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When the evolution of discrete time quantum walk is carried out for particles,

the ramble state is prone to error due to the influence of system noise. A

multiparticle quantumwalk error correction algorithm based on the two-lattice

Bose–Hubbard model is proposed in this study. First, two point Bose–Hubbard

models are constructed according to the local Euclidean generator, and it is

proved that the two elements in the model can be replaced arbitrarily. Second,

the relationship between the transition intensity and entanglement degree of

the particles in the model is obtained by using the Bethe hypothesis method.

Third, the position of the quantum lattice is coded and the quantum state

exchange gate is constructed. Finally, the state replacement of quantum walk

on the lattice point is carried out by switching the walker to the lattice point of

quantum error correction code, and the replacement is carried out again. The

entanglement of quantum particles in the double-lattice Bose–Hubbard model

is simulated numerically. When the ratio of the interaction between particles

and the transition intensity of particles is close to 0, the entanglement operation

of quantum particles in the model can be realized by using this algorithm.

According to the properties of the Bose–Hubbard model, quantum walking

error correction can be realized after particle entanglement. This study

introduces the popular restnet network as a training model, which increases

the decoding speed of the error correction circuit by about 33%. More

importantly, the lower threshold limit of the convolutional neural network

(CNN) decoder is increased from 0.0058 under the traditional minimum

weight perfect matching (MWPM) to 0.0085, which realizes the stable

progress of quantum walk with high fault tolerance rate.
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1 Introduction

A quantum walk is one of the effective methods to realize

quantum computation [1,2]. However, because of the

randomness of quantum walk, it is difficult to correct errors

when the particles are affected by system noise during particle

evolution. The physical system used in this study is a

homogeneous system, which extends the two-lattice

Bose–Hubbard model to the Bose–Hubbard model, and the

arbitrary replacement of two particles does not lead to a new

quantum state of the system [3–6].

A quantum walk algorithm can be implemented on many

graph structures, and its function is very significant [7–14]. Also,

quantum walks have important applications in quantum

cryptography and quantum communication [15,16]. Noise

research in the quantum walk algorithm is also one of the key

points, and general quantum walk calculation based on the

Bose–Hubbard model has been proposed [17,18]. On this

basis, the multiparticle quantum walk error correction

algorithm based on the two-lattice Bose–Hubbard model is

further studied. As early as 2003, Shapira et al. used computer

simulation to study the influence of unitary noise on one-

dimensional quantum walk and showed the variation of

probability distribution of quantum walk under the influence

of noise [19]. Also, specific noise types are studied, such as the

non-Markov continuous time quantum walk algorithm with

dynamic noise [20] and the quantum Bernoulli central limit

theorem in the quantum walk algorithm [21]. In 2015, Ambainis

et al. improved the potential barrier using the Grover algorithm,

improved the amplitude of quantum walking coin state, and

reduced the impact of noise during particle quantum walking

[21,23]. In 2016, Wang et al. proposed to construct time-varying

quantum walking with infinite degrees of freedom by using

quantum Bernoulli noise [24]. In 2018, Du et al. constructed

quantum gates using the quantum walk algorithm under noise,

and the algorithm increased the number of addresses on the

graph or the ratio of jump strength to potential could improve the

coherence time, thus inhibiting the decoherence [25]. In 2019,

Claudia et al. address the use of quantum walks as a quantum

probe to characterize defects and perturbations occurring in

complex, classical, and quantum networks [26]. These

algorithms are designed to reduce the influence of noise on

particles during the quantum walk.

Similar to the aforementioned algorithm, a multiparticle

quantum walk error correction algorithm is proposed to

reduce the influence of noise in the quantum walk. The two-

lattice Bose–Hubbard model is constructed for the multiparticle

quantum ramble, and it is proved that the quantum state does not

change after the displacement of any two particles in the model.

Using the encoding method of quantum states mentioned in the

study in reference [17], entanglement of quantum states in two

lattices is generated by controlling the ratio of transition intensity

and interaction between particles [27]. Controlling the ratio of

model parameters to generate entanglement is easier than other

methods [15,28]. The convolutional neural network decoder has

been introduced in detail in the study mentioned in reference

[29–33]. In this study, the threshold of the quantum walk error

correction circuit has been greatly improved by using the

convolution operation of the decoder and the improvement of

the training speed. The evolution operator of quantum walk is

improved and quantum state error correction is realized. Finally,

the advantages and disadvantages of the algorithm are analyzed.

Figure 1 shows the core idea of the work.

The sections of this article are organized in the following manner.

In Section 2, we briefly introduce the background knowledge of

discrete quantum walks. In Section 3, the two-lattice Bose–Hubbard

model is constructed. In Section 4, the position of the quantum lattice

is coded and the quantum state exchange gate is constructed. In

Section 5, an analysis of error correction performance is performed,

and Section 6concludes the study.

2 Discrete quantum walk

A quantum walk is a quantized model for a classical random

walk. The discrete time models discussed here include the walker

position state and the “coin” state. The position n of the walker is

a vector of infinite dimensional Hilbert space Hp, and the basis

vector of Hilbert space is {|n〉: n ∈ Z}, which is called the

computational basis for position space.

The evolution of the walk depends on the state of a quantum

coin. Suppose the walker is on position |n〉, after the quantum

coin is flipped “heads”, the walker goes to position |n + 1〉 in the

next step. If the coin is flipped “tails”, the walker will go to

position |n − 1〉. Now, the Hilbert space of the whole ramble

system is

FIGURE 1
In this figure, there are three corresponding layers: the left
hemisphere layer is the quantum ramble, right is the error-
correcting code, and middle SWAP gate is the exchange gate. The
green B→ E→B node on the left is the quantumwalk process
and corresponds to the error correction code of the pink b-e node
on the right. When the particles are in a quantum walk, they are
swapped through SWAP gate to the lower network to correct
errors and then switched back to the original position.
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H � Hc ⊗ Hp, (1)

where Hc is a two-dimensional Hilbert space of the quantum

coin (different walkers have different throwing operators), and

the basis vector of Hilbert space is {|0〉, |1〉}. The aforementioned

ground state is also the computational basis of the quantum coin

space, and the computational basis for space H is {|i〉|n〉, i ∈ {0,

1}, n ∈ Z}.

P is the coin operator that determines the direction of the

quantum walk. The operator for the walker to move from

position |n〉 to position |n + 1〉 or position |n − 1〉 is called

the transition operator S.

S|0〉|n〉 � |0〉|n + 1〉
S|1〉|n〉 � |1〉|n − 1〉 . (2)

We calculated the representation of the transition operator S

under the computational basis of Hilbert space H:

S � |0〉〈0|⊗∑ |n + 1〉〈n| + |1〉〈1|⊗∑ |n − 1〉〈n|. (3)

3 Two-lattice Bose–Hubbard model

It is assumed that the graph structure of quantum walk is G,

and the vertices V in the graph represent lattice points and satisfy

the local Euclidean symmetry [4]. The two-lattice Bose–Hubbard

model is used to describe the discrete time quantum walk in

multiparticle interaction on the graph and to correct the error of

quantum walk.

To construct the two-lattice Bose–Hubbard model, we first

introduce the boson creation (annihilation) operator, b†j(bj),
where j = 1, 2, . . ., n, which satisfies the commutation relation:

b̂i, b̂j[ ] � 0, b̂
†

i , b̂
†

j[ ] � 0, b̂i, b̂
†

j[ ] � δij. (4)

Then we get the Hamiltonian of the two-lattice

Bose–Hubbard model:

Ĥ � −t∑∝
k�1

∑
j1/jk

~b
†

j1
/~b

†

jk
∑

j1′/jk

~b
†

j1
/~b

†

jk′ +∑
j

V n̂j( ) +∑
j

ϵjn̂j,

(5)
where t is the real parameter to describe the particle jumping

intensity (in this work t = 1), ϵj is the local potential, and V(n̂j) is
the interaction between particles at the lattice point:

V n̂j( ) � V2 n̂j( ) + V3 n̂j( ) +/

� U1

2
n̂j n̂j − 1( ) + U2

6
n̂j n̂j − 1( ) n̂j − 2( ) +/ ,

(6)

where V2(n̂j) is the interaction between two particles, V3(n̂j) is
the interaction between three particles, U1 and U2 are the

strength of the interaction between particles, and n̂j � b̂
†

j b̂j.

In Eq. 6, the constraint of the two sets {j1, j2, . . ., jk} and

{j1′, j2′, . . . , jk′} is that the sum extends over all lattice points, and

the two sets are not the same. Also, the operator operation

condition is satisfied:

~bj � f n̂j( )b̂j, ~b
†

j � b̂
†

jf n̂j( ), f n̂j( ) � 1					
n̂j + 1

√ , (7)

where n̂j � b†jbj is the number operator at the lattice point j.

Operator {~bj, ~b†j , n̂j} satisfy the commutation relation:

n̂j, ~bj[ ] � −~bj, n̂j, ~b
†

j[ ] � ~b
†

j ,
~bj, ~b

†

j[ ] � δnj0. (8)

According to the Hamiltonian of the model, the model can

make multiple particles transition at the same time without

limiting the transition of two adjacent lattice points. In the

study mentioned in reference [17], the limit condition of

Hilbert space H of n boson is calculated in the 2n

dimensional computational Hilbert space C, and the location

is encoded by subset HC ⊆ H and |HC| � 2n, along with an

isomorphism ρ: HC → C, where C and HC are

interchangeable. The quantum state |Φ〉∈ HC in the model

system provides a computer state encoding on the n-qubits,

|Φ〉C � ρ(|Φ〉). A Hamiltonian was obtained by coupling HC
with states space Hτ (Hτ=H\HC) outside of the computational

space, which generated entanglement in C. It is proved that any

FIGURE 2
Due to the need of quantumwalk error correction, two layers
of network lattice (V0 and V1) are set in the Bose–Hubbard mode.
In the 3D figure, the left side represents the original two-
dimensional lattice diagram, and the right side represents the
lattice encoded by using the Yang diagram method in V1, where
the lattice position in V0 remains unchanged. The following 2D
diagram describes the encoding mode of the particles in the red
lattice V0, i=1 and V0, i=1 = |Φ〉 = |0〉 ⊗|1〉 ⊗| + 〉 (the particles in the
lattice are encoded using the method described in reference [17]).
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initial state can be mapped to H_{C} and can be returned to C
recoded as a valid computed state.

4 SWAP gate operator construction

Assume two lattices V0 and V1 (Figure 2), where V0 is

the location of the quantum walk and V1 is the error-

correcting coded location. The corresponding two

lattices in V0 and V1 represent a qubit whose calculated

ground state is |0〉 and |1〉, respectively. The corresponding
qubits in the lattice must be entangled, and we show how

quantum lattices are encoded and how qubits generate

entanglement. Suppose the initial n-qubit state |Φ〉
satisfies the following condition:∑1

i�0
〈Φ ~b

†

j,i
~bj,i

∣∣∣∣∣∣ ∣∣∣∣∣∣Φ〉
∣∣∣∣∣∣ ∣∣∣∣∣∣2 � 1. (9)

The function of the four calculated ground-state mapping

relations and the creation (annihilation) operators for a

10 dimensional space is

~b
†

j,0
~b
†

j+1,0|00〉i|00〉i+1 � |10〉i|10〉i+1 ↔|0〉i|0〉i+1,
~b
†

j,0
~b
†

j+1,1|00〉i|00〉i+1 � |10〉i|10〉i+1 ↔|0〉i|1〉i+1,
~b
†

j,1
~b
†

j+1,0|00〉i|00〉i+1 � |10〉i|10〉i+1 ↔|1〉i|0〉i+1,
~b
†

j,1
~b
†

j+1,1|00〉i|00〉i+1 � |10〉i|10〉i+1 ↔|1〉i|1〉i+1,

(10)

The Hamiltonian of the two-lattice Bose–Hubbard model is

reduced to

Ĥ1 � −∑N
y�1

ty01b
†
j,0bj,1 + ty10b

†
j,1bj,0( )

+ U

2
∑2
j�1

n̂j n̂j − 1( ) + n̂j n̂j − 1( )[ ], (11)

when the interaction of two particles and the local potential

ϵj are considered only. In Eq.6, N is the particle number,

and the subscript j is the lattice position, and the parameter

tij is

tij � t

										
n̂i! n̂j − y( )!
n̂j! n̂i − y( )!

√√
. (12)

In the two-lattice Bose–Hubbard model, the six lattice points

are coded according to the Yang diagram, so the lattice coding

sequence is as follows:

|0, 6〉|5, 1〉|4, 2〉|3, 3〉|2, 4〉|1, 5〉|0, 6〉 , (13)

According to the aforementioned Eqs 11, 12, 13, we can

get the energy matrix E6 by matrix diagonalization. From the

energy matrix E6, the eigenvalues {E(ι)
6 }6ι�0 of lattice particles

and the ground state of the model can be obtained when

determining the values of U/t, which is helpful for the

establishment of the two-lattice Bose–Hubbard model.

Moreover, the entangled degree calculation system

mentioned in the study in reference [4] is used to

calculate the entangled degree between the ground-state

particles:

η � − 1
M

∑M
i�1

Tr ϕ( )ilogN+1 ϕ( )i, (14)

where N is the number of particles, M is the number of lattices,

and (ϕ)i is the reduced density matrix at the ith lattice point. The

next step is to find the relationship between the specific value U/t

and the degree η of entanglement. The lattice energymatrix of the

seven lattice points is shown below.

FIGURE 3
According to the Bethe assumption method, the Eq. 17
related to the degree of entanglement can be obtained, which
shows the relationship between the degree of entanglement η
(vertical axis) and U/t (horizontal axis). The aforementioned
two figures are, respectively, the relationship curves of
entanglement degree η andU/twhen the total number of particles
is 10 and 20. It can be seen that the degree of entanglement tends
to 1 as U/t→ 0, so the two particles in the model can be entangled
by controlling the values of parameters U/t.
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E6 � −t

−15U
t

1 1 1 1 1 1

1 −10U
t

1 1 1 1 1

1 1 −7U
t

1 1 1 1

1 1 1 −6U
t

1 1 1

1 1 1 1 −7U
t

1 1

1 1 1 1 1 −10U
t

1

1 1 1 1 1 1 −15U
t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)
According to the eigenenergy, the Bethe hypothesis method

can be obtained, as follows:

F m, n( ) � E δ( ) − t −∑
j

V n̂j( ) −∑M
j�1

ϵjn̂j, (16)

where − t∑m,nC(m, n)/F(m, n) = 1, m and n (m ≥ n) are the

number in the lattice points, when m = n and C(m, n) = 1 and

whenm ≠ n and C(m, n) = 2. According to Eq. 16, the calculation

formula of entanglement is improved:

η � ∑N
m,n

1

F m, n( )2 logN+1
1

F m, n( )2. (17)

We can get the degree of entanglement between the two lattice

points to 1 at U/t → 0, as shown in Figure 3. The SWAP gate is

obtained by limiting [4] to U/t ≈ 0:

U

t
� 4

											
a2

2b + 1( )2 − 1

√
≈ 0, a, b ∈ Z, (18)

SWAP �
e−iαπ 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 e−iαπ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (19)

where α � b + 															
l2 − 4a(a + 1) − 1

√
a and b need to be evaluated

according to the degree of entanglement η to ensure the degree of

entanglement between two particles.

5 Error correction and analysis

5.1 Quantum walk error correction

Because the generator of local Euclidean symmetry is used to

construct the two-lattice Bose–Hubbard model, it is necessary to

modify the quantum ramble operator. Assuming that the

generator in the model (n lattices) is {ξi}ni�1, the modification of

quantum walk transfer operator and coin operator is as follows:

P′ � ∑1
p, q�0

|ξp〉〈ξq|, (20)

S′ � |ξ0〉〈ξ0|⊗ ∑N−1

n�0
|n + 1〉〈n| + |ξ1〉〈ξ1|⊗ ∑N

n�1
|n − 1〉〈n|. (21)

Because it is currently in a two-dimensional physical

system, the aforementioned formula only takes two

generative elements to construct the quantum walk evolution

operator.

In the previous section, we showed that the quantum states of

two corresponding lattice points can be entangled by controlling

the ratio of the parameters U/t. Thus, according to the Properties

of the Bose–Hubbard model, when particle qubits wander to

lattice point α, it can be exchanged with another lattice point α′,
which becomes entangled with the particle qubits through the

exchange gate and corrects the error.

In the space of N-qubits, a single-bit quantum

measurement will appear at each lattice point when the

evolution of the particles is in the discrete time quantum

walk. The measurement operator is:

V � ∑N−1

i�0
∑1
j�0

|v〉i,j〈v|i,j, (22)

where, |v〉i,0 is the encoded quantum state in the first lattice in

Figure 2, which is the state of quantumwalk; |v〉i,1 is the quantum
state in the second lattice, which is used to assist quantum error

correction. Also, the lattice locations of |v〉i,0 and |v〉i,1 are

entangled in the model. The quantum state |v〉i,0 has

superposition state in the process of quantum walk:

|Ψ t( )〉 � ∑N−1

n�0
ψ0,n t( )|ξ0, n〉 + ψ1,n t( )|ξ1, n〉, (23)

where ψ0,n and ψ1,n are the amplitude, |ξ0〉 and |ξ1〉 are the coin

state, and |n〉 is the position state. In the process of quantum

walk, there are mainly two kinds of errors, which are phase

inversion and bit inversion. However, the amplitude in Eq. 23 is

generated by the superposition state, so the detection and

correction of walker errors are mainly aimed at bit inversion

errors. The quantum walk error correction circuit is shown in

Figure 4. In order to suppress the error generated in the quantum

walk, the noise error based on the double-lattice Bose–Hubbard

model in the quantum walk is reduced by reducing the circuit

gate overhead. Taking depolarization noise as an example, the

data map is obtained through the training of the decoder. The

decoder uses the convolutional neural network [27–29] in the

current hot machine learning algorithm as the dominant

algorithm to decode the quantum information in the line. The

specific decoding training model is shown in Figure 5. By training

with different restnet layers, the accuracy and speed of training

are improved; the speed is 1/3 higher than before and the

accuracy reaches 99.82%.
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5.2 Algorithm analysis

At present, there are many research achievements in quantum

walking. For example, the quantum state operator based on the

Bose–Hubbard model is given in the study in reference [17],

including single-bit operation, entanglement operation, and

permutation operation. This study mainly studies the error

correction of system noise during a quantum walk.

The algorithm is based on the two-lattice Bose–Hubbard

model, and the evolution of the quantum walk algorithm is

carried out. In the first section, it is proved that no new

quantum state will be generated after the particles are replaced

in the model [17]. Based on the model, this algorithm can correct

the quantumwalk error by using quantum error correction coding.

In the second section, according to the Bethe hypothesis method

mentioned in reference [4], we can get the relationship between

energy eigenvalues, particle transition intensity, particle

interaction, and entanglement (Eq. (17)). Therefore, two lattice

points can be entangled by controlling the value of U/t, and the

step of generating entanglement can be omitted compared with the

study mentioned in reference [17].

5.3 Error correction performance analysis

We extracted non-local regularities from noise and performed

transfer learning in various tasks. Applying this advantage to the

cost of qubits passing through quantum gates can reduce the cost

of qubits. The qubits contain auxiliary qubits in the synthetic

measurement process, and the logic overhead is the cost of the

auxiliary qubits during the synthetic measurement process.

FIGURE 4
Quantum walk error correction circuit diagram. During the quantum walk, the particles are swapped into another lattice via the SWAP gate,
which is then swapped into the lattice of quantum walk after correcting the coin state and the initial state by the quantum error-correcting code.

FIGURE 5
Number of training times corresponds to a function of training
error rate and training accuracy. The horizontal axis represents the
number of training sessions, and the vertical axis represents the training
error rate and accuracy rate. Restnet=7, restnet=14, and
restnet=21 aremarkedwith blue, red, and green, separately. For intuitive
viewing, zoom plots are set up to make it easier to observe the data.

TABLE 1 Unified quantization of network layers under different
decoders.

Trainable dataset Steps Accuracy (%)

MWPM 1.48 × 105 4.8 × 104 75.388

RestNet7 1.37 × 103 3.1 × 103 84.256

RestNet14 2.75 × 103 2.9 × 103 88.792

RestNet21 3.79 × 103 1.7 × 103 96.753
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Threshold is an effective way to characterize fault tolerance

performance. Specifically, applying quantum error correction

for efficient quantum computing can suppress the logical error

rate to arbitrarily low levels when the physical error rate of the

qubits is below a certain threshold. The CNN used in this study is

used for experiments. The number of simulated qubits varies from

3.8 × 103 to 1.5 × 105 bits. The specific training data quantification

is shown in Table 1. Comparing the overhead of MWPM and

CNN optimization with thresholds of 0.0058 and 0.0085.

Figure 6A shows that with the increase of the number of qubits

both the MWPM overhead and the CNN overhead increase, but

the increase in CNN-optimized overhead is significantly lower

than that of the MWPM overhead. Figure 6B shows that as the

number of qubits increases, the optimization overhead of CNN

also gets much lower than the original one; although when the

number of qubits is 2.0 × 108, the overhead of the optimized CNN

is slightly higher than the original one. At the same time,

comparing the results under different thresholds in Figure 6, it

can be found that the larger threshold, the greater the overhead of

quantum circuit gate.

6 Conclusion

In this study, a multiparticle quantum walk error

correction algorithm based on the two-lattice

Bose–Hubbard model is proposed. This algorithm controls

the proportion of the interaction between particles and the

transition intensity of particles to realize the entanglement of

quantum state in two lattices and then corrects the quantum

walking error by using the invariant property of model

particle replacement. Under the condition of the threshold

of 0.0085, the restnet network layer is used as a training model,

and the error noise of quantum walk is reduced by decoding

the error correction circuit model, so as to achieve a more

stable walk circuit. Compared with the traditional quantum

walk error correction, the threshold limit is increased from

0.0058 under the traditional MWPM to 0.0085, and the speed

is increased by a full 1/3. However, when the number of

particles or the size of the system exceeds a certain

threshold, it is impossible to accurately control the

transition strength of particles and the interaction between

particles, thus destroying the entanglement operation. The

development of quantum convolutional neural network is

relatively mature at present, and it is the focus of the next

research, in preparation for further improving the fault

tolerance performance.
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