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Black phosphorus has attracted great interest for optical modulation and

optoelectronic devices because of its ultrathin layer structure, tunable band

gap, and high in-plane anisotropy. In particular, in the near-infrared and mid-

infrared bands, proof-of-concept applications, including saturable absorber

resonators, photodetectors, and optical modulators based on 2D black

phosphorus nanosheets, have been reported one after another. However,

relatively few studies about black phosphorus have been reported in the

ultraviolet band. Moreover, the poor stability of black phosphorus has also

limited its development in practical applications. Here, we successfully prepared

ultra-small black phosphorus quantum dots (BPQDs) with an average thickness

of 2.0 ± 0.4 nm and a diameter of 2.2 ± 0.6 nm. Furthermore, we also fabricated

BPQD-Ormosil gel glasses. Through an open-aperture Z-scan experiment,

BPQD-Ormosil gel glasses demonstrated excellent nonlinear optical

modulation in the ultraviolet band, which proposes a new idea for ultraviolet

optical modulation elements such as saturable absorption devices.

KEYWORDS

nonlinear optics, black phosphorus quantumdots (BPQDs), BPQD-Ormosil gel glasses,
ultraviolet saturable absorption, optical modulation

Introduction

Black phosphorus (BP) nanomaterials possess extraordinary properties, including

high carrier mobility [1], layer-dependent bandgap [2], and anisotropic in-plane lattice

structure [3]. Using these excellent physical and chemical properties of BP, researchers

have realized proof-of-concept applications of BP field-effect transistors with atomic layer

thickness [1], photodetectors [4], electro-optic polarization modulators [5], saturable

absorbers [6], and others [7–10]. Considering its optical modulation ability, the direct

band gap of BP nanosheets is adjustable from 0.3 to 2.0 eV with the number of layers,

enabling broadband optical modulation from the visible to the mid-infrared region [11,

12]. It is noteworthy that because BP is free from dangling bonds on the surface, it is
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compatible with the Si substrate and can be integrated very well.

BP is featured as an ideal candidate for an on-chip two-

dimensional (2D) optical modulator, enabling new

applications of 2D material photonic [13] devices.

By engineering morphology, the BP nanobelts [14, 15] and

zero-dimensional QDs [16] with unique features can be

obtained due to edge states and quantum confinement

effects. BP QDs were derived from the 2D BP nanosheets

by ultrasonic liquid phase exfoliation, solvothermal treatment

approaches, and electrochemical exfoliation [16–19].

Conventional 2D materials, such as graphene and

transition metal compounds of carbon or nitrogen, always

FIGURE. 1
Characterizations of BPQDs and BPQD-Ormosil gel glasses. (A,B) TEM and magnified TEM images of BPQDs. (C)High-resolution TEM images.
(D) AFM images of BPQDs. Inset: height profile corresponding to line 1 in Figure 1 (D). (E) Statistical analysis of the diameter of BPQDs determined by
TEM. (F) Statistical analysis of BPQD height measured by AFM. (G) Raman spectra. (H) UV-vis absorption spectrum of the BPQDs. (I) Optical
photograph of the BPQD-Ormosil gel glasses.
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show characteristics like atomically thin thicknesses and

unique chemical and physical properties different from

their bulk [20, 21]. BPQDs have ultrasmall sizes, wide

tunable band gaps, great edge states, and higher surface-to-

volume ratios [16]. Based on these favorable properties,

BPQDs have been extensively investigated in broad fields

like optoelectronics [17], biomedicine [22], bioimaging

[23], and photovoltaics [24], to mention a few. Moreover,

tremendous efforts have been devoted to optical modulation

applications such as all-optical and saturable absorbers for

ultrashort pulsed laser generation [25]. Ultrashort pulsed

generation based on semiconductor saturable absorber

mirrors has been around for half a century. Diverse 2D

materials show an expected saturable absorption response

in broadband [26–28]. In recent years, semiconductor

saturable absorber resonators based on graphene [29],

transition metal dichalcogenides [30–32], BP [33, 34], and

other low-dimensional materials [35–38] have been reported

in the near-infrared and mid-infrared regions. Due to the

limitation to nonlinear saturable absorber materials, the

wavelength of the ultrashort pulsed laser is mainly limited

in the range of 0.8–2.0 μm. Obtaining materials with excellent

optical modulation properties, such as saturable absorption

properties in visible wavelength and especially in ultraviolet

FIGURE 2
OA Z-scan results of BPQD-Ormosil gel glasses at excitation intensities of different ultraviolet wavelengths. (A–I): 300, 310, 320, 330, 340, 350,
360, 370, and 380 nm.
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wavelength range, is an effective way to break through the

wavelength limitation mentioned earlier. To address this

issue, 2D material saturable absorbers were explored to

realize pulsed lasers in the visible spectral range recently

[39]. However, the short ultraviolet wavelength laser

generation via direct methods is still a big challenge

because of the lack of suitable ultraviolet saturable absorber

materials.

In this work, we successfully prepared ultra-small BPQDs

with an average thickness of 2.0 ± 0.4 nm and a diameter of 2.2 ±

0.6 nm by liquid-phase exfoliation. In order to avoid the

degradation of QDs, BPQD-Ormosil gel glasses were

fabricated. Furthermore, through an open-aperture (OA)

Z-scan experiment, we demonstrated that BPQD-Ormosil gel

glasses show excellent saturable absorption response in the

ultraviolet region, opening a new promising application for

optical modulation in the ultraviolet region.

Results and discussion

The liquid-phase exfoliation approach was used to prepare

ultrasmall BPQDs. First, BP powder was added to the

N-methyl-2-pyrrolidone (NMP) solution. The solution was

placed in a mortar and thoroughly pounded using a pestle.

Then, it was exfoliated by using an ultrasonic disruptor for 8 h

in an ice bath. The resulting solution then underwent gradient

centrifugation. The precipitate obtained from centrifugation

at 18,000 rpm was the prepared BPQDs used in this work.

The typical sol-gel method [40] was used to fabricate

BPQD-Ormosil gel glasses. Tetraethoxysilane (Si(OC2H5)4,

TEOS, 8.0 ml), 3-glycidoxypropyl-trimethoxysilane

(CH2OCHCH2O(CH2)3Si(OCH3)3, GPTMS, 3.5 ml), H2O

(3.7 ml), and ethanol (12.1 ml) were mixed together with

continuous magnetic stirring. A little amount of hydrochloric

acid (HF) was added to make the pH of the solution equal to 2.

With 2 h stirring of the mixture, the proper amount of 3-

aminopropyltriethoxysilane (NH2(CH2)3Si(OC2H5)3, APTES)

was added to neutralize the mixture pH and make it equal to 7.

Then, the mixture of 9 ml of the DMF solution and synthesized

BPQDswas gradually added. Themixed solution was continuously

stirred for 15 mins. Next, the solution was cast onto individual

polystyrene cells. Afterward, it was put in a dry environment to age

and dry naturally.

The characterizations of BPQDs and BPQD-Ormosil gel

glasses are shown in Figure 1. Figures 1A–C depict the

morphological images of BPQDs acquired by transmission

electron microscopy (TEM). The characterizations shown in

Figures 1A,B exhibit morphology of the ultrasmall size

BPQDs with uniform distribution. In Figure 1C, the high-

resolution TEM image shows the 0.215 nm spacing between

lattice fringes corresponding to the (014) plane of the BP.

Figure 1D shows the atomic force microscopic (AFM) image

of BPQDs, confirming the nanoscale thickness of prepared

BPQDs. As per the statistical analyses shown in Figures 1E

and F, the average diameter of BPQDs is 2.2 ± 0.6 nm and

the mean thickness of BPQDs is 2.0 ± 0.4 nm. Figure 1G shows

the Raman spectra of BPQDs with three typical Raman peaks

corresponding to the A1
g, B2g, and A2

g vibrational modes,

respectively. Relative to the bulk BP, Raman peaks of BPQDs

show a blue shift, suggesting that the average thickness of

BPQDs is thinner than bulk BP, according to a previous

report [17]. Figure 1H shows the absorption spectra of

BPQDs, suggesting a considerable absorption in the visible

FIGURE 3
Analysis of nonlinear optical parameters of BPQD-Ormosil gel glasses. (A) Nonlinear absorption coefficient with error bars and (B) comparison
of the saturable absorption intensity with error bars.
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and ultraviolet regions. Figure 1 (I) shows the optical photograph

of the prepared BPQD-Ormosil gel glasses, in which the

thickness of the BPQD-Ormosil gel glasses is about 1 mm and

the diameter is about 1.5 cm.

In order to research the nonlinear optical response of

BPQDs, we conducted the OA Z-scan experiment. More

details on the OA Z-scan experiment can be found in the

previous report [26]. In the experiment, the incident laser is a

mode-locked femtosecond pulsed laser with a repetition

frequency of 2 kHz and a pulse width of 35 fs. The

femtosecond laser with 800 nm wavelength can output a

specific wavelength by using the optical parametric amplifier.

The beam splitter splits the main beam into two beams to be used

in the OA Z-scan experiment. One beam is defined as the

reference beam to eliminate the experimental error. The

excitation beam is incident on the sample, and its

transmittance is recorded by using the power meter.

Figures 2A–I show the OA Z-scan results of BPQD-

Ormosil gel glasses at ultraviolet wavelengths 300, 310, 320,

330, 340, 350, 360, 370, and 380 nm at different light

intensities. As shown in Figure 2, BPQD-Ormosil gel

glasses exhibit typical saturable absorption (SA) response at

the ultraviolet wavelength range from 300 to 380 nm.

Furthermore, we extracted nonlinear optical parameters of

BPQD-Ormosil gel glasses, including the nonlinear

absorption coefficient αNL and saturable absorption

FIGURE 4
Fitting results of the saturable absorption intensity at different wavelengths. (A–I): 300, 310, 320, 330, 340, 350, 360, 370, and 380 nm.
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intensity Is. According to the relevant theory [41], the data in

Figure 2 can be fitted by the following equation:

T � 1/[sqrtπq0] ∫
+∞

−∞
ln [1 + q0 exp(−x2)]dx, (1)

where T is the normalized transmittance, q0 � βqI0Lef f ,
Leff � (1 − e−α0L)/α0 is the effective thickness of the sample,

I0 is the peak intensity of the incident laser, and L is the actual

thickness of the sample. Figure 3A summarizes the extracted

nonlinear absorption coefficients.

The saturable absorption intensities Is can be fitted by the

following equation (25):

T � 1 − As/(1 + I/Is) − Ans, (2)

where Ans is the non-saturable component and As is

the modulation depth. As shown in Figure 4, the fitting

results of the saturation intensity range from 0.05 to

0.35 GW/cm2.

Figure 3 shows the nonlinear optical parameters of BPQD-

Ormosil gel glasses at different wavelengths, including αNL

and Is. All error bars were less than 10%, showing that the

experiments are repeatable. The nonlinear absorption

coefficient shows wavelength-dependent characteristics. As

the wavelength changes from 310 nm to 380 nm, the

maximum value of the nonlinear absorption coefficient

occurs at the 330 nm wavelength. It may attribute to a

strong light–matter interaction near 330 nm wavelength,

which can be observed in the linear optical absorption

spectrum in Figure 1H. The comparatively maximum value

of the nonlinear absorption coefficient appears at 330 nm,

considering the saturable absorption intensity as a function of

excitation wavelength. When the photon energy is large

enough, saturable absorption is no longer dominant, but

there is more energy loss in the form of collisions.

Interestingly, the saturable absorption intensity of BPQDs

is as low as 0.05 GW/cm2 near the 300 nm wavelength, which

would benefit the stability of the ultrashort pulse generation

system. Overall, these results indicate the promising potential

of BPQD-Ormosil gel glasses for ultraviolet saturable

absorption optical modulation devices.

Conclusion

We successfully prepared ultra-small black phosphorus

quantum dots (BPQDs) with an average thickness of 2.0 ±

0.4 nm and a diameter of 2.2 ± 0.6 nm. Moreover, BPQD-

Ormosil gel glasses were prepared to improve their stability in

ambient conditions. The BPQD-Ormosil gel glasses

demonstrated an interesting saturable absorption response

in the ultraviolet region. Meanwhile, the wavelength-

dependent nonlinear absorption coefficient and low

saturable absorption intensity were observed. Our results

enrich the ultraviolet light manipulation material family

and provide a new idea for ultraviolet optical modulation,

such as a saturable absorber.
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