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All previously published data on the dynamics of ethylene glycol conveying

copper and gold nanoparticles over a convective surface, nothing is known

about the importance of dual branch solutions. Hybrid nanofluids improve the

thermal conductivity of the fluid. The nanoparticles copper and gold having

ethylene glycol as a base fluid are used here. The flow problem is described over

a stretching/shrinking surface with the influence of Ohmic heating, non-linear

radiation, and a convectively heated surface. Furthermore, the magnetic field

strength is applied perpendicular to the direction of the flow. To control the

fluid, flow-governing equations are numerically solved by using bvp4c, a built-

in approach in MATLAB. For hybrid nanomaterials, the consequence of different

physical parameters is discussed graphically and with tabular data. A

comparison with previous findings reveals that the present findings are in

good agreement. The results revealed that the coefficient of skin friction for

the physically stable branch declines over a certain range of shrinking

parameters; nonetheless, for the unstable branch, the reverse pattern is

discovered. The magnetic force diminishes the flow field and energy

dispersion in the upper branch but improves it in the lower branch.
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1 Introduction

In industries, heat transfer is used in a wide range of

applications to lower and raise temperatures. The conditions

for energy exchange in a system are provided by heat transfer

fluids, and the effects of these fluids depend on their physical

characteristics, including thermal conductivity, viscosity, density,

and heat capacity. The low thermal conductivity of typical fluids

such as water, ethylene glycol, or oil cannot achieve significant

heat exchange rates in thermal engineering equipment. To

overcome this barrier, ultrafine solid particles contained in

ordinary fluids can be used to improve their thermal

conductivity. A nanofluid is defined as a suspension of nano-

sized particles in a regular base fluid. In the formulation of the

nanofluids, usually metals, carbon nanotubes, and carbides as

nanoparticles are utilized. The metal nanoparticles incorporate

gold and silver while copper oxide, zinc oxide, and aluminum

oxide are included into the category of oxide nanoparticles. In

comparison to suspensions with millimeter- or micrometer-sized

particles, nanofluids exhibit greater stability, rheological

characteristics, and significantly higher thermal conductivities

[1]. In modern technology, the use of nanofluids is to promote

system miniaturization by lowering particle clogging. Numerous

researchers have recently examined, both experimentally and

theoretically, how nanofluids can improve heat transmission in

thermal engineering devices. In order to calculate the

thermophysical properties of nanofluids, researchers have used

a range of preparation techniques, features, and models. Choi [2]

developed the idea of nanofluids by suggesting that nanoparticles

be suspended in a base fluid. Following that, several researchers

studied the heat transport of a nanofluid for various aspects,

either experimentally or numerically. For instance, Tiwari and

Das [3] reported their work on the mathematical models of

nanofluids. The efficiency of particle micromixing in heavy metal

reduction procedures under different inlet conditions was

covered by Karvelas et al. [4]. Benos et al. [5] discussed the

theoretical model for natural convection of the CNT–water

nanofluid flow that incorporates the revised Hamilton–Crosser

model. Kouz et al. [6] presented the analysis of the heat transfer

and entropy generation of a water–Fe3O4/CNT hybrid magnetic

nanofluid flow in a trapezoidal wavy enclosure with porous

media. Song et al. [7] considered a convectively heated

vertical surface to examine the nanofluid influenced by a

haphazard motion with the Buongiorno model. The

hydromagnetic flow phenomenon of the Casson nanofluid

with the involvement of an exponentially shrunk sheet was

scrutinized by Ishtiaq and Nadeem [8]. Many researchers have

used the Tiwari–Das nanofluid model to examine many aspects

of the flow, including in Ref. [9–26].

Thermal radiation’s effect on heat transfer is becoming

increasingly significant in the design of modern energy

conversion systems that operate at high temperatures.

Furthermore, thermal radiation is used to solve a wide range

of technological difficulties, including combustion, nuclear

reactor safety, solar collectors, and furnace design. A

nanofluid has distinct features than either particles or the base

fluid, so studying the effects of thermal radiation on the flow and

heat transfer characteristics in a nanofluid has garnered a lot of

attention. Due to this fact, numerous researchers have

investigated the effects of thermal radiation on the flow, heat

transfer, and other different features in a nanofluid. In a single-

phase model, Hady et al. [27] investigated the boundary layer

viscous flow and heat transfer properties of a nanofluid across a

nonlinearly stretching sheet in the presence of thermal radiation.

Mahanthesh et al. [28] investigated the radiative flow of the

water-based nanofluid over a convectively heated surface. Shoaib

et al. [29] numerically investigated the rotational flow of the

magnetized hybrid nanofluid with radiation effects across a

stretching sheet. Mabood et al. [30] discussed the

irreversibility analysis in hybrid nanomaterials with nonlinear

thermal radiation and melting heat transfer. Jamaludin et al. [31]

explored the stagnation-point flow of a nanofluid due to a

stretching/shrinking surface in the existence of thermal

radiation, suction, and a heat source/sink. The comparative

analysis for the radiative flow of hybrid nanomaterials and

nanomaterials in a permeable porous medium was performed

by Yasir et al. [32]. Very recently, Yasir et al. [33] further explored

the dynamics of ethylene glycol transporting copper and titania

nanoparticles on a curved object in the presence of nonlinear

thermal radiation and a heat source/sink. The interesting articles

that depend on heat transport through nanoparticles are in Ref.

[34–44].

The existing examination is being held out to explore the

radiative stagnation-point flow of hybrid nanomaterials subject

to a permeable shrinking surface. As evidenced by the literature,

investigation of the hybrid nanofluid stagnation-point flow is

uncommon. In this scenario, gold and copper are mixed into the

ethylene glycol base fluid to formulate a hybrid nanofluid that

implements a stagnation-point flow mechanism on a shrinking

sheet. Furthermore, the association between the aligned magnetic

field and wall suction was scrutinized. The shooting technique

was used to solve the resulting nonlinear ordinary differential

equations, and the solution was calculated in terms of velocity,

temperature, local Nusselt number, and skin friction coefficient,

all of which are dictated by relevant flow parameters. In our

perspective, we have extremely competitively investigated this

problem. The several originalities of the current analysis are

emphasized as follows:

(a) To efficiently manage the flow, the boundary layer

separation points for various control parameters are shown.

(b) It is observed that the suitable amount of control parameters

improved the rates of skin friction and heat transfer.

(c) What is the consequence of gold and copper nanoparticles

on the thermal conductivity of ethylene glycol over a

shrinking surface?
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2 Mathematical formulation

In the presence of a porous medium, the magnetized flow of a

hybrid nanofluid over a permeable shrinking surface is considered.

The physical coordinate system is depicted in Figure 1, where the x−

axis is measured along the surface and the y − axis is normal to it.

The hypothesis is that the velocity of the shrinking surface is

uw(x) � cx and the free-stream velocity is ue(x) � ax.

Furthermore, the surface temperature is Tw, while the ambient

hybrid nanomaterial temperature is T∞. Tiwari and Das’

mathematical nanofluid model was used in this study. To

investigate the thermal transport of a hybrid nanofluid, Ohmic

heating and viscous dissipation with nonlinear thermal radiation

over a convectively heated surface are taken into account.

The model equations for hybrid nanomaterials are as follows:

zu

zx
+ zv

zy
� 0, (1)

u
zu

zx
+ v

zu

zy
� ue

due

dx
+ μhnf
ρhnf

z2u

zy2
− σhnfB

2
o u − ue( )
ρhnf

− μhnf
ρhnf

u − ue( )
kp

, (2)

u
zT

zx
+ v

zT

zy
� khnf

ρcp( )
hnf

z2T

zy2
− 1

ρcp( )
hnf

zqr
zy

+ μhnf

ρcp( )
hnf

zu

zy
( )2

+ σhnfB
2
o

ρcp( )
hnf

u − ue( )2.

(3)
The related boundary conditions are as follows:

u � uw x( ), v � vw x( ) and − khnf
zT

zy
� h Tw − T( ) aty � 0

u → ue x( ) andT → T∞ asy → ∞

⎫⎪⎪⎬⎪⎪⎭,

(4)

where v and u symbolize the hybrid nanomaterial velocity

components along the y and x directions, respectively. T is the

fluid temperature, vw signifies the velocity mass flux, and the

radiative heat flux qr is defined as follows:

qr � −16σp
3kp

T3zT

zy
, (5)

in which kp symbolizes the Stefan–Boltzmann constant and σp

represents the mean absorption coefficient.

Letting

u � axf′ η( ), v � − avf( )1
2f η( ), θ � T − T∞

Tw − T∞
, η �

��
a

]f

√
y, (6)

which converts the governing Eqs. 2–4 as

μhnf/μf
ρ
hnf/ρf

f′′′ + ff′′ − f′2 +M
σhnf/σf
ρ
hnf/ρf

1 − f′( )
+ kp

μhnf/μf
ρ
hnf/ρf

1 − f′( ) + 1

� 0, (7)
1
Pr

khnf/kf
ρcp( )

hnf
/ ρcp( )

f

θ′′ + 4
3
Rd θ′′ 1 + θw − 1( )θ{ }3 + 3 θw − 1( )θ′2 1 + θw − 1( )θ{ }2[ ]

+fθ′ + 1

ρcp( )
hnf

/ ρcp( )
f

μhnf
μf

Ecf′′2 + σhnf
σf

MEc 1 − f′( )2⎧⎨⎩ ⎫⎬⎭ � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

(8)

with boundary conditions

f η( ) � S, f′ η( ) � χ, − khnf
kf

θ′ 0( ) � βi 1 − θ 0( ){ },

f′ η( ) → 1, θ η( ) → 0 as η → ∞

⎫⎪⎪⎬⎪⎪⎭. (9)

Here, χ(� c
a) is the constant stretching/shrinking parameter,

M(� σB2
o

aρf
) is the magnetic field, S(� − vw���

avf
√ ) is the mass flux

FIGURE 1
Flow diagram.
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constant, kp(� ]f
kppU∞

) is the porous media permeability

parameter, Pr(� vfρcp
kf

) is the Prandtl number, θw(� Tw
T∞)> 1 is

the temperature ratio parameter, Ec(� u2e
cp(Tw−T∞)) is the Eckert

number, Rd(� 4σpT3
∞

kpkf
) is the thermal radiation, and γ(� h

kf

��
vf
a

√
) is

the Biot number.

The skin friction coefficient Cf and heat transfer rate Nux are

expressed as

FIGURE 2
Interpretation of Re

1
2Cf and Re− 1

2Nu for distant values of S.

FIGURE 3
Interpretation of Re

1
2Cf and Re− 1

2Nu for distant values of kp.

FIGURE 4
Interpretation of Re

1
2Cf and Re− 1

2Nu for distant values of M.
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Cf � τw
ρfu

2
e

, Nux � xqw
kf Tw − T∞( ), (10)

where τw and qw are defined as

τw � μhnf
zu

zy
( )∣∣∣∣∣∣∣∣

y�0
, qw � −khnf zT

zy
( )∣∣∣∣∣∣∣∣

y�0
+ qr

∣∣∣∣y�0. (11)

By using equation (11), the dimensionless form of the equation

(10) is
Re

1
2Cfx �

μhnf
μf

f′′ 0( )

Re−
1
2Nux � −khnf

kf
1 + 4

3
Rd 1 + θw − 1( )θ 0( )( )3{ }θ′ 0( )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (12)

where Re(� ue(x)
vf

) is the local Reynolds number; μhnf, ρhnf, khnf,

(ρcp)hnf, and σhnf are the hybrid nanomaterials’ dynamic

viscosity, effective density, thermal conductivity, heat capacity,

and electrical conductivity, respectively, which are defined as

[45]. Further, the thermo-physical properties also defined in

Table 1,

ρhnf � 1 − ϕ2( ) 1 − ϕ1( )ρf + ρ1ϕ1( ) + ϕ2ρ2

μhnf � μf

1 − ϕ1( )2.5 1 − ϕ2( )2.5 , ]hnf � μhnf
ρhnf

khnf � kbf
k2 + n − 1( )kbf − n − 1( ) kbf − k2( )ϕ2

k2 + n − 1( )kbf + kbf − k2( )ϕ2

{ }, kbf � kf
k1 + n − 1( )kf − n − 1( ) kf − k1( )ϕ1

k1 + n − 1( )kf + kf − k1( )ϕ1

{ }
ρcp( )hnf � 1 − ϕ2( ) 1 − ϕ1( ) ρcp( )f + ρcp( )1ϕ1( ) + ϕ2 ρcp( )2

σhnf � σbf
σ2 1 + 2ϕ2( ) + 2σbf 1 − ϕ2( )
σ2 1 − ϕ2( ) + σbf 2 + ϕ2( ){ }, σbf � σf

σ1 1 + 2ϕ1( ) + 2σf 1 − ϕ1( )
σ1 1 − ϕ1( ) + σf 2 + ϕ1( ){ }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(13)

FIGURE 7
Interpretation of f′(η) for ϕ1 values of S.

FIGURE 8
Interpretation of θ(η) for distant values of ϕ1 and ϕ2.

FIGURE 5
Interpretation of Re− 1

2Nu for distant values of Ec.

FIGURE 6
Interpretation of f′(η) for distant values of χ.
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3 Graphical analysis

This study’s objectives include the following: (i) investigating

the effects of relevant parameters on the flow and heat transfer;

(ii) detecting the existence of dual solutions; and (iii) verifying

the nature of the solution. As a result, the outcomes and

discussions regarding the goal will be clarified in this part.

The numerical solution is determined using the following

control parameters: The results are presented in a graphical

style to provide a better understanding of the effect of the

physical parameter. The variation of Re
1
2Cf and Re−1

2Nu

against χ with the interpretation of S are portrayed in Figures

2A, B. According to these figures, solutions exist in the range χc <
χ for hybrid nanomaterials, but no solution occurs beyond the

turning points, that is, when χ < χc. The region’s outcome route

clearly widens as the value of S increases, with the bifurcation

values of χc. Furthermore, in the physically stable branch of the

solution, the skin friction coefficient increases, whereas in the

unstable branch, the opposite tendency is observed. As the

porous medium is taken into account in this model, so

Figures 3A, B depict the fluctuation of Re
1
2Cf and Re−1

2Nu

against the shrinking parameter χ with different values of the

porosity parameter kp(� 0.1, 0.3). It is seen that the boundary

layer bifurcates at the crucial points χc = −3.9592 at kp(� 0.1) and
χc = −3.9954 at kp(� 0.3). This also implies that increasing the

porosity parameter kp delays the bifurcation process. As a result

of the increased porosity parameter k, the skin friction coefficient

Re
1
2Cf decreases for the upper solution and increases for the

lower branch solution, while the local Nusselt number Re−1
2Nu

shows a decline trend. Furthermore, the rising behavior of the

magnetic field parameterM on Re
1
2Cf and Re−1

2Nu is depicted in

Figures 4A, B. The magnetic field is influenced more by the

dispersion of Au nanoparticles in the nanofluid. The rate of heat

transfer increases with the concentration of nanoparticles

because intermolecular collisions increase the kinetic energy.

Additionally, the skin friction coefficient demonstrates a

similar impact. Figure 5 shows the influence of the Eckert

number Ec on Re−1
2Nu in the direction of χ. In the first and

second solutions, raising Ec slows down the rate of heat

transportation. However, the uncertainty in the boundary

layer partition is unaffected by the increasing Eckert number.

As a result, the dual branches are only applicable up to the

identical critical value for all Ec values. Figure 6 represents the

effects of shrinking velocity on the dimensionless velocity profile.

It is observed that the velocity profile significantly decreases with

shrinking velocity for the upper branch solution, while increases

for the lower branch solution. The physical importance of this

problem shows that in the case of dual solutions, the flow

separates from the plate, which is very important for many

practical problems. The fluctuation of the mass suction

FIGURE 9
Interpretation of θ(η) for distant values of γ.

FIGURE 10
Interpretation of θ(η) for distant values of Ec.

FIGURE 11
Interpretation of θ(η) for distant values of θw.

Frontiers in Physics frontiersin.org06

Naveed Khan et al. 10.3389/fphy.2022.1014644

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1014644


parameter S on the velocity profile in relation to the similarity

variable η is shown in Figure 7. Here, it is noted that suction

diminishes the thickness of the related boundary layer due to the

physical increase in velocity distribution. Figure 8 depicts the

effect of the volume percentage of nanoparticles on the

temperature distribution. Because of an upsurge in the kinetic

energy of the system, the fluid temperature inclines. This increase

in kinetic energy promotes thermal transfer. Figure 9

demonstrates the influence of γ on the temperature

distribution. The Biot number improves the temperature of

the fluid in consort with the boundary layer thickness. In

actuality, increasing the Biot number improves the penetration

depth. To study the behavior of thermal distribution for distinct

values of Ec,Figure 10 is sketched. Since Ec is derived from the

appearance of the Joule heating result, the increment in Ec also

indicates that a stronger heat generation from the electric current

reference has been considered to the conducting sheet, which

therefore generates the upgrade in temperature. Figure 11 is

sketched to analyze the nature of temperature distribution θ(η)
for various values of θw(� 1.5, 2.0, 2.5). It is found that the fluid

temperature θ(η) and the associated thickness, both are

enhanced on increasing θw. Figure 12 shows the effect of

thermal radiation on θ(η), and it can be seen from this figure

that θ(η) rises as Rd is increased. This is because as Rd is

increased, the fluid absorbs more heat, causing a rise in θ(η).
The numerical outputs of the existing analysis with those

reported in Ref. [45] for distinct values of the shrinking

parameter are scrutinized, and the outcomes are demonstrated

in Table 2. The obtained results are extremely compact,

providing confidence in the current procedure’s validity.

4 Numerical solution procedure

By permitting the following condition to exist, we performed

the procedure:

f � ξ1, f′ � ξ2, f
′′ � ξ3, f

′′′ � ξξ1,
θ � ξ4, θ′ � ξ5, θ

′′ � ξξ2
}, (14)

FIGURE 12
Interpretation of θ(η) for distant values of δ.

TABLE 1 Thermo-physical properties of the base fluid and nanoparticles [33,45].

Physical property Nanoparticles Base fluid

Gold (Au) Copper (Cu) Ethylene glycol

cp(J/kg K) cp1 � 129 cp2 � 385 2430

k(W/m K) k1 = 318 k2 = 401 0.253

ρ(kg/m3) ρ1 = 19300 ρ2 = 8933 1115

Pr — — 2.0363

TABLE 2 Comparison of Re
1
2Cfx for distant values of χ.

χ Hafeez et al. [46] Current results

Upper solution Lower solution Upper solution Lower solution

−0.25 1.4022331 — 1.4021311 —

−0.50 1.4958565 — 1.4947538 —

−0.75 1.4893224 — 1.4893124 —

−1.00 1.3281191 0 1.3287901 —

−1.15 1.0823058 0.1160042 1.0824134 0.1166937

−1.20 0.9320782 0.2336751 0.9325191 0.2334401
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ξξ1 � −
ρ
hnf/ρf

μhnf/μf ξ1ξ3 + ξ22{ } −M
σhnf/σf
μhnf/μf 1 − ξ2( )

− kp
μhnf/μf
μhnf/μf 1 − ξ2( ) − 1, (15)

ξξ2 �

−4Rd 1 + θw − 1( )ξ4{ }2 θw − 1( )ξ25 −
ρcp( )

hnf

ρcp( )
f

fθ′

− μhnf
μf

Ecf′′2 + σhnf
σf

MEc 1 − f′( )2⎧⎨⎩ ⎫⎬⎭
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

khnf
kf

+ 4
3Rd 1 + θw − 1( )ξ4{ }3{ } , (16)

ξ1 0( ) � S, ξ2 0( ) � χ, ξ4 0( ) � 1
ξ2 ∞( ) � 1, ξ4 ∞( ) � 0

}. (17)

5 Conclusion

The goal of the current research is to identify the multiple

solutions for the magneto-hybrid nanofluid flow due to a

shrinking surface. Additionally, the incorporated consequences

of Ohmic heating and non-linear thermal radiation over a

convectively heated surface are discussed comprehensively

through graphical structures. In this study, multiple solutions

occur for various ranges of the shrinking parameter. This

research can be summarized in the following way:

• The existence of a shrinking surface promotes the

discovery of dual solutions.

• It may be possible to decrease the flow velocity and raise

the flow temperature by using higher joule heating and

viscous dissipation effects.

• For large values of the Biot number, the temperature

distribution and thermal transport rate are more prominent.

• The suction parameter reduces the fluid velocity in the

upper branch, while it is enhanced in the lower branch.

• In a physical stable branch, an increasing magnetic

strength raises the skin friction coefficient.
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Nomenclature

αhnf thermal diffusivity [m2s−1]

khnf thermal conductivity [kgmK−1s−3]

(cp)hnf specific heat [m2s−2K−1]

μhnf dynamic viscosity [kgm−1s−1]

νhnf kinematic viscosity [m2s−1]

ρhnf density [kgm−3]

ϕ1 Au volume fraction

ϕ2 Cu volume fraction

u, v velocity components [ms−1]

T fluid temperature [K]

T∞ ambient temperature [K]

M magnetic parameter

Pr Prandtl number

Rd radiation parameter

Ec Eckert number

χ stretching/shrinking parameter

f 9 dimensionless velocity

θ dimensionless temperature
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