was

proposed, which was the first to introduce pure transformer

methods in image classification tasks. ViT divides an image into

a patch sequence and considers patches as tokens (words) in the

NLP task. It was proved that ViT obtains the same or even better

results than CNN-based methods for supervised training on

large datasets (14 –300 million images). This shows that

transformer methods can replace CNN applications as a

fundamental component in computer vision. After ViT,

research on adopting transformer methods in target

detection tasks has sprung up. The Swin transformer [19] is

a hierarchical structure that progressively shrinks the output

resolution, expanding the receptive field by layer like a CNN.

Instead of performing multi-head attention on patch sequences

like ViT, the Swin transformer introduced the concept of windows

into the transformer to implement the localization of CNN. This

approach also reduced the computational complexity caused by

self-attention. PVT [20] introduced the pyramid structure into

transformer methods and presented a pure transformer backbone

for dense prediction tasks. PVT added spatial reduction operation

to multi-head attention to form spatial-reduction attention (SRA).

SRA greatly reduced the computational and memory cost required

for attention operation while keeping the resolution of the feature

map and the global receptive field. Replacing ResNet50 with PVT-

small as the backbone network of RetinaNet gained better

performance at COCO VAL2017, showing that PVT performed

better than CNN under the same number of parameters.

Proposed methods

MPDNet structure

Lin et al. [16] attributed the lower detection accuracy of the

one-stage detector compared to the two-stage detector to the

extremely unbalanced ratio of positive to negative samples.

Therefore, they proposed a simple but practical function

called focal loss and designed the RetinaNet for object

detection. This enables the one-stage detector to match or

even surpass the two-stage detector in accuracy.

In this study, we built a RetinaNet detector on the

MMDetection framework. As shown in Figure 1, the model

structure can be divided into three parts: backbone, neck,

and head.

RetinaNet is a detection model with better and faster detection

performance. It uses ResNet50 as the backbone network, as

proposed by He et al. [21] in 2015. ResNet50 is the first to

address the progressive degradation of neural networks caused by

increasing depth with the residual module. After inputting the

processed image, ResNet outputs four different scale feature

maps into a feature pyramid network (FPN). The FPN [22]

upsamples the bottom map and fuses it with the same scale

feature map. The outputs of FPN have high resolution and

strong semantic features. RetinaNet is an anchor-based algorithm

that generates nine anchors with three scales and three aspect ratios

at every position of a feature map. The RetinaHead has two

branches. One calculates the category, and the other calculates

the regression parameters of the bounding box. Focal loss as

classification loss is the core of the RetinaNet; it is an

improvement of cross-entropy (CE) loss for binary classification.

CE(p, y) � { −log(p), if y � 1,
−log(1 − p), otherwise.

(1)

In the equation above, y ∈ { ± 1},p ∈ [0, 1] is the estimated

probability for class with label y � 1. Therefore, define pt:
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pt � { p , if y � 1
1 − p , otherwise

(2)

Then, rewrite CE(p, y) � CE(pt) � −log(pt).
A common solution to class imbalances is to add a weight

factor. Set α ∈ [0, 1] for class 1 and 1 − α for class −1. Then, we

write α-balanced CE loss as:

CE(Pt) � −αtlog(pt) (3)

During training, many easily classified negatives dominate in

the loss. But α can only balance positive/negative examples and

cannot distinguish between easy and hard examples. To address

that, a modulating factor(1 − pt)γ,γ≥ 0 is added in CE loss. The

equation is

FIGURE 1
The structure of RetinaNet.

FIGURE 2
The structure of MDPNet.

FIGURE 3
The structure of improved FPN.
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CE(pt) � −(1 − pt)log(pt). (4)

Combining Eqs 3, 4, the focal loss can be written as:

FL(pt) � −αt(1 − pt)γlog (pt). (5)

The application of focal loss greatly improves the detection

accuracy of the one-stage detector, making the one-stage detector

comparable to the two-stage detector in terms of detection

accuracy while maintaining inference speed. However,

RetinaNet does not have a special network structure design.

Therefore, it can be improved according to the changeable

lighting conditions, and the characteristics of dense passenger

flow in subway stations so as to improve the robustness of the

model.

According to experiments [20], when using RetinaNet for

object detection, the PVT-based model performs better on

COCO Val2017 than ResNet50. In this study, we

implemented PVT-small as a backbone network in RetinaNet.

The overall network structure is shown in Figure 2.

The transformer encoder is an important part of stages in

PVT-small. Each encoder contains an attention layer and a

feed-forward layer. PVT replaced the multi-head attention

(MHA) layer in the traditional encoder [23] with an SRA

layer. In ViT, the calculation of attention can be expressed as

follows:

Attention(q, k, v) � Sof tmax( qkT����
dhead

√ )v. (6)

Here, q is query, k is key, v is value, and SRA performs spatial

reduction in the spatial scale of K, V before attention operation.

The calculation of SR is:

SR(x) � Norm(Reshape(x, Ri)WS). (7)

Here, x ∈ (HiWi) × Ci is an input sequence. Ri is the reduction

ratio in stage i. Reshape(x, Ri) represents the operation of

reshaping x into a sequence of size
HiWi

R2
i

× (R2
i Ci).WS ∈ R(R2

i Ci)×Ci is a linear projection. Therefore,

the attention operation in every head is calculated as:

headj � Attention(QWQ
j , SR(K)WK

j , SR(V)WV
J ) (8)

WQ
j ∈ RCi×dhead ,WK

j ∈ RCi×dhead ,WV
j ∈ RCi×dhead . Attention(·)

is the same as Eq. 6.

SRA adopts the same concatenation operation for the head as

MHA. According to Eqs 6, 7, the computation of SRA is R2
i times

smaller than that of MHA, so it can process larger images with

the same resources.

The improvement of FPN

The CNN-based model has a local receptive field and

hierarchical structure that can extract features from local to

global. The transformer-based model shows strong modeling

FIGURE 4
Comparison of MetroStation with other pedestrian detection datasets. (A) CrowdHuman, (B) CityPerson, (C) CUHK occlusion, and (D)
MetroStation.

TABLE 1 Size of each subset in MetroStation.

Stairs Escalator Gate Platform

Image 676 748 470 229

People 4,905 3,004 3,097 1968
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performance with its global modeling ability. However, they are

not designed to make full use of the spatial information in

images, so they need other means to compensate for this lack.

In addition, a mechanism called a heuristic-guided feature

selection usually exists when adopting feature pyramids for

object detection. In feature maps, large objects are usually

associated with upper-level features and small ones with

lower-level features. In the process of FPN upsampling, the

large instance of the upper feature is regarded as the

background in the lower feature map. When there are objects

of different scales in the image, this inconsistency between

features will interfere with the gradient calculation during

training and lower the performance of the pyramidal feature

map. Therefore, we adopted the ASFF algorithm to improve

FPN. The detailed implementation is shown in Figure 3.

We assigned weight coefficients to different levels of feature

maps and retained useful information for combination. The

weight coefficients allowed the model to learn spatial fusion

weights of different feature maps adaptively and enhanced the

feature fusion. Each layer will be processed as follows: First, we

modified the feature maps for each level by up-sampling or

down-sampling to achieve the same size as the corresponding

layer. For example, X3→4 denotes that x3 is up-sampled by

nearest-neighbor interpolation, and the feature map is scaled

to the same size as x4. Second, α4, β4, γ4, and δ4 indicate the

important spatial weights at four levels to layer 4, which are

adaptively learned through standard back-propagation by the

network. Also, we specified that α4 + β4 + γ4 + δ4 � 1 and

α4, β4, γ4, δ4 ∈ [0, 1]. Third, after the dot product operation of

feature maps and weights, a summation is performed to obtain

the final feature maps. This method not only addresses the

inconsistency of FPN in training but also compensates for the

missing spatial information after PVT-small.

Loss optimization

RetinaHead calculates bounding box loss with L1 loss in the

location subnet. L1 loss is also called mean absolute error (MAE).

It calculates the loss of the four coordinates of the prediction box

and the ground truth box, respectively, and then sums them. It

does not consider the correlation between directions and

coordinates, so it is not suitable for passenger detection in

metro stations.

FIGURE 5
The types of scenes in the MetroStation dataset: (A) platform, (B) stairs, (C) escalator, and (D) gate.

FIGURE 6
The proportions of different densities in the MetroStation
subset.
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To address the shortcomings of L1 loss, we improved

bounding box loss with GIoU [24] loss:

Predicted Bp and ground truth Bgbounding box coordinates:

Bp � (xp
1 , y

p
1 , x

p
2 , y

p
2 ), Bg � (xg

1 , y
g
1 , x

g
2 , y

g
2 ).

For the predicted box Bp, ensuring xp
2 > xp

1 and yp
2 >yp

1 :

x̂p
1 � min(xp

1 , x
p
2 ), x̂p

2 � max(xp
1 , x

p
2 ), ŷp

1 � min(yp
1 , y

p
2 ),

ŷp
2 � max(yp

1 , y
p
2 ).

The area of Bp and Bg:

Ag � (xg
2 − xg

1 ) × (yg
2 − yg

1), Ap � (x̂p
2 − x̂p

1 ) × (ŷp
2 − ŷp

1 ).
(9)

Thus, the intersection between Bp and Bg:

xι
1 � max(x̂p

1 , x
g
1), xι

2 � min(x̂p
2 , x

g
2), yι

1 � max(ŷp
1 , y

g
1 ),

xι
2 � min(ŷp

2 , y
g
2),

Ι � {(xι
2 − xι

1) × (yι
2 − yι

1), if xι
2 > xι

1, y
ι
2 >yι

1

0 otherwise
(10)

The coordinates of smallest enclosing box Bc are calculated as:

xc
1 � min(x̂p

1 , x
g
1 ), xc

2 � max(x̂p
2 , x

g
2), yc

1 � min(ŷp
1 , y

g
1 ),

yc
2 � max(ŷp

2 , y
g
2).

The area of Bc is:

Ac � (xc
2 − xc

1) × (yc
2 − yc

1). (11)

According to Eqs 9, 10:

IoU � Ι

U
, U � Ap + Ag − I, (12)

GIoU � IoU − Ac − U

Ac
. (13)

The loss functions based on intersection over union (IoU) and

GIoU are:

LIoU � 1 − IoU, LGIoU � 1 − GIoU. (14)

Compared with the L1 loss, IoU is scale invariant, and the

output of IoU loss is always between 0 and 1, which reflects the

inference performance of the prediction box and ground truth.

GIoU addresses the problem that the gradient cannot be calculated

when the two boxes overlap under the IoU. It also adds a minimum

outsourcing box as the penalty term. This method can better reflect

the proximity of the two boxes, and it is better for predicting box

regression in the case of dense object detection.

Experiment

Dataset

With the continuous development of deep learning, model

training has placed more requirements on the quality and

quantity of datasets. Therefore, the quality of data is

extremely helpful in model training and the generalization

ability of the model. KITTI [25], CityPersons [26], and

Caltech-USA et al. [27] are the mainstream large-scale

pedestrian detection datasets. However, these datasets are still

slightly inadequate for passenger flow detection in a metro

station. For example, the KITTI and Caltech-USA datasets

have less than one person per image on average. CityPersons,

as a subset of the Cityscapes dataset [28], has an average of about

six people per image, but this density still does not simulate the

density of metro traffic very well. CrowdHuman [29] and CUHK

Occlusion [30] are pedestrian detection datasets for dense,

occlusive scenes. These two datasets are mainly oriented to

streets, squares, and other open areas with good lighting

conditions. However, in metro stations, the quality of images

often suffers from diverse perspectives and insufficient lighting

due to the restrictions of camera installation. Therefore, the

existing pedestrian detection datasets can not fully simulate

the subway operation scene in terms of density, perspective

and light conditions. To address that, we proposed a new

dataset named MetroStation. Our goal is to represent different

TABLE 2 Density comparison of MetroStation and its subsets.

MetroStation Stairs Escalator Gate Platform

Image 2,123 676 748 470 229

People 12,974 4,905 3,004 3,097 1968

People/image 6.11 7.26 4.02 6.59 8.59

TABLE 3 Comparison of different methods onMetroStation frommAP
and FPS.

Model mAP @0.5 FPS

Retina-r50 92.3 35.4

MPDNet 94.0 34.3

YOLO x 83.2 62.4

SSD 82.4 39

Faster RCNN-r50 93.1 29.9
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operation scenes in MetroStation as comprehensively as possible,

including different camera angles, different lighting conditions

and different traffic densities. The original data of the

MetroStation dataset were obtained from the surveillance

video of Beijing subway stations. Depending on the speed of

passenger movement in different areas of the stations, we draw

frames at different time intervals.

The dataset contains 2,123 annotated images of size

640×480 pixels with 12,974 labels. The training set contains

1,699 images, and the remaining 424 images are validation

and test images. The comparison between our dataset and

other datasets is shown in Figure 4.

Diversity and size
Diversity is one of the important indicators of the dataset.

Depending on the different video sources, the whole dataset can

be divided into four subsets: Stairs, Escalator, Gate and Platform.

The number of images and labels in each subset is shown in

Table 1.

The Stairs subset comes from videos of two cameras

installed in the stairs area during three different periods.

The Escalator subset comes from the cameras facing four

different escalators. The Gate subset consists of four time slots

from two gates, and the Platform subset consists of seven time

slots from five cameras. We display four types of scenes in our

datasets in Figure 5.

Density
In terms of density, the average density in MetroStation is

6.1 people per image. However, the density of each subset varies

due to different passenger flow characteristics and camera

perspectives in different station areas, as shown in Table 2.

The average density of MetroStation can reach 6.11 people

per image. The Platform subset has the highest density of all

subsets, with an average density of 8.59 people per image. We

show the distribution of images with different densities in

Figure 6.

Experiments on the MetroStation dataset

In this study, we used two NVIDIA GeForce GTX 1080Tis to

train on MMDetection 2.20, an object detection framework. We

FIGURE 7
Comparison of practical application effects between RetinaNet and MPDNet. (A) The original images. (B) The results of RetinaNet. (C) The
results of MPDNet.

TABLE 4 Experimental results of ASFF-FPN.

Model mAP

Retina-r50* 92.3

Retina-r50 92.5

MPDNet* 87.9

MPDNet 94.0
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used a step learning rate schedule with 24 epochs and the

AdamW optimization algorithm.

We evaluated the performance of our method on the

MetroStation dataset. We randomly divided MetroStation into

a training set and test set according to an 8:2 ratio and used mean

average precision (mAP) as the accuracy indicator.We compared

several common object detection models on the MetroStation

dataset in terms of accuracy. We took frames per second (FPS) as

the indicator of inference speed. The experiment results are

shown in Table 3.

Table 3 shows that our model has reached 94.0% passenger

detection accuracy. Compared with other methods in Table 3,

our detection accuracy is even better than the two-stage detector.

The FPS of MPDNet is 34.3, which is capable of real-time

detection in a metro station.

Figure 7 shows the application of RetinaNet and MPDNet in

four subsets. The number of false positive samples in MPDNet is

less, and MPDNet performed better in identifying passengers

from a highly occluded crowd.

Ablation experiments

In this section, we performed ablation experiments on the

MetroStation dataset to verify the effectiveness of ASFF-FPN. In

this experiment, every model was improved by GIoU. Table 4

shows that using the ASFF algorithm to optimize the FPN model

can effectively improve accuracy. “*” indicates the FPN was not

improved by the ASFF algorithm.

The accuracy of the models improved by ASFF was lifted,

with RetinaNet improved by 0.2% and MPDNet improved by

6.1%. The reason is that the features extracted by the backbone

in these two models have different components of spatial

information. The purpose of FPN is to pass the higher-layer

feature down layer by layer. This will complement the

semantic information of the lower layer to obtain high

resolution and strong semantic features. In RetinaNet, the

feature in the lower layer is more related to localization

information, and the feature in the upper layer is more

related to the characteristics of the object. In this case, the

purpose of ASFF-FPN is almost the same as that of FPN, so the

performance of ASFF-FPN in RetinaNet is not significant.

Meanwhile, in MPDNet, PVT-small is a network based on a

self-attention mechanism. It reshapes the image into a patch

sequence and calculates the correlation between each patch.

Even though the shape of feature maps is pyramidal, it still

focuses more on global information. Thus, the feature

contains more global information and less local

information. The ASFF algorithm assigned higher weights

to feature maps that contained more local information,

making the output feature maps have a larger proportion

of local information from upper layers. In this case, MPDNet

improved with ASFF and performed better than the MPDNet*

that was not improved. Moreover, the transformer-based

method can extract more localization information than the

CNN-based method from the principle, making MPDNet

have higher accuracy than RetinaNet.

Conclusion

This research focused on using surveillance video data to

detect passenger flow in various areas of metro stations. We

proposed the MetroStation dataset based on surveillance

video from metro stations. Compared with other

pedestrian detection datasets, this dataset reflects multiple

scenes from metro stations. We also introduced MPDNet, a

real-time passenger flow detector based on RetinaNet. The

experiment on MetroStation showed that MPDNet performed

well on passenger flow detection in dense, occluded scenes of

metro stations.

Although our model performed well in dense passenger flow

detection, we still hope to have better computational efficiency.

Therefore, our future work will focus on the 2D position

embedding method in the transformer-based model to make

it more suitable for objection detection tasks and increase its

inference speed. We will continue to enrich the density and

diversity of the MetroStation dataset.
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