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Financial markets are widely believed to be complex systems where

interdependencies exist among individual entities in the system enabling the

risk spillover effect. The detrended cross-correlation analysis (DCCA) has found

wide applications in examining the comovement of fluctuations among

financial time series. However, to what extent can such cross-correlation

represent the spillover effect is still unknown. This article constructs the

DCCA network of commodity future markets and explores its proximity to

the volatility spillover network. Results show a moderate agreement between

the two networks. Centrality measures applied to the DCCA networks are able

to identify key commodity futures that are transmitting or receiving risk

spillovers. The evolution of the DCCA network reveals a significant change

in the network structure during the COVID-19 pandemic in comparison to that

of the pre- and post-pandemic periods. The pandemic made the commodity

future markets more interconnected leading to a shorter diameter for the

network. The intensified connections happen mostly between commodities

from different categories. Accordingly, cross-category risk spillovers are more

likely to happen during the pandemic. The analysis enriches the applications of

the DCCA approach and provides useful insights into understanding the risk

dynamics in commodity future markets.
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Introduction

Financial markets play a critical role in economic development but have been severely

threatened by a wide range of socio-economic events in recent decades, such as the

subprime mortgage crisis in 2008, the US–China trade war, and the COVID-19 pandemic

[1–3]. Rich and in-depth investigations into these events have demonstrated that the risks

not only influence each individual entity in the system but also spread among the entities

and evolve into system-wide crises. In other words, the entities in a financial market are

interdependent on each other, forming a complex networked system that enables the

contagion of risks through the interdependencies [4–6]. Financial systems are thus

normally modeled as networks, such as the networks of financial institutions [7, 8],

the network of stock indices [9], and the network of commodity futures [10]. The key
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technique for the construction of a financial network is the

quantification of the interdependencies among individual

entities. However, for many financial systems (e.g., stock

market and future market), such interdependencies between

entities (e.g., stock indices and commodity futures) cannot be

directly observed. To quantify the pair-wise and system-wise

connectedness is accordingly vital to the understanding of the

dynamics of risk contagion in financial systems.

In the literature on the volatility spillover effect,

connectedness is normally explored as the extent to which a

shock in one entity’s time series (e.g., stock price and return)

could lead to changes in other entities [11, 12]. Techniques based

on vector auto-regression (VAR) are widely applied to study such

a problem, and various measures have been accordingly

developed. One of the most acknowledged metric frameworks

is proposed by Diebold and Yilmaz [13–15]. Instead of studying

the spillover effect from one time series to another, they apply

variance decomposition to an N-variable VAR. Accordingly, the

share of the forecast error variation for a target time series from

each of the other time series in the system can be quantified

simultaneously. The pair-wise spillover effect is thus directly

measured by the results of variance decomposition. Since such a

spillover effect is regarded as directional, the ability of an entity to

transmit risks can be quantified by totaling the spillover effect

from it to all others (out-degree), while the extent of an entity

being influenced by others can be quantified by totaling the

spillover effect received by the entity (in-degree). Such a method

and its variations have been applied to construct and analyze a

wide range of financial networks. For example, Yang and Zhou

constructed a time-varying volatility spillover network of

countries according to the VIX of several major national stock

market indices and uncovered the central role of the US market

[16]. The spillover effect from the US market to others has

intensified since the 2008 global financial crisis. Balcilar et al.

investigated the spillover effect among the prices of agricultural

futures and crude oil futures and identified two sets of

commodity futures to be risk transmitters and risk receivers,

respectively [17]. Shen et al. explored the connectedness of

different economic sectors in China and found that the

sectors such as mechanical equipment act as risk transmitters,

while sectors such as banking are the main risk takers [18].

Overall, the variance decomposition framework based on the

VAR model has shown effectiveness in representing the volatility

spillover effect in financial systems.

Given the nature of financial markets as complex systems, the

interdependencies among financial entities have also caught

widespread attention in the field of econophysics and

complexity science. The detrended cross-correlation analysis

(DCCA) [19, 20] has been the most acknowledged and

applied technique in the analysis of cross-correlations between

financial time series, such as commodity future prices [21, 22]

and stock trading volumes or prices [23, 24]. Since there could

potentially be cross-correlations between any two financial time

series, financial markets can thus be linked into networks

[25–27]. The analysis of DCCA networks also has the

potential to measure the importance of each individual entity

in the whole system. For example, Pereira et al. applied centrality

measures of weighted degree and PageRank to the DCCA

network of 20 regional stock markets and concluded that

European markets play a central role in the world’s financial

markets [28]. Mbatha and Alovokpinhou constructed the

network of 134 companies from the South African stock

market and found that the financial industry plays the most

prominent role [29].

When the VAR-based methods characterize the directional

relationship that a shock in one time series leads to the volatility

change in another time series within a given lag time, the DCCA

approach describes the bilateral relationship of co-fluctuation of

two time series. In spite of the widespread applications of the

DCCA approach in investigating the dynamics of financial

networks [8, 27–32], whether, or to what extent, can such an

approach represent the volatility spillover effect as indicated by

the VAR-based measures is still unclear. The exploration of such

a research question is crucial to deepen the understanding of the

dynamics of complex financial systems, as well as enrich the

application of the DCCA approach.

Focusing on the commodity future market, this article

applies both the VAR-based volatility spillover measures and

the DCCA coefficient to construct networks of the

19 commodities. Two research questions are thereby explored:

1) to what extent can the DCCA network depict the volatility

spillover effect among commodity futures; and 2) how is the

DCCA network of commodity futures evolving over time.

Centrality measures are applied to the DCCA network, which

are found with high effectiveness to identify the key risk takers,

while moderate effectiveness to uncover key risk transmitters.

Further dynamical analysis of the DCCA network reveals the

dramatic impact of COVID-19 on the topology of the DCCA

network with intensified cross-category risk spillovers.

Materials and methods

Detrended cross-correlation analysis

The fluctuation of a wide range of real-world time series is

found with strong scaling behavior, and the detrended

fluctuation analysis (DFA) is proposed to analyze such a

phenomenon [33, 34]. Given a time series xt, t � 1,/, N, its

profile time series is thus X(t) � ∑t
k�1(xk − �x), where �x is the

mean value of the original time series. To assess the local trends,

the profile time series is further divided into small intervals with

an equal size of s. Accordingly, this results in Ns � int(N/s)
intervals. The local trend of each interval can be quantified by

applying an ordinary least square regression, resulting in a fitted

time series Xf(t). The detrended fluctuations can thus be
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represented as a new time series by subtracting the local trend

from the profile time series, i.e., X(t) −Xf(t). The detrended

fluctuation of the original time series xt can be written as a

function of the window size s, which reads

FDFA(x, s) �

������������������
1
N

∑N
i�1
[X(t) −Xf(t)]2.

√√
(1)

Normally, the relationship between the detrended fluctuation

and the window size follows a power-law, that is, FDFA(x, s)∝ sα.

The scaling exponent α is normally used to describe the long-

range auto-correlation of the time series.

While DFA deals with the fluctuations of a single time series,

the DCCA approach is proposed to investigate the co-fluctuation

of two time series [19, 20]. For the scenario of two time series, say,

xt and yt, the same process in DFA can be applied to each of the

time series, to obtain the profile time series X(t) and Y(t), and
the fitted local trendsXf(t) and Yf(t). Instead of the fluctuation
of a single time series, the co-fluctuation of the two time series

can be accordingly calculated as

F2
DCCA(xy, s) � 1

N
∑N
i�1
[X(t) −Xf(t)][Y(t) − Yf(t)]. (2)

Similar to DFA, the co-fluctuation of the two time series is

also expected to follow a power-law relationship with the window

size, i.e., FDCCA(xy, s)∝ sα. If the scaling exponent α takes a

nonzero value, a long-range cross-correlation can be concluded

between the time series. To obtain a more generalized value to

capture the cross-correlation between the time series, the DCCA

coefficient can be defined as

ρDCCA(xy, s) � F2
DCCA(xy, s)

FDFA(x, s) · FDFA(y, s). (3)

The DCCA coefficient ρDCCA takes values ranging from -1 to

1, with -1 indicating the perfect anti-cross-correlation,

1 indicating the perfect cross-correlation, and 0 indicating no

cross-correlation. When the window size s is a free parameter, we

set s � 16 throughout the following analysis.

Measures for the volatility spillover

While a number of measures have been proposed to

characterize the connectedness and volatility spillover effect in

financial systems, this article adopts a widely used approach

developed by Diebold and Yilmaz [13–15].

Considering a set of K variables (time series) with Vt �
(v1,t, v2,t,/, vK,t)′ as the vector of variables at a time, each

time series is thus V(k) � {vk,t}, t � 1, 2,/,N. The system can

be described by a K-variable VAR model as

Vt � Θ1Vt−1 + Θ2Vt−2 +/ + ΘlVt−l + ϵt, where Θ1,/Θl are

parameter matrices, ϵt is the vector of white noise, and l is the

time lag. In other words, each variable is modeled as a function of

the l lags of its own as well as all the other variables in the system. A

moving average representation for the model can be given by

Vt � ∑∞
i�0
Aiϵt−i, (4)

where Ai � Θ1Ai−1 + Θ2Ai−2 +/ + ΘlAi−l is a K × K coefficient

matrix with A0 as an identity matrix and Ai � 0 for i< 0 .

According to the moving average representation, H-step-

ahead forecast error variance decomposition can be calculated

and denoted as ΠH � [πHij ], where H � 1, 2,/ is the predictive

horizon. The element πH
ij depicts the fraction of time seriesV(i)’s

forecast error variance caused by the shock in time series V(j) ,
which can be written as

πH
ij � ψ−1

jj

∑H−1
h�0 (e′iAhΨej)∑H−1

h�0 (e′iAhΨA′
hej) , (5)

where Ψ is the covariance matrix for the vector of errors ϵ, ψ−1
jj is

the jth diagonal element in matrix Ψ , and ei is a vector with only

the ith value being 1 while others being 0. The value πH
ij can thus

be used to quantify the spillover effect from a shock in time series

V(j) to time series V(i), i.e., the directional connectedness from
j to i. Such a value can be further normalized as

~πH
ij �

πH
ij∑K

k�1π
H
ik

. (6)

Accordingly, for each time series V(i), the summation of the

connectedness from other time series equals 1,

i.e., ∑
j
~πH
ij � 1,∀i.With the directional connectedness defined,

the K time series can be linked as a directed volatility

spillover network, where each node is a time series (a

financial entity) and each weighted and directed link describes

the relative intensity of the spillover effect. Diebold and Yilmaz

further defined several measures for node-level connectedness,

including to-connectedness and from-connectedness [13–15].

The to-connectedness is defined as

Cto
i � ∑K

j�1,j ≠ i

~πH
ij , (7)

which corresponds to the out-degree of i in the spillover

network describing the total spillover effect transmitted by i to

others. Similarly, the from-connectedness is defined as

Cfrom
i � ∑K

j�1,j ≠ i

~πH
ji , (8)

which is basically the in-degree of i in the spillover network

describing the total spillovers received by i.

Throughout the analysis, we set the predictive horizon to

H � 5, i.e., the volatility spillover effects are calculated based on

the 5-step-ahead forecast error.
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Data collection

The future market has been one of the major financial

systems that attracted widespread attention in the literature,

where strong spillover effects have been frequently uncovered

[34, 35]. Meanwhile, the DCCA approach has also

found applications in characterizing the cross-correlation

among different future markets [21, 22, 36]. The present

study thereby adopts the future market as the detailed

context to explore the proximity of the DCCA network to

the volatility spillover effect and the dynamics of the

commodity future network.

Given the purpose of the present analysis, we mainly focus

on the commodity contracts in the US market. The various

commodities can be divided into five major categories, namely,

metals, softs, energy, meats, and grain.While there are normally

many commodity futures in each category, here we only

consider the commodity futures that are most traded for

each category. To be more specific, gold, copper, and silver

are selected for metal future contracts; coffee, sugar, orange

juice, and cocoa are selected for soft crop future contracts; crude

oil, natural gas, heating oil, and gasoline are selected for energy

future contracts; live cattle, lean hogs, and feeder cattle are

selected for meat future contracts; and rough rice, soybean oil,

soybean meal, corn, and oats are selected for grain future

contracts. The detailed data were downloaded from

Thomson Reuters Datastream, which is a live database for

various financial systems. Our data span 9 years, from

1 January 2013 to 31 December 2021. For each trading day,

we collect the open, high, low, and close indexes. In other

words, the time series to be analyzed are the 9-year-long daily

prices of 19 commodity futures.

FIGURE 1
Volatility spillover network (A) and DCCA network (B) of 19 commodity futures. The links in the spillover network are directed, and only those
with a weight of ~πij >0.15 are displayed. The links in the DCCA network are undirected, and all the links with wij >0.2 are displayed. The node size in
both networks is proportional to the degree (out-degree for the spillover network).

TABLE 1 Pearson correlation coefficients between the centrality measures in the DCCA network and spillover effects, as measured by to-
connectedness Cto

i and from-connectedness Cfrom
i , respectively.

Centrality measure To-connectedness From-connectedness

Correlation p-value Correlation p-value

Degree 0.489 0.034 0.701 0.0008

Eigenvector 0.549 0.015 0.725 0.0004

Closeness 0.225 0.354 0.533 0.0189

PageRank 0.479 0.038 0.695 0.0009
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Results

Static analysis

We first construct and analyze the volatility spillover network

and DCCA network using the full 9-year data. Both networks

consist of 19 nodes, with each being one commodity future

market. The networks are fully connected with different weights

on links. The weight of a link in the DCCA network is the

absolute value of the cross-correlation coefficient wij �
|ρDCCA(ij)| between two commodity futures’ time series of

daily close price, ct. In other words, we consider the intensity

of the cross-correlation, regardless of its direction. For the

volatility spillover network, we first calculate the close-to-close

volatility of commodity future price in each week t as

σt �
������������
1
T∑T

i�1(ri − �r)2
√

, where T is the trading days in the week,

and ri � log (ci/ci−1) is the return of the ith day in the week. The

variance decomposition is applied to the close-to-close volatility

of commodity future prices. The pair-wise connectedness value

~πij, as calculated by Eq. 6, is thus regarded as the weight for the

link from commodity i to commodity j.

As shown in Figure 1, the spillover network andDCCAnetwork

of the 19 commodity futures show similar structures, in spite of the

fact that the former is directed while the latter is undirected. Energy

futures of crude oil, heating oil, and gasoline form a strongly

connected triad in both networks. The metal futures of copper,

silver, and gold are also closely interconnected. On the other hand,

the soft futures, including orange juice, sugar, cocoa, and coffee, are

loosely connected to others in either the spillover network or the

DCCA network. To get a more generalized quantification of the

similarity between the cross-correlation and spillover effect, we

calculate the Pearson correlation coefficient between the values of

wij and ~πij. The analysis shows that the weights on the matched

links from two networks have a correlation of 0.511

(p � 4.107 × 10−24), indicating a moderate positive correlation.

Thus, the DCCA coefficient between the future prices of two

commodities can, to a moderate degree, depict the directed

volatility spillover effect. Despite the different underlying logics,

TABLE 2 Top five commodity future markets with the highest values for to-connectedness Cto
i , from-connectedness Cfrom

i , degree centrality DCi ,
eigenvector centrality ECi , closeness centrality CCi , and PageRank centrality RCi .

Measure 1 2 3 4 5

To-connectedness Heating oil Crude oil Gasoline Feeder cattle Silver

From-connectedness Crude oil Gasoline Feeder cattle Heating oil Copper

Degree Heating oil Crude oil Soybean oil Gasoline Copper

Eigenvector Heating oil Crude oil Gasoline Soybean oil Copper

Closeness Soybean oil Heating oil Copper Crude oil Corn

PageRank Heating oil Crude oil Soybean oil Gasoline Silver

FIGURE 2
DCCA networks of the commodity futures markets in 2013 (A), 2017 (B), and 2020 (C) respectively. Only links with a weight larger than 0.35 are
displayed, and the node size is proportional to the degree
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the two measures, namely, the DCCA coefficient and volatility

spillover, depict the relationship between two time series’

fluctuations. Accordingly, if the volatility of one time series

largely influences that of another time series (large value for the

spillover), the two time series would tend to co-fluctuate regardless

of the time lag, resulting in a strong cross-correlation. However, the

volatility spillover is directed and considers not only the two time

series but also all the time series in the system. As a consequence, the

correlation between the DCCA coefficient and volatility spillover is

only moderate but significant.

The volatility spillovers are actually directed, and thus the

risk transmitters and risk receivers can be identified by the

spillover network via the measures of to-connectedness (out-

degree) and from-connectedness (in-degree), respectively.

However, the DCCA coefficient is bilateral with no direction.

An apparent question is whether the DCCA network of

commodities can help to identify the key risk transmitters and

risk receivers. Here, we further apply four basic centrality

measures to the DCCA network to examine the accuracy of

predicting the risk transmitters and risk receivers.

Since the links in the DCCA network are weighted, the degree

centrality of a commodity i is thusDCi � ∑
j≠i

wij. The eigenvector

centrality not only considers the number of neighbors of a node
but also evaluates the importance of the neighbors. Thus, the
eigenvector centrality of a commodity i can be calculated as the

weighted average of the centrality values of its neighbors,
i.e., ECi � 1

λ ∑
j≠i

wij · ECj, where λ is the largest eigenvalue of

the adjacency matrix P � {wij}. The closeness centrality of a
commodity is the average value of its shortest distance to each
other commodity. While the DCCA network is weighted, the
length of a link is assumed to be the reciprocal of the weight,
i.e., 1/wij. The distance between two commodities i and j,
denoted with dij, is thus the summation of length for the
shortest path connecting i and j, which has the minimal
value. Note that, although the network is fully connected, the
shortest path is not necessarily the direct link connecting the two
commodities. Accordingly, the closeness centrality for i can be
calculated as CCi � (K − 1)/ ∑

j≠i
dij, where K is the number of

commodities in the DCCA network. The PageRank centrality
also assumes a node’s importance to be determined by its
neighbors. The centrality value can be achieved via an
iterative process. At the initial step, each node has a centrality
value PCi(t � 0) � 1. For each following step, the centrality value
updates as PCi(t) � ∑

j≠i
wij · PCj(t−1)

DCj
. The eventually stabilized

values are then regarded as the PageRank centrality of a
commodity node.

We apply the four centrality measures to the constructed

DCCA network of commodity future markets to calculate the

centralities for each commodity. To test the ability of these

centrality measures in identifying the risk transmitters (to-

FIGURE 3
Average weight (A), average distance (B), clustering coefficient (C), and category modularity (D) of the yearly DCCA network of commodity
future markets.
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connectedness, as defined in Eq. 7) and risk receivers (from-

connectedness, as defined in Eq. 8), we calculate the Pearson

correlation coefficients which are reported in Table 1. For the to-

connectedness, i.e., the spillovers transmitted by a commodity to

others, the centrality measures of degree, eigenvector, and

PageRank show moderate accuracies with correlations ranging

from 0.479 to 0.549. However, the closeness centrality has a very

low correlation of 0.225 to the to-connectedness of commodities.

For the from-connectedness, i.e., the spillovers received by a

commodity, these centrality measures show higher accuracies. In

other words, the centrality measures, including degree,

eigenvector, and PageRank, applied to the DCCA network are

strongly correlated to the from-connectedness while moderately

correlated to the to-connectedness.

We also compare themost important top five commodities as

identified by different measures, as shown in Table 2. According

to the volatility spillover effect, the energy futures, including

heating oil, crude oil, and gasoline, are the key risk transmitters

and at the same time risk receivers. These commodities are also

identified by degree centrality, eigenvector centrality, and

PageRank centrality as the most influential node in the DCCA

network. However, differences between the spillover network and

the DCCA network can also be observed. While feeder cattle are

also an important risk transmitter and risk receiver, centrality

measures in DCCA failed to uncover such an important role. In

contrast, soybean oil is evaluated to be an imported commodity

in the DCCA network, but it does not transmit nor receive much

spillover effect. Despite the different focuses on the two

approaches, the DCCA network can be used to identify the

key risk transmitters and risk receivers with moderate accuracy.

Dynamics of the DCCA network

We further analyze how the DCCA network of commodity

future markets has evolved over the past 9 years by constructing a

DCCA network for each year. Figure 2 visualizes the DCCA

network for 2013, 2017, and 2020, respectively. Intuitively, the

cross-correlations among commodities are becoming stronger,

and thus the DCCA network gets more connected over the years.

To quantitatively explore the dynamics of the network, we focus

on four structural features, namely, the average weight, average

distance, clustering coefficient, and category modularity. The

average weight of the DCCA network is calculated as

W � 〈wij〉, which describes the connectedness of the network.

The average distance of the DCCA network is calculated as

D � 〈dij〉, measuring how easy it is for the nodes to reach each

other. The clustering coefficient of a node describes how strongly its

neighbors are connected to each other. Following the definition

proposed by Saramäki et al. [37], the clustering coefficient is

calculated as clusteringi � 1
K(K−1) ∑

j,k,j≠k
(ŵijŵikŵjk)1/3, where

ŵij � wij/ max (w). The clustering coefficient of the DCCA

network is averaged over that of every node,

i.e., C � 〈clusteringi〉. Since the 19 commodities considered in

the present study come from five different categories, we measure

the extent to which the links connect commodities within the same

category. Following the modularity measure proposed for the

community structure in networks [38], we define the category

modularity in the commodity network as Q �
∑
ij

aijwij∑
ij

wij
, where aij �

1 if the two commodities i and j subject to the same category, and

aij � 0 otherwise.
As shown in Figure 3, the connectedness of the DCCA network,

i.e., the average weight, has remained at a relatively stable level

ranging from 0.15 to 0.18 during the period from 2013 to 2019.

However, the connectedness dramatically increased to 0.236 in 2020.

Such a result indicates that the COVID pandemic that broke out at

the end of 2019 significantly affected the commodity future markets,

making them more strongly interconnected. Due to the intensified

connections among the commodities, the average distance of the

DCCA network decreased, meaning that it becomes easier for risks

to spread from one commodity future market to another.

Meanwhile, the clustering coefficient largely increased in 2020,

indicating that strong triadic cross-correlations are formed under

FIGURE 4
Stacked bar plot for yearly weight summation of intra- and inter-category links.
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the impact of the pandemic. The overall category modularity saw a

dramatic decrease in 2020, that is, the ratio of intra-category links

over all links has decreased.

To have a closer examination of the dynamics of connection

patterns in the DCCA network, we investigate how the intra-

category links and inter-category links for each category of

commodities are evolving. For each category of commodities c,

we compare the intra-category link weight summation
Sintrac � ∑

i∈Γc ,j∈Γc ,i≠j
wij, where Γc is the set of commodities of

category c and the inter-category link weight summation
Sinterc � ∑

i∈Γc ,j ∉ Γc

wij, which are reported in Figure 4. In addition

the differences among different categories, the evolutions of intra-
and inter-category links also show different patterns. Despite the
fluctuations, the intra-category link weight summation Sintrac has
remained at a stable level for each category. Even in 2020, there is
no significant change in the value of Sintrac . On the other hand, the
inter-category link weight summation Sinterc increased in 2020,
especially for the category of energy and meat. As such, the
increase in average cross-correlations, reported in Figure 3A,
majorly comes from the inter-category links. This is also the
reason for the decrease in category modularity.

Despite the dramatic impact the pandemic has made on the

connectedness of the DCCA network of commodity future in

2020, such impact does not maintain. As reported in Figure 3, all

the network features recovered, to some extent, from the

pandemic’s impact in 2021, especially for the clustering

(Figure 3C) and category modularity (Figure 3D), the

2021 network shows very similar values as compared to the

pre-pandemic networks. The average weight (Figure 3A) and

average distance (Figure 3B) of the 2021 network are also not as

dramatic as that of 2020. Such recovery of the network structure

is partially because of the ease of the pandemic situation in

2021 and also indicates that the extreme external events normally

would only make a temporary impact on financial markets.

Conclusion and discussion

Risk spreading in complex financial systems has been widely

acknowledged to be central to the understanding of the system

dynamics. Different streams of research have developed various

approaches to construct networks of financial systems, including the

VAR-based approach whichmeasures the extent to which the shock

in one financial market influences another with a given time lag, and

the DCCA-based approach which measures the comovement of

fluctuations between two financial time series. The present article

offers a comparison between the networks of commodity future

markets constructed by such two streams of approach. The cross-

correlation is found with moderate proximity to the spillover

network. The centrality measures applied to the DCCA network,

including degree, eigenvector, and PageRank, are able to identify risk

transmitters and risk receivers. The results indicate the effectiveness

of the DCCA network in characterizing the structure of the volatility

spillover effect. The cross-correlations among financial time series

can thus also serve as an important approach for investors to

monitor the risks in financial systems and develop appropriate

investment strategies accordingly. However, the DCCA network is

not always accurate. For example, soybean oil is identified by the

DCCA network as one of the most important commodity future

markets, but it is not a key risk transmitter nor a risk receiver. Thus,

the difference between the cross-correlation and volatility spillover

effect should be considered in the application of DCCA when

investigating risk dynamics in financial systems.

The COVID-19 pandemic is revealed to be influential on the

connectedness of the commodity future markets. The DCCA

network of 2020 is found with stronger average cross-

correlations, shorter average distance, and stronger clustering

features. In particular, it is found that the cross-correlations

between commodities from the same category did not change

much, while that between commodities from different categories

have become stronger in 2020. Such a result suggests a higher risk

of cross-category spillover during the pandemic. This

observation is in line with previous findings that financial

systems tend to have stronger connectedness during a wide

range of extreme external events such as financial crises and

pandemics [16, 17]. Thus, investors should be cautious about the

intensified risk contagions among commodity future markets

during extreme events, especially the cross-category risk

spillovers. An interesting observation in this article is that the

average degree, average distance, clustering, and category

modularity in the 2021 network began to recover to almost

the level of pre-pandemic. However, due to the limited time

range of the applied data, the present article is unable to track the

recovery dynamics of the network of commodity future markets.

Future research shall further explore the mechanism and

timeliness of the recovery process of financial networks after

dramatic structural changes caused by external events.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding author.

Author contributions

Both authors contributed to the study design, data collection,

data analysis, and writing.

Funding

The study was partially supported by the Social Science Fund

of Jiangsu Province (Grant No. 21TQC005) and the Social

Frontiers in Physics frontiersin.org08

Hou and Pan 10.3389/fphy.2022.1017009

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1017009


Science Foundation of the Jiangsu Higher Education Institutions

(Grant No. 2021SJA0164).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors, and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

1. Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A, White
DR. Economic networks: The new challenges. Science (2009) 325(5939):422–5.
doi:10.1126/science.1173644

2. Zhang D, HuM, Ji Q. Financial markets under the global pandemic of COVID-
19. Financ Res Lett (2020) 36:101528. doi:10.1016/j.frl.2020.101528

3. An J, Mikhaylov A, Richter UH. Trade war effects: Evidence from sectors of energy
and resources in Africa. Heliyon (2020) 6(12):e05693. doi:10.1016/j.heliyon.2020.e05693

4. Allen F, Gale D. Financial contagion. J Polit Econ (2000) 108(1):1–33. doi:10.
1086/262109

5. Gai P, Kapadia S. Contagion in financial networks. Proc R Soc A (2010)
466(2120):2401–23. doi:10.1098/rspa.2009.0410

6. Jackson MO, Pernoud A. Systemic risk in financial networks: A survey. Annu
Rev Econ (2021) 13:171–202. doi:10.1146/annurev-economics-083120-111540

7. Elyasiani E, Kalotychou E, Staikouras SK, Zhao G. Return and volatility
spillover among banks and insurers: Evidence from pre-crisis and crisis periods.
J Financ Serv Res (2015) 48(1):21–52. doi:10.1007/s10693-014-0200-z

8. Wang GJ, Yi S, Xie C, Stanley HE. Multilayer information spillover networks:
measuring interconnectedness of financial institutions.Quant Finance (2021) 21(7):
1163–85. doi:10.1080/14697688.2020.1831047

9. Heiberger RH. Stock network stability in times of crisis. Physica A: Stat Mech its
Appl (2014) 393:376–81. doi:10.1016/j.physa.2013.08.053

10. Xiao B, Yu H, Fang L, Ding S. Estimating the connectedness of commodity
futures using a network approach. J Futures Markets (2020) 40(4):598–616. doi:10.
1002/fut.22086

11. Akkoc U, Civcir I. Dynamic linkages between strategic commodities and stock
market in Turkey: Evidence from SVAR-DCC-GARCH model. Resour Pol (2019)
62:231–9. doi:10.1016/j.resourpol.2019.03.017

12. Jung RC, Maderitsch R. Structural breaks in volatility spillovers between
international financial markets: Contagion or mere interdependence? J Banking
Finance (2014) 47:331–42. doi:10.1016/j.jbankfin.2013.12.023

13. Diebold FX, Yilmaz K. Measuring financial asset return and volatility
spillovers, with application to global equity markets. Econ J (2009) 119(534):
158–71. doi:10.1111/j.1468-0297.2008.02208.x

14. Diebold FX, Yilmaz K. Better to give than to receive: predictive directional
measurement of volatility spillovers. Int J Forecast (2012) 28(1):57–66. doi:10.1016/
j.ijforecast.2011.02.006

15. Diebold FX, Yılmaz K. On the network topology of variance decompositions:
Measuring the connectedness of financial firms. J Econom (2014) 182(1):119–34.
doi:10.1016/j.jeconom.2014.04.012

16. Yang Z, Zhou Y. Quantitative easing and volatility spillovers across countries
and asset classes. Manage Sci (2017) 63(2):333–54. doi:10.1287/mnsc.2015.2305

17. Balcilar M, Gabauer D, Umar Z. Crude Oil futures contracts and commodity
markets: New evidence from a TVP-VAR extended joint connectedness approach.
Resour Pol (2021) 73:102219. doi:10.1016/j.resourpol.2021.102219

18. Shen YY, Jiang ZQ, Ma JC, Wang GJ, Zhou WX. Sector connectedness in the
Chinese stock markets. Empir Econ (2022) 62(2):825–52. doi:10.1007/s00181-021-
02036-0

19. Podobnik B, Stanley HE. Detrended cross-correlation analysis: a new method
for analyzing two nonstationary time series. Phys Rev Lett (2008) 100(8):084102.
doi:10.1103/physrevlett.100.084102

20. Zebende GF. DCCA cross-correlation coefficient: Quantifying level of cross-
correlation. Physica A: Stat Mech its Appl (2011) 390(4):614–8. doi:10.1016/j.physa.
2010.10.022

21. Liu L. Cross-correlations between crude oil and agricultural commodity
markets. Physica A: Stat Mech its Appl (2014) 395:293–302. doi:10.1016/j.physa.
2013.10.021

22. Wang J, Shao W, Kim J. Analysis of the impact of COVID-19 on the
correlations between crude oil and agricultural futures. Chaos Solitons Fractals
(2020) 136:109896. doi:10.1016/j.chaos.2020.109896

23. Podobnik B, Horvatic D, Petersen AM, Stanley HE. Cross-correlations
between volume change and price change. Proc Natl Acad Sci U S A (2009)
106(52):22079–84. doi:10.1073/pnas.0911983106

24. Pan Y, Hou L, Pan X. Interplay between stock trading volume, policy, and
investor sentiment: A multifractal approach. Physica A: Stat Mech its Appl (2022)
603:127706. doi:10.1016/j.physa.2022.127706

25. Adam AM, Kyei K, Moyo S, Gill R, Gyamfi EN. Multifrequency network for
SADC exchange rate markets using EEMD-based DCCA. J Econ Finan (2022)
46(1):145–66. doi:10.1007/s12197-021-09560-w

26. Li J, Shi Y, Cao G. Topology structure based on detrended cross-correlation
coefficient of exchange rate network of the belt and road countries. Physica A: Stat
Mech its Appl (2018) 509:1140–51. doi:10.1016/j.physa.2018.06.059

27. Ferreira P, Tilfani O, Pereira E, Tavares C, PereiraH, El BoukfaouiMY.Dynamic
connectivity in a financial network using time-varying DCCA correlation coefficients.
Econometric Res Finance (2021) 6(1):57–75. doi:10.2478/erfin-2021-0004

28. Pereira E, Ferreira P, da Silva M, Miranda J, Pereira H. Multiscale network for
20 stock markets using DCCA. Physica A: Stat Mech its Appl (2019) 529:121542.
doi:10.1016/j.physa.2019.121542

29. Mbatha VM, Alovokpinhou SA. The structure of the South African stock
market network during COVID-19 hard lockdown. Physica A: Stat Mech its Appl
(2022) 590:126770. doi:10.1016/j.physa.2021.126770

30. Wang GJ, Xie C, ChenYJChen S. Statistical properties of the foreign exchange
network at different time scales: evidence from detrended cross-correlation coefficient
and minimum spanning tree. Entropy (2013) 15(5):1643–62. doi:10.3390/e15051643

31. Shin KH, Lim G, Min S. Dynamics of the global stock market networks
generated by DCCA methodology. Appl Sci (2020) 10(6):2171. doi:10.3390/
app10062171

32. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL.
Mosaic organization of DNA nucleotides. Phys Rev E (1994) 49(2):1685–9. doi:10.
1103/physreve.49.1685

33. Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE. Effect of trends on
detrended fluctuation analysis. Phys Rev E (2001) 64(1):011114. doi:10.1103/
physreve.64.011114

34. Kang SH, McIver R, Yoon SM. Dynamic spillover effects among crude oil,
precious metal, and agricultural commodity futures markets. Energy Econ (2017)
62:19–32. doi:10.1016/j.eneco.2016.12.011

35. Gong X, Liu Y, Wang X. Dynamic volatility spillovers across oil and natural
gas futures markets based on a time-varying spillover method. Int Rev Financial
Anal (2021) 76:101790. doi:10.1016/j.irfa.2021.101790

36. Zhang S, Guo Y, Cheng H, Zhang H. Cross-correlations between price and
volume in China’s crude oil futures market: A study based on multifractal
approaches. Chaos Solitons Fractals (2021) 144:110642. doi:10.1016/j.chaos.2020.
110642

37. Saramäki J, Kivelä M, Onnela JP, Kaski K, Kertesz J. Generalizations of the
clustering coefficient to weighted complex networks. Phys Rev E (2007) 75(2):
027105. doi:10.1103/physreve.75.027105

38. Newman ME. Modularity and community structure in networks. Proc Natl
Acad Sci U S A (2006) 103(23):8577–82. doi:10.1073/pnas.0601602103

Frontiers in Physics frontiersin.org09

Hou and Pan 10.3389/fphy.2022.1017009

https://doi.org/10.1126/science.1173644
https://doi.org/10.1016/j.frl.2020.101528
https://doi.org/10.1016/j.heliyon.2020.e05693
https://doi.org/10.1086/262109
https://doi.org/10.1086/262109
https://doi.org/10.1098/rspa.2009.0410
https://doi.org/10.1146/annurev-economics-083120-111540
https://doi.org/10.1007/s10693-014-0200-z
https://doi.org/10.1080/14697688.2020.1831047
https://doi.org/10.1016/j.physa.2013.08.053
https://doi.org/10.1002/fut.22086
https://doi.org/10.1002/fut.22086
https://doi.org/10.1016/j.resourpol.2019.03.017
https://doi.org/10.1016/j.jbankfin.2013.12.023
https://doi.org/10.1111/j.1468-0297.2008.02208.x
https://doi.org/10.1016/j.ijforecast.2011.02.006
https://doi.org/10.1016/j.ijforecast.2011.02.006
https://doi.org/10.1016/j.jeconom.2014.04.012
https://doi.org/10.1287/mnsc.2015.2305
https://doi.org/10.1016/j.resourpol.2021.102219
https://doi.org/10.1007/s00181-021-02036-0
https://doi.org/10.1007/s00181-021-02036-0
https://doi.org/10.1103/physrevlett.100.084102
https://doi.org/10.1016/j.physa.2010.10.022
https://doi.org/10.1016/j.physa.2010.10.022
https://doi.org/10.1016/j.physa.2013.10.021
https://doi.org/10.1016/j.physa.2013.10.021
https://doi.org/10.1016/j.chaos.2020.109896
https://doi.org/10.1073/pnas.0911983106
https://doi.org/10.1016/j.physa.2022.127706
https://doi.org/10.1007/s12197-021-09560-w
https://doi.org/10.1016/j.physa.2018.06.059
https://doi.org/10.2478/erfin-2021-0004
https://doi.org/10.1016/j.physa.2019.121542
https://doi.org/10.1016/j.physa.2021.126770
https://doi.org/10.3390/e15051643
https://doi.org/10.3390/app10062171
https://doi.org/10.3390/app10062171
https://doi.org/10.1103/physreve.49.1685
https://doi.org/10.1103/physreve.49.1685
https://doi.org/10.1103/physreve.64.011114
https://doi.org/10.1103/physreve.64.011114
https://doi.org/10.1016/j.eneco.2016.12.011
https://doi.org/10.1016/j.irfa.2021.101790
https://doi.org/10.1016/j.chaos.2020.110642
https://doi.org/10.1016/j.chaos.2020.110642
https://doi.org/10.1103/physreve.75.027105
https://doi.org/10.1073/pnas.0601602103
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1017009

	Evaluating the connectedness of commodity future markets via the cross-correlation network
	Introduction
	Materials and methods
	Detrended cross-correlation analysis
	Measures for the volatility spillover
	Data collection

	Results
	Static analysis
	Dynamics of the DCCA network

	Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


