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Rumor propagation in the newmedia era poses a huge threat tomaintaining the

normal order of social life. In this context, we put forth a nonlinear dynamics-

based stochastic SICR rumor model that integrates media coverage with

science education. First, the existence of a unique global positive solution is

obtained. Second, sufficient conditions for extinction are constructed on the

spread of rumors based on the Lyapunov function methods and Khasminskii’s

theory. Finally, the theoretical analysis is verified through numerical simulations.

Additionally, it demonstrates how rumor spreading can be hampered by media

coverage.
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1 Introduction

Rumor, a specific type of misinformation, is information whose integrity has not been

verified and spread to cause an impact [1]. Spreading rumors can occasionally be

advantageous; for instance, we might use their quick and effective nature to alert the

public and urge them to take the necessary precautions [2]. However, most rumors can

trigger panic or potential losses in the accompanying unexpected events [3], for example,

the spread of harmful rumors can have a significant negative impact on the well-being of

the society [4]. Rumors are more influential and have a more complex structure than

accurate information [5]. Consequently, a worthwhile research issue is how to limit and

prevent the propagation of damaging rumors.

Mobile Internet penetrates people’s daily lives as a convenient platform for obtaining

and distributing information [6], for example, the rapid development and increasing

popularity of new social media such asWeChat, Twitter, and Facebook [7]. People can get

news about events as soon as they happen through new social media [8]. Given

unexpected events, uncertainty, and limited information, official news releases about

events often lag. By contrast, rumors are stories or statements whose integrity is not

confirmed [9], therefore always appearing and spreading first on the Internet. False,

biased, and uncertain rumors often mislead the public or harm the society and public

order [10]. Thus, the rapid spread of rumors on new social media is a significant factor in

destabilizing the society [11]. How to prevent the spread of harmful rumors through new

media has become an important topic, such as the study of 606 participants’ tweets

concerning the spread of rumors about the COVID-19 vaccine, aiming to reduce
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misinformation in general and rumors in particular and

suggesting Twitter as the preferred platform for COVID-19

updates [12].

Numerous academics domestically and internationally have

examined the issue of rumor propagation from a variety of

perspectives using qualitative analysis and theoretical

modeling. Daley–Kendall introduced the first rumor

propagation model (the DK model) by dividing the

population into three categories based on the idea of the

infectious disease research method [13]. Maki and Thompson

put forward amodified DKmodel (theMTmodel) [14]. Based on

these two models, many extended propagation models have been

proposed and studied. Many scholars have studied some

deterministic models. Zanette first shifted the research focus

to the dynamic behavior of rumor spreading and concluded that

the rumor propagation threshold was observably influenced by

the network topologies, especially in small-world networks [15].

Later, Moreno et al. developed the mean-field theory in the scale-

free network [16]. In recent years, Zhao et al. have proposed a

mixed patch distribution strategy to combine the advantages of

the conventional centralized patch distribution approach and the

decentralized patch distribution strategy [17]. Guo et al. created a

linked epidemic model to describe the interaction between

epidemics and related information [18]. Xiao et al. considered

the change in information attributes on the dissemination of

information combining network topology [19]. At the same time,

some scholars have studied stochastic models. Dauhoo et al.

proposed the stochastic coefficient to convert the deterministic

rumor model into a stochastic one, proving the existence and

boundedness of global and local solutions [20]. After that, Jia

et al. established a stochastic rumor propagation model by taking

into account different noise environments and figured out that

the threshold affected by the white noise was less than the

deterministic one [21]. Ankur et al. investigated a stochastic

rumor propagation model in a homogenous social network

containing expert intervention and drew the conclusion that

noise can be one of the reasons for rumor persistence under

stochastic circumstances [22]. Huo et al. studied the near-

optimal control of a stochastic rumor propagation model by

adopting Holling II functional response function and imprecise

parameters [23]. In the meanwhile, they extended a stochastic

delayed rumor propagation model [24]. Due to the lack of related

research, adopting a more stochastic model to explore how

rumors spread under the influence of stochastic noises can

not only extend the existing literature but also provide deeper

theoretical insights into this field.

Information is always affected by the noisy environment in

the process of dissemination [23, 25]. For instance, it was

discovered that noise can be one of the causes for rumors to

persist in random conditions when a model of random rumor

dissemination was explored in a homogenous social network

with expert interventions [22]. The fact-checking process on

rumors relies heavily on the crowd or journalist’s response to

investigate. Still, the downside of this traditional method is that it

is not widely conducted until after the rumor is widely spread

[26–28]. In this study, noise is studied in combination with new

social media to avoid the aforementioned traditional method of

passive response only after the rumor spreads. A stochastic SICR

rumor model containing media reports is proposed, which first

analyzes the data on noise influence. Second, by using the

Lyapunov function method and Khasminskii’s theory,

sufficient conditions for rumor extinction are established [4].

In addition, the existing articles almost always assume that rumor

spreaders move directly to stiflers in the rumor propagation

model. However, it ignores the possibility that rumor spreaders

may go through a calm latency period before becoming stiflers to

make the rumor propagation model more realistic [29, 30]. To

that purpose, we put forth a nonlinear dynamics-based stochastic

SICR rumor model that integrates media coverage with science

education. For instance, during the 2019-nCoV outbreak, the

government made the public aware of the new coronavirus

through the official media, immunizing them against the myth

rumor that garlic water may treat coronavirus. By extending the

SICR rumor model and adding the Wiener process to the model

to represent the interference factors existing in the external

environment to the rumor propagation process, rumors’

propagation law and propagation mechanism are explored in

depth.

The rest of the article is divided into the following sections.

Section 2 presents the stochastic SICR rumor model that includes

media coverage. Section 3 verifies the existence and uniqueness of

a globally positive solution to rumor propagation. Section 4

explores the conditions for model extinction by constructing a

suitable stochastic Lyapunov. Section 5 proves the existence of an

ergodic steady-state distribution based on Khasminskii’s theory.

Section 6 verifies the results through relevant numerical

simulations. Finally, conclusions are drawn at the end of the

article.

2 The stochastic SICR rumor model
incorporating media coverage

In this section, a novel SICR rumor-spreading model

incorporating media coverage is proposed to explore the

dynamics of the rumor propagation mechanism. Four

categories are proposed to represent different states of

individuals based on the classical rumor-spreading model.

Susceptible (S(t)) represents those who do not hear rumors

but may be infected at time t. Infected (I(t)) represents those
who believe rumors and spread them actively at time t. Cooled

(C(t)) states represent those who calm down before they stop

spreading rumors at time t. In other words, taking into

consideration the likelihood that spreaders may go through a

cooling-off phase before becoming stiflers. Stifler (R(t))
represents those who hear rumors but do not spread them at
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time t. Media coverage plays a positive role in helping

government departments prevent and intervene in rumor

propagation, especially in emergency events. Moreover, we

assume that S(t) + I(t) + C(t) + R(t) � N(t). The process of

the SICR rumor propagation model is shown in Figure 1.

According to the SICR rumor propagation process

elaborated previously, the rumor-spreading model

incorporating media coverage can be described by a system of

ordinary differential equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

� Λ − (β1 − β2I(t)
m + I(t))S(t)I(t) − θS(t) − μS(t),

dI(t)
dt

� (β1 − β2I(t)
m + I(t))S(t)I(t) − δI(t) − γI(t) − μI(t),

dC(t)
dt

� δI(t) − ηC(t) − μC(t),
dR(t)
dt

� θS(t) + γI(t) + ηC(t) − μR(t),
(1)

where Λ represents the constant immigration rate of the

population. β1 is the rumor receiving and spreading

probability of the susceptible individual S when contacting

with the infected individual I; β2 is the maximum influence of

media on the rumor propagation probability when the

susceptible S contacts the infected I. β2I
m+I is the probability of

media blocking the spread of the rumor when the susceptible S

comes into contact with the infected I. m is the saturation

coefficient, which measures the influence of media coverage. θ

is the immunity rate of susceptible individuals with the influence

of popular science education and media. γ is the forgetting rate

from infected I to stifler R by the forgetting mechanism. δ is the

calmness rate of infected I. η is the transfer rate from cooled C to

stifler R. μ is the removal rate as each group of individuals may be

removed from the group for some reason. Assume that the

aforementioned parameters are positive.

The model describing rumor propagation in the

aforementioned study is a deterministic model, but in the real

world, rumor models are often affected by environmental noise.

In particular, in emergencies, when rumors are widely spread, the

spreading process is influenced by numerous uncertain factors

from the outside, like authority regulation, which may

increase the volatility of the rumor propagation process.

Therefore, it is of great significance to explore how

environmental noise influences the rumor propagation

model. Referencing the idea of Jia et al. [31] and Huo et al.

[32], we assume that the white noise is stochastic

perturbations as the primary reason for the system variable.

Based on the aforementioned discussion, we add white noise

to obtain a stochastic analog of the deterministic model (1)

with periodic coefficients as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) � [Λ(t) − (β1(t) − β2(t)I(t)
m(t) + I(t))S(t)I(t) − (θ(t) + μ(t))S(t)]dt + σ1(t)S(t)dB1(t),

dI(t) � [(β1(t) − β2(t)I(t)
m(t) + I(t))S(t)I(t) − (δ(t) + γ(t) + μ(t))I(t)]dt + σ2(t)I(t)dB2(t),

dC(t) � [δ(t)I(t) − (η(t) + μ(t))C(t)]dt + σ3(t)C(t)dB3(t),
dR(t) � [θ(t)S(t) + γ(t)I(t) + η(t)C(t) − μ(t)R(t)]dt + σ4(t)R(t)dB4(t),

(2)

where Bi(t)(i � 1, 2, 3, 4) are independent Brownian motions and

σ i(i � 1, 2, 3, 4) are the intensity of environmental stochastic

perturbations on S(t), I(t), C(t), R(t). The parameter functions

Λ(t), β1(t), β2(t),m(t), θ(t), μ(t), δ(t), γ(t), η(t), are positive

and continuous periodic functions with positive periodic T. In this

article, suppose (Ω, F , {F t}t≥ 0, P) is a whole probability space with
filtration {F t}t≥ 0 meeting the common conditions, namely, it is

strictly continuous and increasing, whileF 0 contains all P− null sets,

and fix Bi(t)(i � 1, 2, 3, 4) as quantitative Brownian motions

established on the probability space. Also, let R4
+ �

{X ∈ R4, xi > 0, 1≤ i≤ 4} and X(t) � (S(t), I(t),C(t), R(t)) for

the sake of simplicity.

3 Existence and uniqueness of the
global positive solution

In this section, motivated by the methods in [33], we

demonstrate that the solution of system (2.2) has a distinct

global positive solution using the Lyapunov function approaches.

FIGURE 1
Schematic diagram of the rumor under the influence of media coverage.
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Theorem 3.1: For any initial value

(S(0), I(0), C(0), R(0)) ∈ R4
+, there always exists a unique

positive solution (S(t), I(t), C(t), R(t)) of the system (2.2) on

t≥ 0, yet the solution will maintain its convergence with the

probability in R4
+, that is to say, (S(t), I(t), C(t), R(t)) ∈ R4

+ for

all t≥ 0 almost surely (a.s.).

Proof. The coefficients of the model (2.2) are locally Lipschitz

conditions; taking into account the initial value

(S(0), I(0), C(0), R(0)) ∈ R4
+, there exists a distinct

positive local solution (S(t), I(t), C(t), R(t)) on t ∈ [0, τe),
and τe is the explosion time [34]. In order to certify that

this solution is global, all we have to do is illustrate that τe �
∞ a.s. Let k0 > 0 be fully large in order to satisfy that any initial

value of (S(0), I(0), C(0), R(0)) all lies in the interval

[1/k0, k0]. For every integer k≥ k0, we define the stopping

time as follows:

τk � inf{t ∈ [0, τe): min{S(t), I(t), C(t), R(t)}

≤
1
k
ormax{S(t), I(t), C(t), R(t)}≥ k}, (3)

where we fix infØ � ∞. Clearly, τk shows an increasing

function as k → ∞. Let τ∞ � limk→∞τk; thus, τ∞ ≤ τe a. s.

The next step, all that is needed is to prove τ∞ � ∞ a. s. If

this statement is untrue, then there exists a couple of constants

T> 0 and �ε∈ (0, 1) such that P{τk ≤T}> �ε for every integer

k1 ≥ k0. Define a C2− function V: R4
+ → R+ ∪ {0} in the

following:

V(S, I, C, R) � S − a − a ln
S

a
+ I − 1 − ln I + C − 1 − lnC + R

− 1 − lnR,

(4)
where the positive constant a will be confirmed later. The

non-negative function can be acquired from

f(u) � u − 1 − ln u> 0,∀u> 0. Apply the general Itô′s formula

to obtain

dV(S, I, C, R) � LVdt + (S − a)σ1(t)dB1(t) + (I − 1)σ2(t)dB2(t)
+(C − 1)σ3(t)dB3(t) + (R − 1)σ4(t)dB4(t),

(5)
where

LV � (1 − a

S(t))[Λ − (β1(t) − β2(t)I(t)
m(t) + I(t))S(t)I(t) − (θ(t) + μ(t))S(t)]

+(1 − 1
I(t))[(β1(t) − β2(t)I(t)

m(t) + I(t))S(t)I(t) − (δ(t) + γ(t) + μ(t))I(t)]
+(1 − 1

C(t))[δ(t)I(t) − (η(t) − μ(t))C(t)] + (1 − 1
R(t))[θ(t)S(t) + γ(t)I(t)

+η(t)C(t) − μ(t)R(t)] + aσ21(t) + σ22(t) + σ23(t) + σ2
4(t)

2
,

(6)
which suggests that

LV � Λ(t) − (β1(t) − β2(t)I(t)
m(t) + I(t))S(t)I(t) − (θ(t)

+μ(t))S(t) − aΛ(t)
S

+ (β1(t) − β2(t)I(t)
m(t) + I(t))aI(t) + a(θ(t)

+ μ(t)) + (β1(t) − β2(t)I(t)
m(t) + I(t))S(t)I(t) − (δ(t) − γ(t)

− μ(t))I(t) + (δ(t) + γ(t) + μ(t)) − (β1(t)
− β2(t)I(t)
m(t) + I(t))S(t) + δ(t)I(t) − (η(t) + μ(t))C(t) + (η(t)

+ μ(t)) − δ(t)I(t)
C(t) + θ(t)S(t) + γ(t)I(t) + η(t)C(t)

− μ(t)R(t) + μ(t) − γ(t)I(t)
R(t) − η(t)C(t)

R(t)
− +aσ

2
1(t) + σ22(t) + σ23(t) + σ24(t)

2
≤Λ(t) + aβ1(t)I(t)

− μ(t)I(t) + a(θ(t) + μ(t)) + 3μ(t) + γ(t) + δ(t) + η(t)

+ aσ21(t) + σ22(t) + σ23(t) + σ24(t)
2

≤Λu − (μl − aβu1)I(t)
+ a(θu + μu) + 3μu + γu + δu + ηu

+ aσ2u1 (t) + σ2u2 (t) + σ2u3 (t) + σ2u4 (t)
2

.

(7)

Define a � μl

βu1
, it is easy to get μl − aβu1 � 0, then, we achieve

LV≤Λu + aμu + 3μu + γu + δu + ηu

+ aσ2u1 (t) + σ2u2 (t) + σ2u3 (t) + σ2u4 (t)
2

:

� M, (8)

where M is a positive constant. Therefore,

dV(S, I, C, R)≤Kdt + (S − a)σ1(t)dB1(t) + (I − 1)σ2(t)dB2(t)
+(C − 1)σ3(t)dB3(t) + (R − 1)σ4(t)dB4(t),

(9)

reference [33], for any k≥ k0, by means of integrating (9) on

the two sides from 0 to τk ∧ T and then adopting expectation, we

obtain

EV(S(τk ∧ T), I(τk ∧ T), C(τk ∧ T), R(τk ∧ T))

≤V(S(0), I(0), C(0), R(0)) + KT. (10)

LetΩk � {ω ∈ Ω: τk(ω)≤T} for k≥ k0. Then, we have P(Ωk)≥ �ε.

Note that, for every ω ∈ Ωk, there exists S(τk,ω) or I(τk,ω) or
C(τk,ω) or R(τk,ω) equaling either k or 1

k. Thus,

V(S(τk,ω), I(τk,ω), C(τk,ω), R(τk,ω)) is no less than either k −
a − a ln k

a or 1
k − a − a ln 1

ka � 1
m − a + a ln(ka) or k − 1 − ln k or

1
k − 1 − ln 1

k � 1
k − 1 + ln k. Thus, we have
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V(S(τk,ω), I(τk,ω), C(τk,ω), R(τk,ω))≥(k − a − a ln
k

a
) ∧ ( 1

m
− a

+ a ln(ka)) ∧ (k − 1 − ln k) ∧ (1
k
− 1 + ln k). (11)

Consequently,

V(S(0), I(0), C(0), R(0)) +KT ≥E[1Ωk
V(S(τk,ω), I(τk,ω), C(τk,ω), R(τk,ω))]

≥ �ε≥(k − a − a ln
k

a
) ∧ ( 1

m
− a + a ln(ka)) ∧ (k − 1 − ln k) ∧ (1

k
− 1 + ln k),

(12)

where 1Ωk is denoted by the indicator function of Ωk. Setting

k → ∞ contributes to the

contradiction ∞>V(S(0), I(0), C(0), R(0)) +KT � ∞ .

4 The dynamic property around the
rumor-eliminating equilibrium

One of the central concerns in emergency

management systems is how to govern rumor dynamics and

eliminate them permanently. In this section, we mainly survey

the situation for the extinction of model (2.2).

Lemma 4.1: ([35, 36]). LetMi(t) � αi
t ∫t

0
dWi(t), i � 1, 2, 3, 4 be

a real-valued continuous local martingale and Mi(0) � 0. Then,

it obtains lim
t→∞ supMt(t)

t � 0, and similarly, it can conclude

lim
t→∞ supMw(t) � 0 and lim

t→∞ supMf(t) � 0.

Lemma 4.2: Let (S(t), I(t), C(t), R(t)) be the solution of the

model (2.2) with the initial value (S(0), I(0), C(0), R(0)) ∈ R4
+.

Then, lim
t→∞ sup ln S(t)

t � 0, lim
t→∞ sup ln I(t)

t � 0, lim
t→∞ sup lnC(t)

t �
0, lim

t→∞ sup lnR(t)
t � 0 a.s.

Next, the extinction of the stochastic model (2.2) will be

discussed. Therefore, it defines the basic reproductive parameter

set as R1.

R1 � Λuβu1(θl + μl)〈δ + γ + μ + σ22
2 〉T

. (13)

Theorem 4.3: Suppose (S(t), I(t), C(t), R(t)) be the initial

value (S(0), I(0), C(0), R(0)) ∈ R4
+ of the answer to

model (2.2). If R1 < 1, then rumor spreading turns to die out

exponentially, i.e., lim
t→∞ 〈I(t)〉t � 0 a.s. and also

lim
t→∞ 〈S(t)〉 t ≤ Λ

θ+μ, limt→∞ 〈C(t)〉t � 0, lim
t→∞ 〈R(t)〉t ≤ θΛ

μ(θ+μ) a.s.

Proof. For model (2.2), we obtain

S(t) − S(0)
t

� 〈Λ〉t − 〈(β1 − β2I

m + I
)SI〉

t
− 〈(θ + μ)S〉t

+ ∫t

0
σ1(s)S(s)dB1(s)

t
(14)

and

I(t) − I(0)
t

� 〈(β1 − β2I

m + I
)SI〉

t
− 〈(δ + γ + μ)I〉t

+ ∫t

0
σ2(s)I(s)dB2(s)

t
. (15)

FIGURE 2
Trajectories of stochastic and deterministic systems with the
parameter values.

FIGURE 3
Trajectories of stochastic and deterministic systems with the
parameter values.
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Then, it is easy to get

S(t) − S(0)
t

+ I(t) − I(0)
t

� 〈Λ〉t − 〈(θ + μ)S〉t − 〈(δ + γ + μ)I〉t
+
∫t

0
σ1(s)S(s)dB1(s)

t
+
∫t

0
σ2(s)I(s)dB2(s)

t
≤Λu

− (θl + μl)〈S〉t − (δl + γl + μl)〈I〉t
+
σu1∫t

0
S(s)dB1(s)

t
+
σu2∫t

0
I(s)dB2(s)

t
.

(16)

It is simple to acquire

〈S〉t ≤
Λu

θl + μl
− δl + γl + μl

θl + μl
〈I〉t +H(t), (17)

where

H(t) �
σu1∫t

0
S(s)dB1(s)
t

θl + μl
+

σu2∫t

0
I(s)dB2(s)
t

θl + μl
−

S(t)−S(0)
t + I(t)−I(0)

t

θl + μl
. (18)

In terms of Lemma 4.1, we obtain

lim
t→∞

H(t) � 0a.s. (19)

By means of the Itô′s formula, we have

d ln I(t) � {1
I
[(β1(t) − β2I(t)

m(t) + I(t))S(t)I(t) − (δ(t) + γ(t)

+μ(t))I(t)] − σ22(t)
2

}dt + σ2(t)dB2(t)≤(β1(t)S(t) − (δ(t)
+ γ(t) + μ(t)) − σ22(t)

2
)dt + σ2(t)dB2(t).

(20)
By means of integrating (4.3) from 0 to t and then uniting by

dividing t into the two sides, we obtain

lnI(t) − lnI(0)
t

≤ 〈β1(t)S〉t − δ + γ + μ + σ22
2

〈 〉
t

+
∫t

0
σ2(s)dB2(s)

t

≤ βu1〈S〉t − δ + γ + μ + σ22
2

〈 〉
t

+
∫t

0
σ2(s)dB2(s)

t
.

(21)
Combining with, we have

lnI(t)
t

≤βu1[ Λu

θl +μl −
δl +γl +μl
θl +μl 〈I〉t +H(t)]−〈δ+γ+μ+ σ22

2
〉

t

+
∫t

0
σ2(s)dB2(s)

t
+ lnI(0)

t
≤
βu1Λ

u

θl +μl +β
u
1H(t)

− δ+γ+μ+ σ22
2

〈 〉
t

+
∫t

0
σ2(s)dB2(s)

t
+ lnI(0)

t
. (22)

Employing the upper limit of both of (20) and adopting

Lemma 4.1 and 4.2, which is along with (18), we obtain

limsup
t→∞

lnI(t)
t

≤
βu1Λu

θl + μl
− δ + γ + μ + σ22

2
〈 〉

T

� δ + γ + μ + σ22
2

〈 〉
T

⎛⎝ βu1Λ
u

(θl + μl) δ + γ + μ + σ22
2

〈 〉
T

− 1⎞⎠
� δ + γ + μ + σ22

2
〈 〉

T

(R1 − 1)< 0,

(23)

FIGURE 4
Path simulations of I(t) for the stochastic model with β2(1) �
0.1, β2(2) � 5, β2(3) � 10, σ i � 0.06, i � 1, 2, 3,4.

FIGURE 5
Path simulations of I(t) for the stochastic model with β2(1) �
0.1, β2(2) � 5, β2(3) � 10, σ i � 0.2, i � 1, 2, 3,4.
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which suggests lim
t→∞ I(t) � 0 a.s.

From (17), it is simple to deduce that lim
t→∞ 〈S〉t � Λ

θ+μ, derived
from the third and fourth equations of model (1.2), that is simple

to acquire. lim
t→∞C(t) � 0, lim

t→∞R(t)≤ θΛ
μ(θ+μ). The proof is

completed.

5 The dynamic property around the
rumor-spreading equilibrium

In this section, we investigate that model (2.2) accepts no

fewer than one nontrivial positive T− periodic solution around

the rumor equilibrium. On account of the theory of Khasminskii

[37], it is found that there exists a stationary distribution, which

proves the existence of ergodic stationary distribution. Also,

some theories about stationary distribution are provided.

Definition 5.1: ([37]). A stochastic process r(t) �
r(t,ω)(−∞< t< +∞) is referred to be periodic with period

T if regarding each finite sequence of numbers t1, t2,/, tn and

the simultaneous distribution of random variables

r(t1 + h), r(t2 + h),/, r(tn + h) is not dominated by h,

where h � kT, k � ± 1,± 2,/.

Take into account the subsequent periodic stochastic

equation.

dx(t) � f(t, x(t))dt + g(t, x(t))dB(t), x ∈ Rn, (24)

where function f(t) and g(t) are T-periodic in t.

Lemma 5.2: ([37]). We suppose that system (2.1) accepts a

unique global solution. Assume further that there exists a

function V(t, x) ∈ C2 in R, which is T− periodic in t and

equal to the following conditions:

(I): inf ‖x‖>R V(t, x) → ∞ asR → ∞ . (25)

(II): LV(t, x)≤ − 1 outside some compact set, where the

expression for the operator L is

LV(t, x) � Vt(t, x) + Vx(t, x)
+ 1
2
trace(gT(t, x)Vxx(t, x)g(t, x)). (26)

System (5.1) then has a T-periodic solution.

Establish a parameter

R2 � 〈Λ(β1 − β2)〉T
μ + θ + σ21

2〈 〉
T

δ + γ + μ + σ22
2〈 〉

T

. (27)

Theorem 5.1: ([38, 39]). If R2 > 1, afterward, there is a

nontrivial positive T-periodic solution of model (2.2).

Proof. Define a C2− function V: [0,+∞) × R4
+ → R:

V(S, I, C, R) � M(V1(S, I) + ω(t)) + V2(S, I, C, R) + V3(S) + V4(C) + V5(R),
V1(S, I) � −C1 ln S − C2 ln I,

V2(S, I, C, R) � 1
θ + 1

(S + I + C + R)ρ+1 ,
V3(S) � −ln S, V4(C) � −lnC,V5(R) � −lnR,

(28)
where

C1 � 〈Λ〉T

μ + θ + σ21
2

〈 〉
T

, C2 � 〈Λ〉T

δ + γ + μ + σ22
2

〈 〉
T

,

0≤ ρ≤min{1, 2μl(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u},
(29)

and K2 > 0 fulfills the following condition −Mλ + C≤ − 2,where

λ � 2〈Λ〉T(R1
1
2 − 1), (30)

and

C � sup
(S,I,C,R)∈R4+

{ − 1
2
(μl − 1

2
(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sρ+1 + Iρ+1

+Cρ+1 + Rρ+1) +D + 3μu + γu + δu + ηu + σ2u1 + σ2u3 + σ2u4
2

},
(31)

where

D � sup
(S,I,C,R)∈R4+

{Λu(S + I + C + R)ρ − 1
2
(μl

− 1
2
(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(S + I + C + R)ρ+1}. (32)

Distinctly, V(S, I, C, R) is a T-periodic function in t and satisfies

FIGURE 6
Path simulations of I(t) for the stochastic model
with β1(1) � 0.1, β1(2) � 0.3, and β1(3) � 0.5.
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lim inf
k→∞,(S,I,C,R)∈R4+\Uk

V(S, I, C, R) � ∞, (33)

whereUk � (1/k, k) × (1/k, k) × (1/k, k) × (1/k, k) and k> 1 is a

sufficiently large number. Hence, the condition (I) in Lemma

5.1 holds.

Next, we demonstrate that the situation (II) in Lemma

5.1 holds. By means of Itô′s formula, we acquire

LV1 � −C1

S
[Λ(t) − (β1(t) − β2(t)I

m(t) + I
)SI − (θ(t) + μ(t))S] + C1σ

2
1(t)
2

−C2

I
[(β1(t) − β2(t)I

m(t) + I
)SI − (δ(t) + γ(t) + μ(t))I] + C2σ

2
2(t)
2

≤ − C1Λ(t)
S

− C2S(β1(t) − β2(t)) + C1β1(t)I + C1(θ(t) + μ(t) + σ21(t)
2

)
+C2(δ(t) + γ(t) + μ(t) + σ22(t)

2
)

≜ B0(t) + C1β1(t)I,

(34)

where

B0(t) � −2
                    
C1C2Λ(t)(β1(t) − β2(t))√

+ C1(θ(t) + μ(t)

+ σ21(t)
2

) + +C2(δ(t) + γ(t) + μ(t) + σ22(t)
2

). (35)

Define the T-periodic function ω(t);
then, ω′(t) � 〈B0〉T − B0(t).

Therefore,

L(V1 + ω(t))≤ 〈B0〉T + C1β1(t)I

≤ − 2〈Λ〉T⎛⎝⎛⎝ 〈Λ(β1 − β2)〉T
θ + μ + σ21

2〈 〉
T

δ + γ + μ + σ22
2〈 〉

T

⎞⎠ 1
2 − 1⎞⎠ + C1β1(t)I

� −2〈Λ〉T(R2
1
2 − 1) + C1β1(t)I

≜ − λ + C1β
u
1I.

(36)

Similar to the aforementioned formula, we can observe

LV2 � (S + I + C + R)ρ[Λ(t) − (θ(t) + μ(t))S − (μ(t)
+ δ(t))(I + C) − μ(t)R] + 1

2
θ(S + I + C + R)ρ−1(σ21(t)S2

+ σ22(t)I2 + σ23(t)Q2 + σ24(t)R2)≤Λ(t)(S + I + C + R)ρ
− μ(t)(S + I + C + R)ρ+1

+ 1
2
ρ(S + I + C + R)ρ+1(σ21(t) ∨ σ22(t) ∨ σ23(t) ∨ σ24(t))

� Λ(t)(S + I + C + R)θ − (μ(t)
− 1
2
θ(σ21(t) ∨ σ22(t) ∨ σ23(t) ∨ σ24(t)))

(S + I + C + R)ρ+1 ≤D − 1
2
(μl − 1

2
θ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sρ+1

+ Iρ+1 + Cρ+1 + Rρ+1),
(37)

LV3 � −1
S
[Λ(t) − (β1(t) − β2(t)I

m(t) + I
)SI − (θ(t) + μ(t))S] + σ21(t)

2

≤ − Λ(t)
S

+ β1(t)I + θ(t) + μ(t) + σ21(t)
2

≤ − Λl

S
+ βu1I + θu + μu + σ2u1

2
,

(38)

LV4 � − 1
C
[δ(t)I(t) − (η(t) + μ(t))C(t)] + σ23(t)

2

� −δ(t)I
C

+ (η(t) + μ(t)) + σ23(t)
2

≤ − δlI

C
+ ηu + μu + σ2u3

2
,

(39)

and

LV5 � −1
R
[θ(t)S(t) + γ(t)I(t) + η(t)C(t) − μ(t)R(t)] + σ24(t)

2

� −θ(t)S
R

− γ(t)I
R

− η(t)C
R

+ μ(t) + σ24(t)
2

≤ − γlI

R
+ μu + σ2u4

2
.

(40)
Therefore,

FIGURE 7
Path simulations of I(t) for the stochastic model with θ(1) �
0.1, θ(2) � 0.3, and θ(3) � 0.5.
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LV(S, I, C, R) � ML(V1 + ω(t)) + LV2 + LV3 + LV4 + LV5

≤M( − λ + C1β
u
1I) − Λl

S
+ βu1I + θu + μu + σ2u1

2
− δlI

C
+D

−1
2
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

−γ
lI

R
+ μu + σ2u3

2
+ σ2u4

2
+ μu + ηu

� −Mλ + βu1I(MC1 + 1) − Λl

S
+ θu + 3μu + σ2u1

2
− δlI

C
+ ηu + σ2u3

2

−1
2
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sθ+1 + Iθ+1 + Cθ+1 + Rθ+1)

−γ
lI

R
+ σ2u4

2
+D.

(41)
Now, we prove a compact subset U such that (II) in Lemma

5.1 holds. Demonstrate the following bounded closed set

U � {(S, I, C, R) ∈ R4
+: ε≤ S≤

1
ε
, ε≤ I≤

1
ε
, ε≤C≤

1
ε
, ε≤R≤

1
ε
},
(42)

where ε> 0 is a fully small parameter. In the set R4
+\U, we can

choose ε fully small such that

−Λ
l

ε
+ E≤ − 1,

−Mλ + βu1I(MC1 + 1) + C≤ − 1,

−δ
l

ε
+ E≤ − 1,

−γ
l

ε
+ E≤ − 1,

−1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ23 ∨ σ24)u) 1

ερ+1
+ F≤ − 1,

−1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ23 ∨ σ24)u) 1

ερ+1
+ G≤ − 1,

−1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ23 ∨ σ24)u) 1

ερ+1
+H≤ − 1,

−1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ23 ∨ σ24)u) 1

ερ+1
+ J≤ − 1,

(43)

where E, C, F, G,H, and J are positive constants which are listed

as follows. We separate into eight domains for convenience’s

sake.

U1 � {(S, I, C, R) ∈ R4
+: 0< S< ε},

U2 � {(S, I, C, R) ∈ R4
+: 0< I< ε},

U3 � {(S, I, C, R) ∈ R4
+: 0<C< ε2},

U4 � {(S, I, C, R) ∈ R4
+: 0<R< ε2},

U5 � {(S, I, C, R) ∈ R4
+: S>

1
ε
},

U6 � {(S, I, C, R) ∈ R4
+: I>

1
ε
},

U7 � {(S, I, C, R) ∈ R4
+: C> 1

ε2
},

U8 � {(S, I, C, R) ∈ R4
+: R> 1

ε2
}.

(44)

Next, we will demonstrate that LV(S, I, C, R)≤ − 1 onR4
+\U,

which is equal to giving its evidence on the eight domains

previously mentioned.

Case 1: If (S, I, C, R) ∈ U1, it is evident that

LV(S, I, C, R)≤ βu1I(MC1 + 1) − Λl

S
+ 3μu + σ2u1

2
+ δu + σ2u3

2
+D + σ2u4

2

−1
2
(μl − 1

2
θ(σ21 ∨ σ2

2 ∨ σ23 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)
≤ − Λl

S
+ E

≤ − Λl

ε
+ E,

(45)

where

E � sup
(S,I,C,R)∈R4+

{βu1I(MC1 + 1) + 3μu + σ2u1
2

+ δu + σ2u3
2

+D + σ2u4
2

−1
2
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)}.

(46)
By ( 5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U1.

Case 2: If (S, I, C, R) ∈ U2, it is evident that

LV(S, I, C, R)≤ −Mλ + βu1I(MC1 + 1) + 3μu + σ2u
1

2
+ δu + σ2u3

2
+ σ2u

4

2
+D

−1
2
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

≤ −Mλ + βu1I(MC1 + 1) + C

≤ −Mλ + βu1ε(MC1 + 1) + C,

(47)
where

C � sup
(S,I,C,R)∈R4+

{ − 1
2
(μl − 1

2
ρ(σ2

1 ∨ σ22 ∨ σ23 ∨ σ2
4)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

D + 3μu + δu + σ2u1 + σ2u
3 + σ2u4
2

}.
(48)

By (5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U2.

Case 3: If (S, I, C, R) ∈ U3, it is evident that

LV(S, I, C, R)≤ δlI

C
+ βu1I(MC1 + 1) + 3μu + σ2u1

2
+ δu + σ2u

3

2
+ σ2u4

2
+D

−1
2
(μl − 1

2
ρ(σ2

1 ∨ σ22 ∨ σ23 ∨ σ2
4)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

≤ − δl

C
+ E

≤ − δl

ε
+ E.

(49)

By (5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U3.

Case 4: If (S, I, C, R) ∈ U4, it is evident that
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LV(S, I, C, R)≤ γlI

R
+ βu1I(MC1 + 1) + 3μu + σ2u

1

2
+ δu + σ2u3

2
+ σ2u4

2
+D

−1
2
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ2

3 ∨ σ2
4)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

≤ − γlI

R
+ E

≤ − γl

ε
+ E.

(50)

By (5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U4.

Case 5: If (S, I, C, R) ∈ U5, it is evident that

LV(S, I, C, R)≤ βu1I(MC1 + 1) + 3μu + σ2u1
2

+ δu + σ2u3
2

+ σ2u4
2

+D

−1
2
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)Sρ+1 + βu1I(MC1 + 1) + 3μu

−1
2
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)(Iρ+1 + Cρ+1) + δu +D

−1
4
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)Sρ+1 + σ2u1 + σ2u3 + σ2u4

2

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u)Sρ+1 + F

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ24)u) 1

ερ+1
+ F,

(51)
where

F � sup
(S,I,C,R)∈R4+

{βu1I(MC1 + 1) + 3μu + θu + δu +D + σ2u1 + σ2u
3 + σ2u4
2

−1
2
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ2

4)u)(Iρ+1 + Cρ+1)
−1
4
(μl − 1

2
ρ(σ21 ∨ σ22 ∨ σ23 ∨ σ2

4)u)Sρ+1}.
(52)

By (5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U5.

Case 6: If (S, I, C, R) ∈ U6, it is evident that

LV(S, I, C, R)≤ βu1I(MC1 + 1) + θu + 3μu + σ2u1
2

+ δu + σ2u
3

2
+ σ2u4

2
+D

−1
2
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Iρ+1 + βu1I(MC1 + 1) + θu

+3μu − 1
2
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)(Sρ+1 + Rρ+1) + δu +D

−1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Iρ+1 + σ2u

1 + σ2u3 + σ2u
4

2

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Iρ+1 + G

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u) 1

ερ+1
+ G,

(53)

where

G � sup
(S,I,C,R)∈R4+

{βu1I(MC1 + 1) + θu + 3μu + δu +D + σ2u1 + σ2u3 + σ2u4
2

−1
2
(μl − 1

2
ρ(σ2

1 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sρ+1 + Rρ+1)
−1
4
(μl − 1

2
ρ(σ2

1 ∨ σ22 ∨ σ23 ∨ σ24)u)Iρ+1}.
(54)

By (5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U6.

Case 7: If (S, I, C, R) ∈ U7, it is evident that

LV(S, I, C, R)≤ βu1I(MC1 + 1) + θu + 3μu + σ2u1
2

+ δu + σ2u
3

2
+ σ2u4

2
+D

−1
2
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Cρ+1 + βu1I(MC1 + 1) + θu

+3μu − 1
2
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)(Sρ+1 + Iρ+1) + δu +D

−1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Cρ+1 + σ2u1 + σ2u

3 + σ2u4
2

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Cρ+1 +H

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u) 1

ε2(ρ+1) +H,

(55)
where

H � sup
(S,I,C,R)∈R4+

{βu1I(MC1 + 1) + θu + 3μu + δu +D + σ2u
1 + σ2u3 + σ2u

4

2

−1
2
(μl − 1

2
ρ(σ2

1 ∨ σ22 ∨ σ23 ∨ σ24)u)(Sρ+1 + Iρ+1)
−1
4
(μl − 1

2
ρ(σ2

1 ∨ σ22 ∨ σ23 ∨ σ24)u)Cρ+1}.
(56)

By (5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U7.

Case 8: If (S, I, C, R) ∈ U8, it is evident that

LV(S, I, C, R)≤ βu1I(MC1 + 1) + θu + 3μu + σ2u1
2

+ δu + σ2u
3

2
+ σ2u4

2
+D

−1
2
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)(Sρ+1 + Iρ+1 + Cρ+1 + Rρ+1)

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Rρ+1 + βu1I(MC1 + 1) + θu

+3μu − 1
2
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)(Sρ+1 + Iρ+1) + δu +D

−1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Rρ+1 + σ2u1 + σ2u3 + σ2u4

2

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u)Rρ+1 + J

≤ − 1
4
(μl − 1

2
ρ(σ21 ∨ σ2

2 ∨ σ2
3 ∨ σ24)u) 1

ε2(ρ+1) + J,

(57)
where
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J � sup
(S,I,C,R)∈R4+

{βu1I(MC1 + 1) + θu + 3μu + δu +D + σ2u
1 + σ2u3 + σ2u

4

2

−1
2
(μl − 1

2
ρ(σ2

1 ∨ σ2
2 ∨ σ23 ∨ σ24)u)(Sρ+1 + Iρ+1)

−1
4
(μl − 1

2
ρ(σ2

1 ∨ σ2
2 ∨ σ23 ∨ σ24)u)Rρ+1}.

(58)

By (5.2), we have LV≤ − 1 for all (S, I, C, R) ∈ U8.

Therefore, we have evidence to support this for a sufficiently

small parameter ε> 0,

LV(S, I, C, R)≤ − 1, (S, I, C, R) ∈ R4
+\U. (59)

Hence, (II) in Lemma 5.1 holds. The proof of Theorem 5.1 is

now complete.

6 Simulation results

In this section, we will illustrate the obtained theoretical

results using MATLAB and illustrate our findings with Milstein’s

higher-order method developed in [40]. Thus, we get the

following discretization equation of system (2.2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sj+1 � Sj + [Λ − (β1 − β2Ij
m + Ij

)SjIj − θSj − μSj]Δt + σ1Sj
  
Δt

√
ξ1,j + σ21

2
SjΔt(ξ21,j − 1),

Ij+1 � Ij + [(β1 − β2Ij
m + Ij

)SjIj − (δ + γ + μ)Ij]Δt + σ2Ij
  
Δt

√
ξ2,j + σ22

2
IjΔt(ξ22,j − 1),

Ci+1 � Ci + [δIj − (η + μ)Ci]Δt + σ3Cj

  
Δt

√
ξ3,j + σ23

2
CjΔt(ξ23,j − 1),

Ri+1 � Ri + [θSj + γIj + ηCi − μRi]Δt + σ4Rj

  
Δt

√
ξ4,j + σ24

2
RjΔt(ξ24,j − 1),

(60)

where time increment Δt> 0 and ξ1,k, ξ2,k, ξ3,k, ξ4,k are

independent Gaussian random variables which follow N(0, 1).
According to the aforementioned theory, in the process of

dynamic rumor propagation, the threshold R0 is a very

important value. When we choose the initial value

(S(0), I(0), C(0), R(0)) � (0.6, 0.2, 0.1, 0.1), the parameter

values Λ � 0.02 + 0.1 sin(πt), β1 � 0.1

+0.1 sin(πt), β2 � 0.1 + 0.1 sin(πt),

m � 30 + 0.1 sin(πt), μ � 0.01 + 0.1

sin(πt), θ � 0.02 + 0.1 sin(πt), δ � 0.01 + 0.1 sin(πt),

γ � 0.02 + 0.1 sin(πt), and η � 0.03 + 0.1 sin(πt). Then, we get

R1 < 1. In this case, the scale of rumor propagation gradually

decreases until it finally tends to die out, which means that the

rumor is under control. According to Theorem 4.1, all positive

solutions of system (2.2) fluctuate along the curve of system (2.1),

as shown in Figure 2, where the fluctuation curve is a stochastic

model and the smooth curve is a deterministic model.

When we choose the initial value S(0) � 0.6, I(0) � 0.2,

C(0) � 0.1, R(0) � 0.1, the parameter values Λ � 0.02 + 0.1

sin(πt), β1� 0.5 + 0.1 sin(πt), β2� 0.1 + 0.1 sin(πt), m�30+0.1
sin(πt), μ � 0.01 + 0.1 sin(πt), θ � 0.02 + 0.1 sin(πt), δ � 0.01+

0.1 sin(πt), γ � 0.02 + 0.1 sin(πt), and η � 0.03 + 0.1 sin(πt).
Then, we get R2 > 1. In this case, the final state is that the total

number of the three types of people tends to a constant level and

coexists in the system, that is, there are still rumors. Once the

external conditions change, the system balance will be broken,

and the rumors will continue to spread. In terms of Theorem 5.1,

there exist fluctuations between the solution of system (2.1) and

the solution of system (2.2) by contrast, which can be further

illustrated in Figure 3. The stochastic system is then analyzed,

and it is found that when the strength of the random disturbance

is small enough, the rumor will eventually tend to die out if the

basic regeneration number is smaller than the critical level.When

the basic regeneration number is larger than the critical level,

minor random disturbances may lead to the rumor’s persistence.

The numerical simulation results will support the theoretical

conclusions.

To account for the impact of media coverage on rumor

propagation, we set a variation of the parameter

β2(1) � 0.1, β2(2) � 5, β2(3) � 10. We observe that the rise of

the media coverage parameter reduces the number of rumor

spreaders (Figure 4). This indicates that media coverage can

weaken the spread of rumors among the crowd. Now, we set

σ i � 0.2, i � 1, 2, 3, 4 larger than the previous case σ i � 0.06, i �
1, 2, 3, 4 and diversified media coverage rates

β2(1) � 0.1, β2(2) � 5, β2(3) � 10. We notice in Figure 5 that

increasing the parameter β2 also reduces the number of rumor

spreaders. In other words, the media coverage is a vigorous tool

for authority that can reduce the number of spreaders so as to

curb the spread of rumors even in the strong noise, which is

consistent with the conclusion as [41]. As a result, we conclude

that substantial media coverage can prevent rumors from

spreading. In addition, the simulations show that the role of

media is crucial in reducing the rumor transmission rate.

Increasing media coverage will reduce the number of

communicators and thus the final spread size of rumors. For

instance, during the 2019-nCoV outbreak during the global

pandemic, the widespread dissemination of the rumor that

“Pets can transmit new coronavirus” was curbed by the

media’s continuous debunking of the notion. In the real world

of everyday life, to increase media reports is of great practical

significance in increasing and improving the public’s grasp of

scientific knowledge, and this should be taken as an effective way

to restrain rumor propagation.

Rumor propagation is also influenced by other parameters.

β1, which stands for the propagation rate; this shows the

probability for susceptible individuals to accept and spread

rumors after coming in contact with infected individuals. As

we can see in Figure 6, the smaller the value of β1, the smaller will

be the rumor spreading scale, and this represents the immunity

rate, means the degree of scientific knowledge mastered by

individuals, and the higher the level of acceptance of scientific

knowledge by the population as a whole, the smaller will be the

final spread of rumors. Figure 7 clearly shows that the spreading
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scale decreases with the increase in the immunity rate θ of

susceptible individuals. A small change in parameter θ can

make a big difference in the spreading scale, which indicates

that increased media coverage parameters can reduce the number

of infected populations and improve the public’s grasp of

scientific knowledge.

7 Conclusion

In this article, a stochastic propagation model is studied and

the existence of globally unique positive solutions of system (2.2)

is obtained with the method of the stochastic Lyapunov function

based on the theory of Khasminskii. According to theoretical

research and the numerical simulation in this article, if R1 < 1, the

rumor tends to die out, while if R2 > 1, small random interference

can lead to the continuous spreading of rumors. In addition,

increasing media coverage plays a crucial role in decreasing the

basic number of reproductions and the number of individual

spreaders, which will eventually keep rumors under control. The

government and the media should release official information

promptly and swiftly and make targeted disinformation to

minimize the loss to the society and citizens caused by the

spread of rumors.

The Wiener process reflects minor disturbances. When the

environmental noise is extensive, such disorders can destroy the

continuity of the differential equations, and then, it is necessary

to express the random external disturbances by Lévy jump. The

stochastic rumor model, including the Lévy process, can more

accurately reflect the complex rumor propagation law in the real

world [42]. Furthermore, by introducing various control

strategies, such as media coverage, we construct a near-

optimal control problem that minimizes rumor propagation’s

influence and control cost. Some scholars may analyze the same

issue, such as the combined stochastic process on scale-free

networks [43] and the integrated influences of time delay and

stochastic perturbation on heterogeneous networks [44]. The

Runge–Kutta method and Milstein’s higher order method are

used in the previous numerical simulations carried out by

MATLAB. Even if the outcomes of simulation figures can

verify that the theorems are accurate, these simulation

techniques are still loosely coupled. The reproducing kernel

Hilbert space approach [45] and variational iteration method

[46] are employed, and the accuracy of simulation results may be

increased. These will be taken into account in our further

research.
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