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In this paper, a D-shape dual side-polished (DSP) photonic crystal fiber (PCF)

sensor based on high sensitivity and high range refractive index (RI) is proposed

and analyzed. The surface of the structure is plated with Au and TiO2, which can

enhance the surface plasmon resonance (SPR) effect and sensitivity. The

characteristics of the sensor were analyzed by finite element method (FEM).

Its RI scope of detection is 1.38–1.42, and by optimizing geometric parameters,

the optimal wavelength sensitivity (WS) is 22,100 nm/RIU. Additionally, the WS

for DSP-PCF is far better than the recently reported PCF sensors in the above

mentioned RI detection range to the best of our knowledge. With these

significant outcomes over the analyte RI range, which is helpful for the fields

of environmental detection and medical diagnosis.
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Introduction

In recent years, photonic crystal fiber (PCF) have been widely used in medical

diagnosis [1–4], temperature sensing [5, 6], environmental detection and other fields [7].

Various PCF structures have been discovered, such as D-shape structures [8], hexagonal

inner metal coatings [9], multi-channel sensing structures [10], and outer metal coatings

[11]. These structures can be roughly divided into two categories. In internal sensing, the

pores of the PCF are selectively filled with analytes, while in external sensing the analytes

are deposited on the surface of the sensor. So the feasibility of external sensing is higher.

According to recent reports, the analyte medium and gold nano-ribbons are placed on the

fiber surface, acting as external sensors, creating bidirectional channels, increasing

sensitivity, and reducing surface coating area [12].

It has been reported that the selection of suitable PCF materials results in significantly

enhanced coupling strength and sensitivity of the sensor. The most common plasma

metals are gold and silver, respectively. Silver has sharper resonance peaks but is not
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chemically stable. Gold has a more pronounced resonance peak

shift than silver. Gold is also less sensitive to temperature and

humid issues than silver [13]. So, most of the PCF-SPR sensors

have been conducted with gold as plasmonic metal. Moutusi De

et al. proposed an efficient, birefringent D-shape PCF-SPR sensor

using gold as the plasmonic metal with WS of 9,245 nm/RIU

[14]. Depositing a layer of modifier material on the metal film can

enhance the performance of the SPR sensor, TiO2 has higher

corrosion resistance and it can enable better interaction of

surface plasmon with the attached metal layer [15, 16].

Emranul Haque et al. deposited TiO2 on a metal film. They

proposed a high-sensitivity SPR sensor based on a dual-core PCF

with a maximum wavelength sensitivity (WS) of 10,600 nm/RIU

[17]. The wavelength sensitivity is defined as a shift in resonance

wavelength with respective to refractive index variation and

follows the expression (dL/dn). In addition, by optimizing the

size and arrangement of air holes in the PCF, the evanescent field

strength can be increased to further enhance the property of the

sensor. Haque E et al. [18] proposed a PCF based on D-shape

square lattice pores, and the sensor has a WS of 20,000 nm/RIU.

Jianfei Liao et al. [19] proposed a high-sensitivity near-infrared

birefringent PCF sensor, which is a hexagonal internal sensing

structure with an average sensitivity of 8,083 nm/RIU.

So far, our group has studied single-mode fibers based on

cylindrical tapered [20] and cylindrical multi-mode fibers based

on Au/ZnO/WS2 [21]. In this paper, high-sensitivity D-type

double-sided polished PCF-SPR sensor is proposed. Compared

with single-mode fiber and multi-mode fiber, PCF has lower

optical loss, higher optical non-linearity and can be modified by

micro-structure design. Gold is selected as the plasmonic

material for the sensor, and TiO2 is deposited on the gold

layer. TiO2 can improve the coupling result between the core

mode and the surface plasmon polarization (SPP) mode [22],

thereby further enhancing the resonance of the sensor. By

optimizing the structural parameters of the sensor, the

maximum WS of the sensor is 22,100 nm/RIU. Considering

the manufacturing error and feasibility, the sensor is

optimized while analyzing the influence of changes in various

parameters.

Geometry structure and theoretical
modeling

Figure 1 is a 2D cross-sectional view of the proposed D-shape

dual side-polished (DSP) PCF-SPR sensor with high sensitivity. It

consists of 12 air holes, of which the inner air holes are arranged

in a regular hexagonal structure, and the distance between

adjacent air holes in the PCF is Λ. The diameter of the

6 small air holes in the inner layer is d1, and the diameter of

the 6 air holes in the outer layer is d2. Both sides of the D-shape

PCF are ground and polished surfaces, and the ground and

polished surfaces are coated with gold nano-films and TiO2 films.

In order to improve the calculation accuracy, a perfectly matched

layer (PML) is added to the outer wall of the fiber. The substrate

material of the sensor is SiO2, and the refractive index (RI) of

SiO2 can be calculated by the Sellmeier equation [23]:

n2SiO2(λ) � 1 + 0.6961663λ2

λ2 − 0.0046791
+ 0.4079426λ2

λ2 − 0.0135120

+ 0.8974794λ2

λ2 − 97.9340025
(1)

where λ represents the wavelength of the incident light in

microns. The dielectric constant of gold is derived from the

Drude model [24]:

εAu � ε∞ − ω2
D

ω(ω + jγD) − ΔεΩ2
L(ω2 − Ω2

L) + jΓLω
(2)

Where ε∞ represents the dielectric constant value at high

frequency is 5.9673, ω is the angular frequency, ϒD is the

damping frequency, ϒD/2π = 15.92 THz, ωD is the plasmon

frequency, ωD/2π = 2,113.6 THz, ΩL = 650.07 THz, ΓL/2π =

104.86 THz. TiO2 is the adhesive layers that has been used in this

paper. It helps gold to have a strong attachment with silica as well

as to boost up the sensing performance. The RI of TiO2 is derived

from the following equation [25]:

nTi �
����������������������
5.913 + 2.441 × 107(λ2 − 0.803 × 107)

√
(3)

TABLE 1 Performance comparison of the proposed sensor with other recent reported PCF sensors.

Ref year Structure RI range Max sensitivity (nm/RIU)

[38] 2015 Ring based hexagonal PCF sensor 1.33–1.37 4,000

[39] 2016 Rectangular lattice and dual-core 1.33–1.41 14,216

[31] 2018 D-shaped and two micro-openings 1.31–1.37 11,750

[40] 2020 Ag–TiO2 PCF-SPR 1.33–1.36 10,600

[41] 2020 Ag-ZnO coated D-PCF 1.37–1.40 6,000

[42] 2021 Side-polished PCF 1.35–1.39 12,500

This work — D-shape double-sided polished PCF-SPR sensor 1.38–1.42 22,100
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The whole simulation has been employed in Comsol

Multiphysics v5.5. The total sensor radius is kept at 6.7 μm

with a non-physical PML employed at the outermost layer of

the fiber having a thickness of 0.9 μm, which is around 13% of the

total radius. PML acts like a boundary condition that absorbs

surface radiations. The physical and optical properties of PML

should be the same as the background material of the fiber to

avoid noteworthy changes in sensing performance. However,

fabricating the lattice design is manageable by utilizing the

existing technologies. The sensor provides circular air holes of

different sizes and is coated with gold and titanium dioxide. The

Stack-and-draw technique potentially fabricates annular air holes

[26]. Reference [27] established a fiber side-polishing system to

achieve PCF polishing. In this polished system, the abrasive

wheel can move back and forth in the horizontal direction

during the polishing process and its lapping films can be

easily replaced. Thus, we can control the horizontal moving

range of the abrasive wheel to determine the side-polished

length of the PCF. Compared with the fabrication of the

D-shaped PCF in a curved V-groove [28], this technology can

be used to control the side-polished length h and the SPL of the

D-shaped PCF more accurately, which can meet the

requirements of different designs. Chemical vapor deposition

(CVD), wheel polishing, or high-pressure chemical deposition

can be utilized for coating the thin layers of gold, TiO2 [26].

Although the proposed sensor is theoretically designed, a

schematic experimental setup of the sensor’s sensing system in

practice is shown in Figure 1. The system consists of an optically

tunable source (OTS), polarization controller, and optical

spectrum analyzer (OSA), connected by a single-mode fiber

(SMF). The analyte is located on the outside of the PCF, and

the inlet (the analyte) and the outlet (the analyte) are controlled

by a pump.When the RI of the analyte changes, a blue or red shift

of the loss peak can be observed.

Results and discussion

The sensing characteristics of the PCF were numerically

simulated by the FEM software COMSOL Multiplicity with an

an-isotropic perfectly matched layer. After optimizing the

geometry parameters of PCF, take d1 = 1 μm, d2 = 1.4 μm,

Λ = 1.89 μm, polishing depth D = 3 μm, gold film thickness

t = 20 nm, TiO2 thickness g = 10 nm. Figure 2 shows the

dispersion correlation between the plasmon and the core

mode when the refractive index is 1.39, in which the red

curve is the spectral loss diagram of resonance, and the blue

and green curves represent the effective refraction of the core

mode and the SPP mode, respectively. In a photonic crystal fiber,

air holes basically work as the cladding region. When light is

transmitted, the whole optical field is confined within the core

mode. On the contrary, SPP mode appears at the sensing

medium where the plasmonic material has been coated. At

the resonance condition, the wave vector of incident light of

the core mode and surface plasmonic waves of the SPP mode gets

equal with each other, which can also be defined as a phase-

FIGURE 1
2D view of the schematic cross section and practical setup for the proposed DSP-PCF sensor.
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matching condition [29]. Inset 1) shows the core mode of

y-polarization, and almost all the energy is confined to the

core. Inset 2) shows the SPP mode of y-polarization, and

energy is penetrated on the Au-TiO2 and analyte interface.

As resonance condition is satisfied, a loss peak is observed

in narrow band that shows the wavelength shifts corresponding

to any change in RI of sensing or dielectric medium adjacent

to metal layer. In case of PCF SPR sensors, at resonance

condition, as real part of effective RI of core mode matches

with effective RI of surface plasmon mode, and maximum

energy is exchanged from core mode to surface plasmon

mode [12].

As can be seen from Figure 2, the real part of the effective

refractive index of the core mode and the SPP mode both

decrease with the increase of the wavelength, but the real part

of the SPP mode decreases faster, and the loss also increases with

the increase of the wavelength. The resonance occurs at 0.723 μm

where the real part of effective index of the core guided mode and

SPP mode cross each other and the imaginary part of the core

mode is maximum. At this wavelength, the Re (neff) of the core

mode and the SPP mode are equal, and the matching condition is

satisfied, that is, the SPR effect occurs at the intersection of the

two curves.

The propagation loss or confinement loss has been calculated

by the following equation [30]:

∝ � 40pπpIm(neff)
ln (10)pλ ≈ 8.686 × k0pIm(neff) × 104 (4)

where, number of waves in free space is specified by, k0 = 2π/λ,
operating wavelength is determined by λ and imaginary part of

the effective RI is represented by Im (neff).

We can improve the performance of the sensor by optimizing

the parameters of the sensor. The optimization process is to

continuously adjust some parameters and keep the rest of the

parameters unchanged. So far, many researchers [31–34] have

adopted this approach. The parameters that need to be optimized

are air hole diameters d1 and d2, gold film thickness t, TiO2

thickness g, adjacent air hole spacing Λ, and polishing depth D.

The thickness of the gold film greatly affects the performance

of the sensor. Thin gold layers lead to weak coupling between

core and SPP modes, while thicker gold layers lead to over-

coupling between core and SPP modes. Figure 3A shows the

dependence of the loss spectrum on the change in Au film

thickness t from 19 to 21 nm for the analyte RI of 1.41 and

1.42. It can be found that the resonance wavelength gradually

red-shifts with the increase of the thickness of the Au film.

According to Figure 3A, when the Au film thickness is 19 nm,

20 nm, 21 nm, the resonance loss peak shifts are 144, 167, and

206 nm, respectively. When the thickness is 21 nm, the offset is

the largest, but there is no full width at half maximum of the

resonance peak at this time. Therefore, the thickness of the Au

film was chosen to be 20 nm. According to the relationship

between thickness and sensitivity shown in the figure, in order to

obtain a sensor with maximum performance, the manufacturing

tolerance of Au film needs to be controlled within the upper and

lower limits of 5%.

FIGURE 2
Dispersion relation of the core mode and the SPP mode and loss spectrum. Insets (A–C): Energy distribution at each point.
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Figure 3B shows the correlation of the loss spectrum with the

change in TiO2 thickness g from 9 to 11 nm for analyte RI of

1.41 and 1.42. The TiO2 layer has an effect on enhancing the

evanescent field which can act as a transition metal and help to

attract the evanescent field of the core [35], the interaction between

the plasmon and the metal evanescent field will be enhanced, and

the sensitivity will be increased. According to Figure 3B, the

resonance wavelength is gradually red-shifted with the increase

of TiO2 thickness, and the resonance loss peak shifts are 148, 167,

and 195 nm when the TiO2 thickness is 9, 10, and 11 nm,

respectively. Although the offset is the largest when the thickness

is 11 nm, there is no full width at half maximum of the resonance

peak. Therefore, the thickness of the TiO2 film was chosen to be

10 nm. According to the relationship between thickness and

sensitivity shown in the figure, in order to obtain a sensor with

maximum performance, the manufacturing tolerance of TiO2 film

needs to be controlled within the upper and lower limits of 10%.

The structural parameters of the sensor are crucial to the

performance of the sensor and have a significant impact on the

resonant wavelength. Figure 3C shows the dependence of the loss

spectrum on the variation of the air hole diameter d1 from 0.9 to

1.1 μm for RI of 1.41 and 1.42. It can be seen from the figure that

when d1 increases from 0.9 to 1.1 μm, the loss drops from

85.28 dB/cm to 66.39 dB/cm, so increasing d1 will reduce the

loss and the energy can be well confined to the core. Besides, the

resonance wavelength gradually red-shifts with the increase of d1,

which indicates that the pore radius can tune the resonance

intensity. And when d1 is 0.9, 1, and 1.1 μm, the resonance loss

peak shift amounts are 115, 147, and 208 nm, respectively. Since

there is no full width at half maximum when d1 = 1.1 μm, d1 =

1 μm is the best choice for this design considering the offset and

waveform. According to the relationship between thickness and

sensitivity shown in the figure, in order to obtain a sensor with

maximum performance, the manufacturing tolerance needs to be

controlled within the upper and lower limits of 10%.

Figure 3D shows the dependence of the loss spectrum on the

change in air pore diameter d2 from 1.3 to 1.5 μm for analyte RI

of 1.41 and 1.42. According to Figure 3D, the resonance loss

keeps increasing as d2 increases. This is because as the radius

keeps increasing, it gradually squeezes the maximum light energy

in the core region and helps the energy to couple with the SPP

mode, so the loss will be high [30]. And when d2 is 1.3, 1.4, and

1.5 μm, the resonance loss peak shift amounts are 192, 147, and

121 nm, respectively. Among them, when d2 is 1.3 μm, the offset

is the largest, but when d2 is 1.3 μm, the full width at half

maximum of the resonance peak does not exist, so the air

hole diameter d2 is selected to be 1.4 μm. According to the

relationship between thickness and sensitivity shown in the

FIGURE 3
Confinement loss due to change in (A) gold thickness. (B) TiO2 thickness. (C) Air pore diameter d1. (D) Air pore diameter d2. (E) Adjacent air hole
spacing Λ. (F) Polishing depth D.
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figure, in order to obtain a sensor with maximum performance,

the manufacturing tolerance needs to be controlled within the

upper and lower limits of 7%.

Figure 3E shows the dependence of the loss spectrum on the

change in adjacent air hole spacing Λ from 1.88 to 1.90 μm for

analyte RI of 1.41 and 1.42. It can be seen from the figure that the

resonance wavelength is gradually blue-shifted with the increase

of the adjacent air hole spacing Λ, because the interaction

between the core mode and the SPP mode decreases when Λ

increases [36]. And when Λ is 1.88, 1.89, and 1.90 μm, the

resonance loss peak shift amounts are 167, 197, and 147 nm,

respectively. Among them, when Λ is 1.89 μm, the offset is the

largest, that is, when Λ is 1.89 μm, the wavelength sensitivity is

the highest, and when Λ is 1.89 μm, the loss is the smallest.

Therefore, the distance between adjacent air holes is selected to

be 1.89 μm. According to the relationship between thickness and

sensitivity shown in the figure, in order to obtain a sensor with

maximum performance, the manufacturing tolerance needs to be

controlled within the upper and lower limits of 0.5%.

Figure 3F shows the dependence of the loss spectrum on the

change in polishing depth D from 2.9 to 3.1 μm for analyte RI of

1.41 and 1.42. According to Figure 3F, the loss gradually decreases as

the polishing depthD increases. This is caused by the weak coupling

between the core mode and the SPP mode, on the contrary, the loss

will gradually increase with the decrease of the polishing depth. This

is because the channel between the core and the metal surface is

relatively small, and the small channel supports better coupling [37].

And when the polishing depthD is 2.9, 3, and 3.1 μm, the resonance

loss peak shift amounts are 126, 167, and 316 nm, respectively.

Among them, whenD is 3.1 μm, the offset is the largest, but whenD

is 3.1 μm, the full width at half maximum of the resonance peak

does not exist, so the polishing depth D is selected to be 3 μm. The

loss spectrum varies greatly whenD= 3.1 μmand RI is 1.42, because

relatively more light leakage occurs at the core as the distance from

the core to the surface increases. This results in insufficient core

mode strength, so that relatively high losses occur in the coupling of

the core mode to the plasmon mode of the metal surface [38].

According to the relationship between thickness and sensitivity

shown in the figure, in order to obtain a sensor with maximum

performance, the manufacturing tolerance needs to be controlled

within the upper and lower limits of 3%.

Figure 4A shows the loss curves at different analyte RI (ranging

from 1.38 to 1.42). It can be seen from the figure that with the

increase of RI, the resonance wavelength is gradually red-shifted,

which is because the coupling between the core mode and the SPP

mode is continuously enhanced. And the loss first increases and

then decreases with the increase of RI, and reaches a peak when RI is

1.4. Figure 4B is the fitted curve of the resonance wavelength as a

function of analyte RI. The fitting coefficientR2 is 0.99936. As can be

seen from the figure, when the analyte RI is 1.42, the wavelength

sensitivity reaches a maximum of 22,100 nm/RIU.

Conclusion

In order to clearly show the superiority of the designed

symmetrically polished D-shaped RI sensor based on Au-

TiO2, it is compared with some sensors reported in recent

years in terms of performance parameters as shown in Table

1. In this paper, a high-sensitivity D-shape double-sided polished

PCF-SPR sensor based on Au-TiO2 is proposed. And based on

the finite element method, the RI sensing characteristics are

numerically analyzed. The results show a maximum wavelength

sensitivity of 22,100 nm/RIU in the refractive index range of

1.38–1.42. Because the designed D-type sensor has a simple

structure and adopts an external sensing method, it has

potential application prospects in the fields of biology and

medicine.

FIGURE 4
(A) Loss spectra of the proposed sensor along its full analyte RI detection range between 1.38 and 1.42. (B) Polynomial fitting curve with the RI
variation from 1.38 to 1.42.
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