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Many researchers propose link prediction models based on node similarity.

Among all models, researchers found that the endpoint influence plays an

important role in evaluating the similarity between endpoints. For endpoint

influence, we consider that an endpoint possessing a large and extensive

maximum connected subgraph can strongly attract other nodes. After

thorough research, we found that the coreness can describe the

aggregation degree of neighbors and the endpoint degree may be used to

describe the largest connected subgraph of an endpoint. In order to create a

model, we repeat our experiments on eight real benchmark datasets after

combining endpoint degree and weighted coreness. The experimental results

illustrate the positive role of synthetical endpoint degree and weighted

coreness for measuring endpoint influence in link prediction.
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1 Introduction

With the application of and dependence on networks, human life gradually becomes

virtualization. Through networks, people can carry out social activities, shopping

transactions, information retrieval, and so on. Link prediction has emerged as a key

technical tool for investigating the properties of complicated networks. Link prediction

technology can precisely recommend goods in e-commerce networks [1–3], recommend

friends in social networks [4–6], plan routes in transportation networks [7], find the

relations between proteins in biological networks [8, 9], mine base station information in

power networks, [10] and so on. In addition, link prediction can also reveal the structure

growth or formation mechanism of complex networks [11, 12].

For the research studies in link prediction, more researchers consider the topological

similarity of networks to build the models. For example, models based on common

neighbors, such as CN (common neighbor) [13], AA (Adamic–Adar) [14], and RA

(resource allocation) [15], become the first link prediction approaches. These models

mainly consider the local structure of the networks, such as the number, node degree or

node influence of common neighbors, the influence of target nodes, and the paths between

nodes. They show simplicity and effectiveness, but still need to be further classified. The
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link prediction models based on global information consider the

global structure of the networks, involving the impact of different

length paths on the node similarity, such as Katz [16], ATC

(average commute time) [17], and so on. These models improve

the prediction accuracy, but they cannot be applied to large

networks due to the high computational complexity. The models

based on quasi-local information eliminate the long paths and

redundant information, while considering the local information

of the networks, reducing the computational complexity and

improving the prediction accuracy. These models consider short

paths between nodes and initial degree distribution of endpoints,

such as LP (local path) [15], LRW (local random walk) [18], and

SRW (superposed random walk) [18],, which have been the focus

of many researchers.

As of now, link prediction models that take endpoint

influence into account mostly concentrate on the role of

endpoint degree in gauging endpoint similarities, such as

Sørensen [19], LHN [20], LRW [18], and SRW [18]. Since the

endpoint degree simply takes into account the number of its

neighbors, endpoint influence is not adequately taken into

account. This means that while it can characterize the

endpoint influence’s breadth, it cannot describe the degree to

which neighbors are aggregated. Through consulting literatures,

Zhu et al. [21] discussed the role of degree, H-index, or coreness

through improving SRW in link prediction. Further research

reveals that an endpoint with a high endpoint degree and

coreness can have a larger maximal connected subgraph,

which attracts more nearby nodes.

Figure 1 shows the roles of endpoint degree and coreness in

link prediction. The degree and coreness of endpoint a are 3 and

3, respectively. The influence of endpoint a is described as 3 when

we only consider the endpoint degree, leading to a weak

attraction of endpoint a. However, the influence of endpoint a

should be described as 9 when we exploit the product of degree

and coreness, illustrating that endpoint a has a large influence

and easily attracts the target endpoint b. As a result, by

computing the synthetic degree and coreness of endpoints in

link prediction, we may uncover more potential relationships

between nodes.

The real world reveals the roles of synthetical degree and

coreness on individuals. For example, a celebrity with large and

concentrated fans has more influence in one place. The number

of fans can be described as the endpoint degree, and the

concentration degree of fans represents the coreness of

endpoints in the networks. The phenomenon appears on the

internet celebrity in online social networks, popular goods in

shopping networks, and classic articles in citation networks.

Through abundant research studies, we find the endpoint

degree plays a fundamental role in each individual.

Meanwhile, the coreness describes the different influence

intensities on different individuals. Therefore, we consider

weighted coreness to apply in different typological networks.

The rest of this article is organized as follows: In section 2, we

propose a link prediction model based on the weighted

synthetical influence of endpoint degree and coreness

(WSIDC). In section 3 and section 4, we show the eight

benchmark experiment datasets and methods, including eight

mainstream baselines and a metric. The findings of the

experiment are covered in Section 5. Section 6 provides the

conclusion.

2 Description and structure of models

The superposed random walk model (SRW) mainly

considers the endpoint degree as the endpoint influence to

evaluate the similarity between endpoints. In order to replace

endpoint degree with synthetical endpoint degree and weighted

coreness to characterize the endpoint influence, we designed a

new link prediction model on SRW using the explanation given

in section 1. This section will introduce the concept of SRW and

building WSIDC. In the undirected simple network G (V, E),

where V and E stand for sets of nodes and links, respectively, all

models in this study are proven. We removed multiple linkages

and self-connections on all network datasets. We constructed a

similarity score (sxy) and rank the scores in descending order for

each pair of unlinked nodes, x, y ⊂ V, to assess how similar they

are to one another. The links with the highest L ratings show that

FIGURE 1
(Color online). Diagram of endpoint influence based on
degree and coreness. Endpoint (A) represents a source node,
which has degree = 3 and coreness = 3. Endpoint (B) represents a
target node. All solid and dashed lines indicate existing links
and potential links, respectively.
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there is a higher likelihood that two disconnected nodes will

eventually form a link.

2.1 Superposed randomwalk model (SRW)

The probability of a node’s influence resource randomly

moving from node x to node y in a single step is indicated by

the Markov chain equation pxy = axy/kx, where kx denotes the

node’s degree. Thus, axy = 1 if node x has connected y and axy = 0

if not. The order of nodes between x and y with a t-step can be

expressed as {x = x0 = yt, x1 = yt−1, . . . , xt−1 = y1, xt = y0 = y}.

Accordingly, the t-step transition probability from x to y can be

denoted by πxy(t) � ∏t−1
i�0

pxixi+1 and πyx(t) � ∏t−1
i�0

pyiyi+1. Thus,

considering the endpoint degree as the influence of endpoints,

the similarity between nodes x and y, with path of length l from

2 to t into consideration, is modeled as

sSRWxy t( ) � ∑t
l�2

kx
2|E| × πxy l( ) + ky

2|E| × πyx l( )[ ], (1)

where kx and ky represent the degree of node x and y, respectively.

|E| represents the number of links in the networks. kx
2|E| and

ky
2|E|

describe the influence resource of node x and y, respectively.

2.2 Weighted hybrid influence of degree
and coreness

Through investigations and analysis, we discover that the

hybrid endpoint degree and coreness are sufficient to effectively

explain the endpoint effects, and the endpoint degree plays a

fundamental role in the hybrid influence of endpoints. Therefore,

we first introduce a simple (unweighted) hybrid influence of

degree and coreness based on the endpoint model (DCHI) [22] as

follows,

sDCHI
xy � ∑t

l�2

������
kx × cx

√
2 E| | × πxy l( ) +

������
ky × cy

√
2 E| | × πyx l( )[ ], (2)

where
�����
kx × cx

√
2|E| and

�����
ky × cy

√
2|E| describe the simple hybrid influence

resource of node x and y, respectively.

We developed a link prediction model by enhancing the

weighted hybrid impact of degree and coreness (WDCHI) model,

where coreness is exponentially suppressed by the inhibitory

factor β. The new model can, therefore, be identified as

sWDCHI
xy � ∑t

l�2

������
kx × cβx

√
2 E| | × πxy l( ) +

������
ky × cβy

√
2 E| | × πyx l( )⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (3)

where

�����
kx × cβx

√
2|E| and

�����
ky × cβy

√
2|E| describe the synthetic influence

resources of nodes x and y, respectively. Also, β ∈ [0, 1],

depressing the role of coreness on the synthetical influence of

endpoints.

3 Network datasets

To show the prediction performances of the model proposed,

we produce experiments on eight network datasets [23], which

are introduced as follows: 1) US Air97 (USAir) [24] represents

the US airline network. 2) The electrical power transmission

system for western US is represented by Power Grid (Power)

[25]. 3) The C. elegans worm’s neural network is represented by

metabolic [26]. 4) Network Science (NS) [27] is an example of

collaboration among researchers who publish articles on the

topic of networks. 5) The email communication network for

University Rovira I Virgili (URV) in Tarragona, Spain, is

represented by Email [28]. 6) The social media website UC

Irvine addresses social network issues (UCsocial) [29] and is

created by University of California, Irvine students. 7) The face-

to-face interaction network of visitors at the 2009 exhibition

“Infectious:Stay Away” at the Science Gallery in Dublin is

represented by Infectious (Infec) [30]. 8) Another network of

neurons in the C. elegans worm is represented by C. elegans (CE)

[26]. Due to the various fundamental topological properties, the

metabolic and CE neural networks are two distinct neuronal

networks. The main topological characteristics of the

aforementioned networks are shown in Table 1.

Each original dataset is randomly split into a training set ET,

which contains 90% of the connections, and a testing set EP,

which contains 10% of the links, for the experiments.

Unsurprisingly, ET ∪ EP = E and ET ∩ EP = ∅. We divide

each dataset into 30 separate, independent divisions; check

each division for connectedness in ET; and then average the

prediction performances.

TABLE 1 Twelve benchmark networks’ fundamental topological
characteristics.

Nets |V| |E| 〈k〉 〈d〉 C r H

USAir 332 2,128 12.81 2.74 0.749 -0.208 3.36

Power 4,941 6,594 2.669 15.87 0.107 0.003 1.45

Metabolic 453 2025 8.940 2.664 0.647 -0.226 4.485

NS 1,461 2,742 3.75 5.82 0.878 0.461 1.85

Email 1,133 5,451 9.62 3.61 0.254 0.078 1.94

Ucsocial 1893 13,825 14.62 3.06 0.138 -0.188 3.81

Infec 410 2,765 13.49 3.63 0.467 0.226 1.39

CE 453 2025 8.94 2.66 0.655 -0.225 4.49

The properties are as follows: |V| denoting the number of nodes, |E| denoting the

number of links, 〈k〉 denoting the average degree, 〈d〉 denoting the average distance, C
denoting the clustering coefficient, r denoting the assortativity coefficient, and H

denoting the degree heterogeneity and defined as H � 〈k2〉
〈k〉2
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FIGURE 2
(Color Online) Pattern illustration of accuracymetric AUC on the number of random-walk steps t on eight datasets. With the fewest steps, DCHI
achieves themost ideal AUC values, which is 5 in (A)USAir, 15 in (B) power, 4 in (C)Metabolic, 8 in (D)NS, 7 in (E) email, 9 in (F)UCsocial, 5 in (G) Infec,
and 5 in (H) CE.
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FIGURE 3
(Color Online) AUC’s sensitivity to the levels of the inhibitory factor βwith L = 100. In this study, the training and testing sets are divided 30 times
in a completely random manner. The average of the 30 runs is the outcome.
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4 Experimental methods

4.1 Metric

AUC [30], a metric of accuracy, can be interpreted as the

probability that a potential link (a link in EP) ranks a higher score

than a nonexistent link (a link in U \ E, where U denotes the

universal link set). In the particular implementation, the

overall score increases by n′ and 0.5n″ if the prospective

connection performs better among n independent

comparisons n′ times and equally to the non-existent link

n″ times. The average score across n-time comparisons is,

therefore, expressed as

AUC � n′ + 0.5 × n″
n

. (4)

A model’s performance is assessed globally by AUC. The

value should be equal to 0.5 if each score comes from an

independent, identical distribution. The degree to which the

accuracy exceeds 0.5 thus indicates how much better a model

outperforms random chance.

4.2 Baselines

Comparatively, we introduce the following eight

fundamental models as follows:

1. Common neighbors (CN) [13] determines the quantity of

common neighbors, which is used to represent how related

two endpoints are

sCNxy � Γ x( ) ∩ Γ y( )∣∣∣∣ ∣∣∣∣, (5)

where the collection of neighbors of endpoint x is represented by

the expression Γ(x), x ∈ {x, y}. The number of neighbors that

endpoints x and y has in common is denoted by the

symbol |Γ(x) ∩ Γ(y)|.

2. The inverse logarithm, which is used by Adamic/Adar (AA)

[14], which is based on CN, significantly reduces the

contributions of shared neighbors

sAAxy � ∑
z∈Γ x( )∩Γ y( )

1
log kz( ), (6)

where kz represents the degree of node z.

3. Similar to AA, by using the reciprocal of the degrees of

common neighbors, resource allocation (RA) [15] lowers

the high degree of common neighbors, defined as

sRAxy � ∑
z∈Γ x( )∩Γ y( )

1
kz
. (7)

4. The two-step paths are favored when comparing the similarity

of two-step and three-step approaches between endpoints

using local path (LP) [15], where the two-step paths are

defined as

sLP � A2 + ε × A3, (8)

where the adjacency matrix is represented by A, and the

punishment parameter is ε.

5. In Section 2, the superposed random walk (SRW) [18] is

shown.

6. The degree of influence in SRW is replaced by the coreness in

CSRW [21], which also quantifies the impact of the endpoint,

sCSRWxy t( ) � ∑t
l�2

cx
2|E| × πxy l( ) + cy

2|E| × πyx l( )[ ]. (9)

where cx and cy represent the coreness of node x and y,

respectively.

7. HSRW [21] replaces the degree influence in SRW with the

H-index and measures the influence of the endpoint,

sHSRW
xy t( ) � ∑t

l�2

hx
2|E| × πxy l( ) + hy

2|E| × πyx l( )[ ]. (10)

where hx and hy represent the H-index of node x and y,

respectively.

8. The degree influence in SRW is replaced by the simple

hybrid influence (SHI) [18], which uses degree and

H-index as the synthetical influences. The model is

denoted by

TABLE 2 AUC on the twelve benchmark networks with L = 100 as the
line rate. Each data point represents the average of more than
30 independent realization methods, with each point being a random
90%–10% division of the training set and testing set.

AUC DCHI WDCHI

USAir 0.989,048 (5) 0.989,575(5, 0.1)

Power 0.949,131 (15) 0.949,184(15, 0.1)

Metabolic 0.975,433 (4) 0.975,658(4, 0.2)

NS 0.995,582 (8) 0.99559(8, 0.3)

Email 0.956,158 (7) 0.956,819(7, 0)

UCsocial 0.950,344 (9) 0.951,942(9, 0)

Infec 0.980,418 (5) 0.98053(5, 0.3)

CE 0.984,457 (5) 0.984,792(5, 0)

The values on DCHI enclosed in parentheses represent the equivalent ideal number of

steps t. The numbers in parentheses on the WDCHI represent the appropriate ideal step

size t and ideal inhibitory factor β. By modifying the coefficients, all of the current

findings demonstrate the best-case scenarios. The bold values represnet optimal

parameter.
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sSHI
xy t( ) � ∑t

l�2

������
kx × hx

√
2 E| | × πxy l( ) +

�������
ky × hy

√
2 E| | × πyx l( )[ ], (11)

where
�����
kx × hx

√
2|E| and

�����
ky × hy

√
2|E| indicate the combined influence of

nodes x and y based on their respective synthetic degrees and

H-indices.

5 Results and discussions

In this part, we demonstrate how well WDCHI predicts

outcomes when compared to baselines such as CN, AA, RA,

LP, SRW, CSRW, and HSRW. These are the outcomes.

We believe that the synthetical endpoint degree and coreness

play a significant role in characterizing the influence of endpoints

and improve the link prediction performances, as explained in

section 1 and section 2. For verification, we propose a new link

prediction model WDCHI by synthesizing the endpoint degree

and weighted coreness, with inhibitory factor β to adjust the

optimal contributions of coreness in the different networks.

Because WDCHI considers the hybrid influence of endpoints

on the random walk steps t, we should first obtain the optimal

random walks t of DCHI when β = 1 (removing the impact of

inhibitory factor β). Figure 2 shows the accuracy metric AUC for

the total number of random-walk steps t across eight datasets.

DCHI generates the best AUC values in the fewest steps for (a)

USAir, (b) power, (c) metabolic, (d) NS, (e) Email, (f) UCsocial,

(g) Infec, and (h) CE. Then, using an interval of 0.1, we traverse

the inhibitory factor beta from 0 to 1 in the various datasets after

setting the inhibitory factor on coreness. We discover that in the

majority of datasets, the weighted synthetical influence of

endpoints with coreness suppressed exhibits greater prediction

accuracy. In Figure 3, we display the AUC’s reliance on the value

of β.

Figure 3 displays the optimal AUC values for WDCHI for

various inhibitory factors of β ∈ [0, 1) on the ideal number of

random-walk steps of t in various datasets, i.e., β = 0.1 in (a)

USAir, β = 0.1 in (b) Power, β = 0.2 in (c) Metabolic, β = 0.3 in (d)

NS, β = 0 in (e) Email, β = 0 in (f) UCsocial, β = 0.3 in (g) Infec,

and β = 0 in (h) CE. However, WDCHI shows the optimal AUC

values at β = 0 in email, UcSocial, and CE networks, illustrating

the negative roles of coreness in these networks.

We first display the AUC values of WDCHI and DCHI in

Table 2 to demonstrate the significance of the weighted coreness,

where DCHI stands for the unweighted synthetic influence of

endpoints. Table 2 contains the mean outcomes of our

30 separate divisions, each represented by a value. For WDCHI,

the values in parenthesis reflect the optimal inhibitory factor beta and

the optimal number of random-walk steps t, respectively. The values

in parentheses for DCHI represent the optimal number of random-

walk steps t. In WDCHI and DCHI, the ideal numbers of random

walk steps are equivalent. The fact that WDCHI can achieve higher

AUC thanDCHI shows that the weighted coreness contributes to link

prediction.

The eight link prediction models CN, AA, RA, LP, SRW,

CSRW, HSRW, and SHI are then put up against WDCHI in

comparison. We display the averaged AUC values for all models

across 30 simulations in Table 3 to illustrate the experimental

findings. While the underlined bold fonts on WDCHI reflect the

best AUC values in each dataset, the numbers in parenthesis on

WDCHI show the corresponding optimum number of steps (t) and

the ideal inhibitory factor (β). The optimal random-walk steps t are

indicated by the numbers in parenthesis. In comparison to other

models, WDCHI exhibits optimal values on all datasets, as shown in

Table 3. The synthetical endpoint degree and weighted coreness, thus,

provide a superior contribution to evaluating endpoint influence, as

shown by the results of Figure 3.

In addition, more simplified computation is a critical

condition for link prediction. The product’s time complexity

of two N × N matrices is O(N3). From the definitions of the

baselines, CN, AA, and RA possess the time complexity ofO(N3),

and LP, SRW, CSRW, HSRW, and SHI have M × O(N3) with

coefficientM. Though WDCHI has an identical time complexity

as the baselines, WDCHI shows a significant improvement. Most

TABLE 3 AUC on the twelve benchmark networks with L = 100 as the line rate. Every data point is a random 90%–10% divide of the training set and
testing set, with each point being an average of over 30 independent realization procedures.

AUC CN AA RA LP SRW CSRW HSRW SHI WDCHI

USAir 0.977,771 0.984,243 0.986,611 0.966,917 0.988,464 (4) 0.987,171 (6) 0.987,346 (5) 0.987,975 (5) 0.989,575(5, 0.1)

Power 0.679,613 0.679,723 0.67968 0.763,982 0.888,964 (15) 0.888,625 (15) 0.888,724 (15) 0.888,844 (15) 0.949,184(15, 0.1)

Metabolic 0.94913 0.971,743 0.973,661 0.921,503 0.9742 (3) 0.974,185 (5) 0.974,053 (4) 0.974,244 (4) 0.975,658(4, 0.2)

NS 0.990,227 0.990,345 0.990,355 0.993,998 0.994,864 (15) 0.994,783 (15) 0.994,802 (15) 0.994,836 (15) 0.99559(8, 0.3)

Email 0.881,955 0.883,162 0.882,471 0.942,283 0.947,927 (15) 0.946,909 (15) 0.947,445 (15) 0.947,803 (15) 0.956,819(7, 0)

UCsocial 0.813,094 0.817,405 0.81764 0.948,516 0.939,542 (15) 0.936,628 (15) 0.937,387 (15) 0.938,368 (15) 0.951,942(9, 0)

Infec 0.962,318 0.964,223 0.964,209 0.970,787 0.977,274 (8) 0.976,935 (10) 0.977,107 (9) 0.977,311 (9) 0.98053(5, 0.3)

CE 0.951,545 0.977,089 0.97905 0.932,316 0.982,963 (5) 0.982,176 (7) 0.982,329 (6) 0.982,663 (5) 0.984,792(5, 0)

The values in parentheses onWDCHI denote the corresponding ideal number of steps t, whereas the numbers in parentheses onWDCHI denote the corresponding ideal inhibitory factor β.

By (if any) changing the coefficients, all of the results in this study represent the best-case scenarios. The bold values represnet optimal parameter.
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importantly, the proposed scheme achieves satisfactory

performance without increasing the complexity.

6 Conclusion

Traditional link prediction models place more emphasis on

the influence of the terminus. More researchers, however, just

take degree into account when describing endpoint influence,

which is often inappropriate. Through investigations and study,

we have discovered that the weighted coreness and synthetical

endpoint degree are accurate ways to characterize the influence of

the endpoint. Consequently, we suggest a weighted hybrid

influence model based on the degree and coreness (WDCHI).

On eight real datasets, we compare the prediction results of the

WDCHI with those of CN, AA, RA, LP, SRW, CSRW, HSRW,

and SHI. As a result, we demonstrate that WDCHI exhibits the

same computational complexity and outperforms other models

on the metric AUC. The remarkable gain in accuracy

demonstrates the weighted coreness and synthetic endpoint

degree as endpoint influence can uncover the potential links

between two disconnected endpoints and can accurately

represent the most linked subgraph. Additionally, our findings

can be used to improve social, computer, e-commerce,

communication, transportation, and other types of networks.
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