AUTHOR=Liu Yuanyuan , Wang Wenxin , Zheng Yijia , Wang Haifeng , Zheng Hairong , Liang Dong , Zhu Yanjie TITLE=Magnetic resonance T1ρ quantification of human brain at 5.0 T: A pilot study JOURNAL=Frontiers in Physics VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.1016932 DOI=10.3389/fphy.2022.1016932 ISSN=2296-424X ABSTRACT=

MR quantitative T1ρ mapping has gained increasing attention due to its capability to study low-frequency motional processes and chemical exchange in biological tissues. At ultra-high fields, the chemical exchange and proton diffusion in biological tissues should be more prominent. In this study, for the first time, we aim to test the feasibility of brain T mapping at 5.0 T MR scanner and compare the T values estimated using 3.0 T and 5.0 T scanners. Preliminary experimental results show that 5.0 T achieves T-weighted images with a higher signal-to-noise ratio than those acquired at 3.0T. The SNR benefit at 5.0 T is more obvious in high-resolution imaging. The T quantifications at 5.0 T are: Corpus callosum (67.4 ± 1.9 ms), Corona radiate (71.5 ± 1.8 ms), Superior frontal gyrus (67.6 ± 2.5 ms), Putamen (58.9 ± 1.2 ms), Centrum semiovale (84.0 ± 6.3 ms). Statistical analysis results indicate that the T values at 5.0 T show no significant difference with those obtained at 3.0 T (all p > 0.05). The interfield agreements in terms of T values between 3.0 T and 5.0 T were substantial (all ICCs >0.7). The coefficients of variation for T measurements from 3.0 T to 5.0 T were all less than 6.50% (2.28%–6.32%).