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Glass transitions are widely observed in various types of soft matter systems.

However, the physical mechanism of these transitions remains elusive despite

years of ambitious research. In particular, an important unanswered question is

whether the glass transition is accompanied by a divergence of the correlation

lengths of the characteristic static structures. In this study, we develop a deep-

neural-network-based method that is used to extract the characteristic local

meso-structures solely from instantaneous particle configurations without any

information about the dynamics. We first train a neural network to classify

configurations of liquids and glasses correctly. Then, we obtain the

characteristic structures by quantifying the grounds for the decisions made

by the network using Gradient-weighted Class ActivationMapping (Grad-CAM).

We consider two qualitatively different glass-forming binary systems, and

through comparisons with several established structural indicators, we

demonstrate that our system can be used to identify characteristic

structures that depend on the details of the systems. Moreover, the

extracted structures are remarkably correlated with the non-equilibrium

aging dynamics in thermal fluctuations.
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1 Introduction

When a liquid is cooled while preventing crystallization by quenching or adding

impurities, a liquid state can be maintained below melting temperature, resulting in a so-

called supercooled liquid state. Further cooling of the supercooled liquid results in a

dramatic increase in the viscosity of the liquid and yields a glass (more generally, an

amorphous solid). In such a system, the particle motion is frozen, and the structure

remains disordered. Various materials, e.g. oxides, alloys, polymers, and colloids, take on

glassy states. Glassy materials are generally considered disordered and homogeneous

because they basically cannot be distinguished from simple liquids that are also disordered

in structure using analytical methods such as neutron, X-ray, or light scattering and other

two-body correlations in the density field. However, dramatic changes to their properties

can occur, for example, a 15-order-of-magnitude increase in the viscosity from a

temperature change of only approximately 20% [1]. Although the glass transition
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phenomenon has been studied for more than 150 years, its

mechanism has not yet been clarified [2–5].

Heterogeneity in particle motion develops in supercooled

liquids near the glass transition temperature, and the spatial

length scale increases on such a glass transition [6–12]. This

behavior is called dynamic heterogeneity and is a potential cause

for the rapid increase in viscosity at the glass transition point.

However, to date, the origin of this dynamic heterogeneity has

not been clarified; in particular, questions remain as to whether it

is formed entirely dynamically or whether a static structure exists

in the background. The “dynamical facilitation theory” describes

the heterogeneity associated with glass transitions as a fully

dynamic phenomenon, and explains the experimental results

and numerical analysis of glass transitions [13]. In contrast, “the

theory of random first-order transition” (RFOT), which

considers the glass transition as a thermodynamic phase

transition and proposes a scenario in which a static

conceptual structure called a “mosaic” develops, also explains

the experimental results and numerical analysis of glass

transitions [4, 14]. Thus, although these theories are

contradictory in terms of whether the glass transition is a

purely dynamic transition or a thermodynamic phase

transition governed by a static structure, they can explain

various aspects of the glass transition phenomenon. Hence, in

the current state, there appears to be no definitive theory for

understanding the full picture of glass transitions.

Many attempts have been made to explore the specific

structures that exist in supercooled liquids. For instance,

icosahedral-like structures in metallic glasses [15, 16] and

medium-range crystalline order in colloidal glasses with small

particle-size dispersity have been found [17–20]. Order

parameters are introduced on a system-by-system basis to

extract these characteristic structures, but no order parameter

applicable to all amorphous solids has been found. It is also

unclear whether such characteristic structures are universal; this

is a topic of active debate. Therefore, elucidating the presence or

absence of a universal structure in amorphous solids is a

significant and challenging problem in fundamental physics.

Tong and Tanaka recently developed a new order parameter

consisting of the bond angles of particle structures and

successfully extracted the characteristic structures correlated

with particle dynamics for a wide range of glass-forming

systems, including binary mixtures and polydisperse glassy

systems with large particle size dispersions [21, 22]. However,

as indicated in the corresponding literature [21, 22], this method

has not been able to extract the characteristic structures in the

Kob–Andersen system [23], a typical glass-forming model, and

consequently, attempts to develop a universal structural analysis

method for a variety of glass-like systems continues to the present

day. We mention that as another branch of examples of

promising static information-based approaches, a method

relying on the Franz-Parisi potential has been proposed [24].

Its effectiveness was demonstrated by the quantitative

correspondence with the structural relaxation time. The

recently proposed microscopic version of a similar Franz-

Parisi potential-based quantity would allow us to specify the

local characteristic structures that govern the dynamics on the

purely static basis [25].

In recent years, machine-learning approaches have been

widely used to investigate the characteristic structures

governing glass dynamics [26–30]. In particular, recent studies

have successfully predicted the dynamics from the static

structure in Kob–Andersen systems by learning from a large

amount of structural data, as well as the corresponding dynamic

data, using graph neural networks [28, 29]. In addition to these

supervised approaches, unsupervised counterparts have also

been applied to the extraction of characteristic structures from

glasses, pioneered by Ronhovde and co-workers [31, 32].

Interestingly, many researchers have recently reported that the

structures extracted using unsupervised methods [27, 30] exhibit

correlations with the long-time dynamics, despite no information

about the dynamics being provided during the training.

However, although machine learning is very promising for

exploring the structures of glasses, accurate learning

(including preparation of the training data) is computationally

expensive, and the results are difficult to interpret.

In this work, we propose a method to extract the

characteristic multi-particle structures of glasses solely from

the static configurations using a deep learning-based

approach. To this end, we work on the classification problem

for the random structures in glasses and liquids using a

convolutional neural network (CNN) [33] and then identify

the structures that the CNN relied on to make decisions using

gradient-weighted class activation mapping (Grad-CAM) [34].

We applied our proposed method to two representative glass-

forming liquid systems and compared the obtained structures

with well-established structural indicators. The results

demonstrate that the proposed method can extract

qualitatively different characteristic structures in a system-

detail-dependent manner. Surprisingly, although our method

does not refer to information about the dynamics during the

learning process and extracts the characteristic structure solely

from the instantaneous static configurations, the obtained

structures strongly correlate with the non-equilibrium aging

dynamics.

The remainder of this paper is organized as follows. In

Section 2, we summarize the simulation methods and

protocols used for sample preparation for the deep-learning

tasks. In Section 3, we introduce the CNN and Grad-CAM,

and provide a brief explanation of the established structural

indicators used as a reference. In Section 4, the results of the

structural analyses are presented, and the correlation between

distinct indicators, as well as the predictability of our method

with respect to the dynamics, is discussed. Finally, in Section 5,

we provide a summary of this study and an overview of future

research directions.
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2 Simulations

2.1 System setups

In this study, we consider two distinct systems: the

Kob–Andersen model (KAM) [23] and the additive binary

mixture (ABM) [35]. Both systems are two-dimensional (2D)

and are described by the Lennard–Jones (LJ) potential with linear

smoothing terms:

ϕij r( ) � ϕij* r( ) − ϕij* rcij( ) − r − rcij( ) dϕij*

dr
|r�rcij , (1)

ϕij* r( ) � 4ϵij
σ ij
r

( )12

− σ ij
r

( )6[ ], (2)

where the subscript ij indicates that the variable is between

particles i and j, ϵij sets the energy scale, σij determines the

interaction range, and rcij is the cutoff length. The dynamics of the

particles obey ϕij, whereas ϕij* is the reference standard LJ

potential. The smoothed LJ potential ϕ guarantees the

continuity of the potential and force at cutoff distance r � rcij,

thus eliminating undesired artifact effects owing to the

introduction of the cutoff [36].

Both systems are composed of two different types of particles

(A and B) and are characterized by different parameter sets, such as

ϵij and σij. In the case of the KAM, the LJ parameters are non-

additive: σAA = 1, σAB = 0.8, σBB = 0.88, ϵAA = 1, ϵAB = 1.5, and ϵBB =
0.5. Therefore, the concept of “particle size” is not well defined in

the KAM system. For the ABM, on the other hand, the parameters

are simply additive; thus, we can unambiguously say that particle A

is small, and B is large (that is, σAA = 5/6, σAB = 1, σBB = 7/6, and

ϵij = 1) regardless of the combination of types of particles i and j.

All observables were non-dimensionalized using

characteristic length σ*, characteristic energy ϵ*, and particle

mass m* (the characteristic variables are listed in Table 1). The

total number of particles was fixed at N = NA + NB = 2000. The

number density ρ =N/L2 and the number ratio of the two-particle

species NA/NB also differ between the two systems, i.e., the KAM

and ABM.With the values of ρ used here, the systems entered the

glassy phase once the temperature was sufficiently low [23, 35].

Information about the parameters mentioned here is

summarized in Table 1. Although we consider only 2D

systems in this article for the sake of simplicity, we stress that

all the analyses here can be easily extended to three-dimensional

systems, which will be performed in the future.

2.2 Sample preparation protocol

We performed molecular dynamics (MD) simulations

using the open-source Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS: https://www.

lammps.org/). We generated samples via NVT simulations

using the Nosé–Hoover thermostat. Periodic boundary

conditions were set in all directions. In this study, we aim

to address a simple binary classification problem. For the two

classes, we chose configurations at the temperature where the

dynamic slowing-down starts at (TL = 0.8 for KAM and TL = 2.

0 for ABM) and at a very low temperature (TG = 0.05 for both

models). For both KAM and ABM, we first generated

5000 independent random configurations (4,000 were used

for training, 400 for validation, and 600 for the test data) and

equilibrated them at a very high temperature of T = 4.0. The

obtained configurations were then cooled at a constant

cooling rate ( _T ≈ 8.33 × 10−5), and the samples for the

classification tasks were obtained at the desired

temperatures TL and TG. The samples at TL correspond to

“equilibrium” supercooled liquids in the sense that their

dynamics exhibit time-translational invariance,

whereas those at TG are regarded as “non-equilibrium”

glasses in the sense that they are expected to experience

aging. Note that, judging from the evolution of the

potential energy of the system as a function of the

temperature (Supplementary Figure S6) [37], crystallization

is avoided in both systems at this cooling rate (i.e., we did not

observe any discontinuous jumps in the energy).

Consequently, the radial distribution function g(r) of the

configurations at TG does not show any signs of global

crystallization (Supplementary Figure S7).

3 Analytical methods

We train a neural network to distinguish two classes of

systems, “glass” and “liquid,” based purely on the

instantaneous configurations. Then, the characteristic

structures of glasses are identified by extracting the meso-scale

structures that the trained network relied on to provide a correct

classification. In this section, we explain the methods used to

achieve these classifications and identifications of characteristic

structures.

TABLE 1 Summary of model parameters.

mA mB σAA σAB σBB ϵAA ϵAB ϵBB NA NB ρ σ* ϵ* m* rcij

KAM 1.0 1.0 1.0 0.8 0.88 1.0 1.5 0.5 1300 700 1.2 σAA ϵAA mA 2.5σij

ABM 1.0 1.0 5/6 1.0 7/6 1.0 1.0 1.0 1000 1000 1.09 σAB ϵAB mA 3.0σij
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3.1 Convolutional neural network (CNN)

We first perform supervised learning to train a CNN [33, 38] to

predict whether a given configuration is glass or liquid. Following

Ref. [38] in which the authors tackled a similar classification task

successfully, our network has no pooling layers. It is then simply

composed of three convolutional layers and subsequent activations

(the rectified linear units), followed by the fully connected layer,

dropout layer, and final fully connected layer as the output layer.

Note that, althoughwe apply the “softmax” function subsequently to

obtain the final results, the output layer of the network is the fully

connected one to make it compatible with Grad-CAM, as explained

in Section 3 2. The full details of the network and learning protocol,

including the precise values of the hyperparameters, are summarized

in the Supplementary Material. After training, the softmax layer

outputs a value in the range of [0,1] which can then be interpreted as

the probability for a configuration to be assigned to one of these

classes.

Importantly, when we feed the particle configurations,

ρ(r) � ∑N
i δ(r − ri), obtained from the MD simulations into

the CNN, they are gridized by the mapping operator M:
~ρ ≡ M(ρ) (see Supplementary Material for technical details).

Here, the tilde indicates that the variable is grid-based. We also

mention that in the padding process at the convolutional layers,

we use circular padding to properly consider the periodic

boundary conditions.

3.2 Gradient-weighted class activation
mapping (Grad-CAM)

Once a CNN is able to classify glasses and liquids correctly

after training, we aim to extract the characteristic mesoscale

structures that the CNN relies on when classifying. This

identification of crucial information is called “class activation

mapping” (CAM). The first-proposed simple CAM [39] assumed

a global average pooling at the end of the network, and thus,

cannot be utilized for networks with different types of

architectures. This problem has been solved using a method

called gradient-weighted class activation mapping (Grad-CAM)

[34]. In Grad-CAM, CAM is calculated based on the differential

of the output of the network with respect to the feature maps as

αCm � 1
Z

∑u
k

∑v
l

zyC

zAm
k,l

, (3)

~L
C � ReLU ∑

m

αCm ~A
m⎛⎝ ⎞⎠, (4)

where yC is the score for class C (C ∈ {glass, liquid} in the current

setup) before softmax, ~A
m
is the m-th feature map activation of a

convolutional layer,Am
k,l is the (k, l) component of ~A

m
, and Z = uv is

the normalizing factor for the global pooling calculation. The

rectified linear unit ReLU simply returns x if x > 0 and zero

otherwise. Thus, in this Grad-CAM method, the characteristic

part of the input information is identified as the weighted sum

of the feature maps after a specified convolution layer (usually the

last layer), and the weights are obtained depending on the global

average of the sensitivity (gradient) of the output with respect to each

pixel of the featuremaps. Importantly, this method can be applied to

networks with any architecture if the backpropagation is tractable.

The results presented in this paper are all particle-based

Grad-CAM scores, Γ � ∑N
i Γiδ(r − ri), obtained using the inverse

mapping operator M−1: Γ ≡ M−1(~LC), where Γi is the Grad-

CAM score of particle i. We simply call Γ the Grad-CAM score.

Note that, hereinafter, all particle-based variables are coarse-

grained and normalized (see the Supplementary Material for

technical details, including the precise definition of Γi).

3.3 Voronoi volume

In this study, we compared the results of the proposed method

with those of handcrafted structural indicators to interpret the

obtained Grad-CAM score Γ. The first reference indicator is the

volume of the Voronoi cells ϒ that particles reside in (here, we call

them volumes, although they are in fact areas because the system is

2D). The volume of the Voronoi cell allows us to quantify the so-

called free volume of each particle, which is considered a significant

static characteristic that explains the divergence of the viscosity in

glass transition (the free volume theory) [40]. We note that, in Refs.

[41, 42], themicroscopic correlation between the free volume and the

dynamics (i.e., the dynamical propensity) was studied and concluded

to be not significantly correlated. On the contrary, a strong

correlation between the free volume and bond-bond breakage

occurring over long periods of time in low-temperature glassy

systems has been reported [43]. Despite this controversial

situation, because there is no doubt that the free volume of the

particles is an important interpretable static property determined

geometrically from the particle structure, we will refer to it here as

one of the structural indicators.

The Voronoi cell to which particle i belongs can be uniquely

defined without the introduction of any additional parameters, as

follows:

V ri( ) � {r|D r, ri( )≤D r, rj( ), j ≠ i}, (5)

whereD(a, b) is a function that provides the 2D Euclidean distance

between points a and b. The point r in the equation is an arbitrary

point in the system that is independent of the particle density field

ρ(r). The volume of the Voronoi cell for particle i can then be

obtained as ϒi ≡ V(V(ri)), where V(V) is the operator that

outputs the volume of the region V. To achieve Voronoi

tessellation, we used the freud [44, 45] Python library, which

properly considers periodic boundary conditions. The Voronoi

cell volumes provide a quantitative measure of the (inverse) local

packing density. We call ϒ � ∑N
i ϒiδ(r − ri) the Voronoi volume.
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3.4 Tong–Tanaka order parameter

Tong and Tanaka [21, 22] proposed an excellent order

parameter that can characterize structures correlated with

long-time dynamics even in glass-forming systems with large

particle size dispersion, where characteristic structures are

difficult to capture with bond-orientation order parameters

[19]. We call this order parameter the Tong–Tanaka order

parameter (TT-OP). The TT-OP has been successfully used as

a structural indicator of the dynamic properties of various glasses

and hence we measure it as a reference below.

To calculate the TT-OP, we first look at each particle

(e.g., particle o) and its neighbors (the particles sharing the

edges of the Voronoi cell with center particle o). Then,

particle o’s TT-OP, Θo, is obtained as the average

difference between the angle formed by particle o and two

of its neighbors that are adjacent to each other, θ1ij, and the

corresponding ideal angle θ2ij (i.e., that is obtained when the

distances between particles are exactly the same as the

sum of their “radii”; see the Supplementary Material

for more details and a schematic of the definitions of θ1ij
and θ2ij):

Θo � 1
No

∑
〈ij〉

|θ1ij − θ2ij|, (6)

where No is the number of particles neighboring particle o (this

number agrees with the number of neighboring pairs of

neighbors). The TT-OP Θ � ∑N
i Θiδ(r − ri) is defined as a

particle-based indicator, and it has been shown that, for

various systems, the spatially coarse-grained TT-OP predicts

the dynamic propensity very well [22]. The results (not only

of the TT-OP but also of all particle-based variables, including

the Grad-CAM score Γ) presented below are all spatially coarse-

grained (and further normalized to the range [0,1]). We explain

the coarse-graining procedure in detail in Section 3.6.

3.5 Dynamic propensity

As a measure of the dynamic heterogeneity that appears

originated from a specific configuration of particles, the so-

called dynamic propensity is usually employed [46–48]. To

define this variable, we introduce the isoconfigurational

ensemble first: in this special ensemble, samples share an

FIGURE 1
Visualization of particle-based structural indicators for a typical glass configuration of the Kob–Andersen model (KAM) system: (A) Grad-CAM
score (Γ), (B) Voronoi volume (ϒ), (C) TT-OP (Θ), and (D–F) Dynamic propensity (Δ) at different “time” scales. The argument of Δ stands for the mean
intensity of the displacements δ at which Δ is measured: as indicated in the panel titles, δ ≈ 0.3, 1.0, 3.0, which roughly corresponds to t ≈ τα, 3τα, 10τα,
are employed. Notice that all indicators are normalized to [0,1], and the different colors distinguish the values as shown in the color bar. In
addition, 1 − Γ and 1 − Θ are shown in panels (A) and (C), respectively, rather than Γ and Θ, for ease of comparison with the dynamic propensity. The
precise values of coarse-graining length ξX employed here are summarized in Table 3.
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identical initial particle configuration, ρ0 � ∑N
i δ(r − ri(0)),

but have different realizations of velocities with a specified

temperature T (the statistics of velocities obeys the Maxwell-

Boltzmann distribution with this temperature). In this study,

for each initial configuration, we performed MD simulations

with 30 different initial velocity distributions. For each

realization, we calculated intensity of the so-called cage-

relative displacement (CRD)1, Δs
i(t), which is defined as

Δs
i(t) �

�������������
(ds

i(t) − �d
s
i(t))2

√
, where ds

i(t) ≡ rsi(t) − ri(0) is the

displacement vector of the particle i at time t, �d
s
i ≡

1
Ni
∑jd

s
j

(the sum for j runs over the neighbors of i including i itself,

and Ni stands for the number of particles involved here) is the

average displacement vector of the cage to which particle i

belongs, and the superscript s is the sample index (which

distinguishes different realizations of the velocity distribution

at t = 0). The dynamic propensity field Δ is then defined as the

average of the sample-dependent values of the CRD field,

Δs � ∑N
i Δs

iδ(r − ri(0)), over Ns samples as Δ ≡ 1
Ns
∑Ns

s Δs. As

the value of Ns, we basically employed Ns = 30 unless stated

otherwise.

3.6 Coarse-graining of particle-base
indicators

In References [21, 22], Tong and Tanaka showed that,

when properly coarse-grained, the TT-OP introduced in

Section 3.4. correlates strongly with the dynamic

propensity field. In our analyses, we have coarse-grained

all the particle-based indicators by a similar method to the

one proposed in Ref. [22]:

�Xi ξX( ) � ∑jXjP |rj − ri|( )
∑jP |rj − ri|( ) , (7)

where P(r) � exp(−(r/ξX)2) is the coarse-graining kernel and ξX
is the coarse-graining length for variables X ∈ {Γ,ϒ,Θ, Δ}. For the
calculation of the coarse-graining of the variables X, the cutoff

distance rcX in P(r) is introduced, which is fixed as rcX � 2ξX in

this study. We employed this coarse-graining procedure (it is

slightly different from the one employed in Ref. [22]) after

comparing several options.

We stress that, in this work, we coarse-grain not only the

structural indicators but also the dynamic propensity field. We

explain how we determine the coarse-graining lengths ξX in

Section 4.2. Additionally, all particle-based variables are

further normalized to [0,1] by simply subtracting the

minimum value and then dividing by the maximum.

4 Results and discussions

4.1 Extraction of characteristic structures
using Grad-CAM

The CNN introduced in Section 3.1. was run over

250 epochs. During the training process, 4,000 training

data samples (for both glasses and liquids: 8,000 samples

in total) were provided with the correct labels indicating

whether the samples were glasses or liquids. For both

systems (KAM and ABM), the learning stage proceeded

smoothly, and the classification accuracy reached almost

100% both for the training and validation data after these

relatively small epochs. The same degree of accuracy was

achieved for the test data (the results for the test data are

summarized in Table 2). We stress here that the calculation

cost for the training part is very low in our setup: the entire

250 epochs of learning only took approximately 8 h using an

NVIDIA Quadro P4000 (GP104GL).

Subsequently, using Grad-CAM, we further extracted the

characteristic structures that the CNN relied on when

identifying glass samples as glasses. Notably, this

calculation requires only a trivial cost (much less than a

second for each sample). We present the typical results

obtained for the KAM system in Figure 1A and those of

ABM in Figure 2A (notice that Γ visualized here are

coarse-grained with the length ξΓ determined in the next

Section 4.2). Both these results are for the glass

configurations: although we can also investigate the

characteristic structures of liquids and try to extract glass-

like structures from liquids (and vice versa) within the Grad-

CAM framework, we restricted ourselves to the

investigation on the characteristic structures of glasses in

this study2.

TABLE 2 Classification accuracy for test data.

KAM(G) KAM(L) ABM(G) ABM(L)

1.00 0.998 1.00 1.00

1 We employed the cage-relative displacements to exclude the
undesired effects due to anomalous fluctuations that are specific to
two-dimensional systems [49–52].

2 Importantly, we discarded a test sample for which the trained CNN
gave the wrong classification (only 1 out of 2,400 samples: in the case
of liquid in the KAM) to rule out the possible influence from such an
abnormal sample, e.g., when evaluating the probability distribution
function shown later in Figure 6. However, we would like to mention
that the investigation of such samples is still important since they can
reside in the vicinity of the “boundary” between glass and liquid classes
and thus provide meaningful information about their structural
differences. This investigation should be performed as future work.
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4.2 Determination of coarse-graining
length

In this subsection, we explain how we determined the coarse-

graining lengths ξX (X ∈ {Γ,ϒ,Θ, Δ}) that are used for the analyses in
the following sections (or already used in Figures 1A, 2A). Since the

coarse-graining lengths for the structural indicators are determined

depending on the coarse-grained dynamic propensity field, we explain

that for the dynamic propensity ξΔ, first.

Coarse-grained structural indicators exhibit spatially smooth

profiles as already presented in Figures 1A, 2A. On the other

hand, as shown in Supplementary Figures S4, S5, the bare

dynamic propensity field without coarse-graining shows noisy

profiles even within each mobile/immobile domain. When we try

to quantify the dynamic heterogeneity, we are interested in the

meso-scale domain exhibited by the propensity field. However, in

the presence of these intra-domain noises, the estimation of

correlation with structural indicators suffers from high-

frequency modulations. To exclude this unintentional

underestimation of the correlation, we coarse-grained the

propensity field as well. To systematically determine the

coarse-graining length ξX, we first measure the spatial

correlation function of the dynamic propensity X = Δ:

CΔ r( ) � 〈δΔ ri( )δΔ ri + r( )〉|r|�r, (8)

where δΔ ≡ Δ − �Δ is the deviation from the global average �Δ, r is
the distance from the reference particle i, and 〈·〉|r|=r stands for
the spherical average over particle pairs separated by a distance r.

Since we aim to smooth out the intra-domain noises here, we

employ the decay length r* defined by CΔ(r*) ≈ 1/e as the coarse-

graining length ξΔ. In Figure 3, we plot the measurement results

of CΔ at three different time scales for both KAM (panel A) and

ABM (panel B). For later convenience, in this study, we express

the dynamic propensities at different time scales as functions of

the mean intensity of the displacement (here, the displacement is

cage-relative one. And the average is taken over the

isoconfigurational samples and particles), δ(t) � 1
N∑N

i Δi(t), as
Δ(δ). In Figure 3, CΔ at δ = 0.3, 1.0, 3.0 are shown. These values of

δ are expected to correspond to approximately t ≈ τα, 3τα, 10τα,

where τα is the α relaxation time [9]. We summarize the values of

extracted coarse-graining length in Table 3. Below, we use these

values of ξΔ for Δ at these three time scales.

We would like to stress that the coarse-graining of the

dynamic propensity Δ introduced here seems not just an

artificial operation but a physically reasonable one. To show

this, we prepared 100 independent isoconfigurational samples

FIGURE 2
Visualization of particle-based structural indicators for a typical glass configuration in the ABM system. Themeanings of the panels are basically
the same as those presented in Figure 1 ((A) Grad-CAM score, (B) Voronoi volume, (C) TT-OP, (D–F) Dynamic propensity at different time scales),
while 1 − ϒ and Θ are shown in panels (B) and (C), rather than ϒ and 1 − Θ.
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and considered four different ensembles. For three of the

ensembles, we employed Ns = 30, and completely different

sets of samples are composed for each. We call these ensembles

ei30(i ∈ {A, B, C}) Only in the forth ensemble, all 100 samples

are used (Ns = 100): we call this e100. Because the number of

samples is different, we expect that the ensemble e100 should

provide the statistically most reliable result. In Figure 4, we

compare the bare dynamic propensity fields and the coarse-

grained ones obtained from these four ensembles (only results

for the KA system are shown). Although we see strong

fluctuations among the bare fields of ensembles ei30 (Figures

4A–C), the coarse-grained fields of these ensembles (Figures

4E–G) appear highly similar. Notably, the bare field of the

ensemble e100 (Figure 4D) is much smoother than the ones of

ensembles ei30, and rather very similar to the coarse-grained

fields (Figures 4E–G) of them. These similarities can be

quantitatively evaluated by measuring the Pearson’s

coefficient between two propensity fields of different

ensembles. We summarize the results in Table 4. In this

table, CΔ,Δ(eα, eβ), the correlations between the propensity

fields of ensemble ei and ej, are presented. When we

consider the coarse-grained field instead of the bare ones, we

denote them as �ei. This table shows that the coarse-grained

fields obtained from ensembles of Ns = 30 are very close to each

other (CΔ,Δ(�ei30, �ej30) � 0.958. Here, regarding the correlation

coefficient involving e30, the average value over all

combinations of i and j is shown, where i, j ∈ {A, B, C} and

i ≠ j.) while the correlations between the bare fields are much

smaller (CΔ,Δ(ei30, ej30) � 0.769). This indicates that the bare Δ
fields contain sample-dependent large intra-domain noises and

our coarse-graining procedure indeed smooth away those

unintentional sample-dependent noises as we desired.

Comparison between the results from ensembles with

different values of Ns further provides an important insight

into the meaning of the coarse-graining of Δ. As expected, the
correlation between non-coarse-grained and coarse-grained

fields of e100, namely CΔ,Δ(e100, �e100) � 0.878, is much larger

than that of e30, CΔ,Δ(e30, �e30) � 0.820, indicating that the

coarse-grained field of the ensemble with Ns = ∞ would be

identical to its bare field. Moreover, we also mention that the

correlation between coarse-grained ensembles �e30 and �e100
exhibits a very high value, CΔ,Δ(�e30, �e100) � 0.985. All these

results suggest that the coarse-graining of the dynamic

propensity Δ is an important operation that allows to

accurately estimate the “genuine” dynamic propensity field

(that should be achieved in the limit of Ns → ∞) from the

numerical results with a finite Ns.

The coarse-graining lengths ξα for structural indicators α(α ∈ {Γ,
ϒ, Θ}) are then determined in the same manner as the one in Ref.

[22]: the values that maximize the Pearson’s correlation coefficient

[27, 28, 30, 53] between structural indicators and the dynamic

propensity are chosen. Here, as the dynamic propensity field, we

employed the coarse-grained ones with ξΔ determined in the

previous paragraph. The determined values of ξα are summarized

in Table 3. See Supplementary Material for the detailed ξα
dependence of the correlations. In Figures 1B,C, 2B,C, we show

the visualization results of the coarse-grained Voronoi volume ϒ
and TT-OP Θ fields (the results for the same configurations as

Figures 1A, 2A). We stress that all panels present much larger

domains than the size simply expected from the value of ξα (e.g.,

linear spanning of 2ξα).

FIGURE 3
The spatial correlation function of the dynamic propensity Δ,
CΔ, as a function of the distance from the reference particle r.
Results for (A) KAM and (B) ABM systems. Different line styles
distinguish different time scales as shown in the legend. The
horizontal dotted lines depict CΔ = 1/e.

TABLE 3 Coarse-graining length for each variable.

Figures 1, 2 Figures 5, 7 Figures 1, 2, 5, 7 Figure 6

ξΔ(δ = 0.3) ξΔ(δ = 1.0) ξΔ(δ = 3.0) ξΔ ξΓ ξϒ ξΘ ξΓ ξϒ ξΘ

KAM 3.0 4.0 5.0 4.0 8.0 4.0

ABM 3.0 3.0 2.0 3.0 5.0 3.0
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As a reference, we also present the results without the coarse-

graining of the dynamic propensity Δ (that is, results with ξΔ = 0)

in Supplementary Figures S4, S5). We note that, as shown in

Supplementary Figures S4, S5, the consequences of the coarse-

graining of Δ are fairly consistent with the bare Δ field.

4.3 Predictability of the dynamics

Now we ask the following question: Are the extracted

structures correlated with some material properties, for

example, the dynamics? To address this, we compared the

Grad-CAM scores (Γ) with the dynamic propensity (Δ).
Owing to the computational cost, we calculated the

propensities only for the configurations shown in Figures 1, 2

(only one configuration for each system).

For each configuration, we performed MD simulations with

30 different initial velocity distributions and calculated the

dynamic propensity field Δ following the procedure

summarized in Section 3.5. Regarding the temperature during

the measurement of the dynamics, we considered temperatures

slightly above the glass transition point, T*, (whose empirical

definition is provided in the Supplementary Material; the

obtained values are T* ≈ 0.37 for KAM and T* ≈ 1.0 for

ABM) because we cannot expect any cage-breaking

relaxational dynamics below T* within the computationally

accessible time window. To investigate the possible

temperature dependence of the dynamics, we performed

simulations at temperatures up to approximately 1.5T*. We

stress again that although the initial velocities follow the

specified temperatures (which are higher than the glass

transition point T*), the initial configurations are drawn from

the sample at TG = 0.05 (those shown in Figures 1, 2). In Figures

1D–F and Figures 2D–F, the propensity Δ at δ ≈ 0.3, 1.0, 3.0 are

shown. Note again that we express the time-dependence

indirectly via δ, the mean intensity of the cage-relative

displacement, and these values of δ correspond roughly to t ≈
τα, 3τα, 10τα respectively. Interestingly, there is agreement

between 1 − Γ and Δ at long times (Δ(1.0) and Δ(3.0)) for

both systems.

FIGURE 4
Comparisons between the bare and the coarse-grained dynamic propensity fields Δ of different ensembles. The results of Δ(1.0) of the KA
system are shown. (A–C) The bare Δ fields of ei30(i ∈ {A,B,C}), (D) the bare Δ field of e100, (E–G) the coarse-grained Δ of ei30, and (H) the coarse-
grained field of e100. The coarse-graining length of ξΔ = 4.0 is employed as in Figure 1E.

TABLE 4 Pearson’s coefficients between Δ of different ensembles.

CΔ,Δ(ei30, ej30) CΔ,Δ(�ei30, �ej30) CΔ,Δ(e30, �e30) CΔ,Δ(e100, �e100) CΔ,Δ(�e30, �e100)
0.769 0.958 0.820 0.878 0.985
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To quantify the correlation between Γ and Δ further, we

calculated the Pearson’s correlation coefficients, CΓ,Δ. Although

the coarse-graining length of Δ is dependent on the value of δ

(i.e., the time scale), for simplicity, we employed a fixed value for

each system here (see Table 3). The results are presented in

Figure 5. In this plot, the time dependence is indirectly reflected

by the value of δ. Such a presentation allows us to compare the

correlation between the dynamics (at different temperatures) and

the static structure directly, thus ruling out the effect of the non-

trivial dependence on time. Note that the correlation between 1 −

Γ and Δ is quantified, not Γ, in agreement with the visualization.

From Figure 5, we observe several striking consequences. First,

CΓ,Δ rises in accordance with the increase in δ, reaching its

maximum value at δ ≈ 1 in both the KAM and ABM. This

indicates that the structures extracted by our method are

responsible for the dynamics at a longer time scale than the α

relaxation (note that these are non-equilibrium aging dynamics

and not intra-metabasin equilibrium relaxation). Secondly, the

change in the correlation CΓ,Δ is non-monotonic in the KAM

system and starts decreasing for δ ≥ δ*, while plateauing for δ ≥ δ*

in the ABM system. These results indicate that the specified

characteristic “well-ordered” clusters are transient in the KAM

system, whereas they seem very stable within the time window of

our calculation in the ABM system. Thirdly, the maximum

correlation, Cmax, reaches very high values in both systems:

0.925 and 0.712 in the KAM and ABM, respectively. The

predictability of the dynamics is surprising because our

method does not require any information about the dynamics

during the training process; thus, the computational cost for both

the training and the sample-preparation part is low. Finally, the

results of different T follow a single master curve. This result

confirms the fact that the dynamics are indeed governed by the

static “glass structures,” at least in the temperature regime under

study and concerns non-equilibrium aging dynamics.

4.4 Interpretable structural indicators

In this section, we measure two distinct local multibody

structural indicators to interpret the Grad-CAM score Γ. Because
these indicators are handmade, we can take advantage of their

interpretable nature. In the Supplementary Material, we present

the two-body correlation function g(r) for reference

(Supplementary Figure S7). We again stress that all the

particle-based indicators, including Δ, were coarse-grained and

further normalized to the interval [0,1].

4.4.1 Voronoi volume
The Voronoi volume ϒ is the first interpretable local

multiparticle structural indicator. In this subsection, we briefly

explain the obtained ϒ values for the KAM and ABM systems. A

typical result for the KAM system is shown in Figure 1B in which

particles with small values of ϒi (< 0.4) appear dominant.

Figure 2B presents the results for the ABM system, in which a

large portion of particles exhibit relatively high values of ϒi

(> 0.4). Note that 1 − ϒ is visualized in Figure 2B.

These distinct trends are derived entirely from the difference in

the set of interaction parameters (ϵij and σij) and the number ratio of

the particle species (NA/NB). For instance, in the KAM system, the

interaction energy is most stable when different species are in

contact, and the interaction range is also the shortest in this

situation (see Table 1). Therefore, small values of ϒi are

energetically favored in the KAM. In the ABM system, on the

other hand, because the area occupied by particles A is almost half

that of particles B (the area fraction is 1: 1.96), the region with a large

Voronoi volume (corresponding to particles B) tends to be slightly

dominant. Because samples with a very low temperatureT = 0.05 are

shown in Figures 1, 2, the structurally low-energy states are expected

to bemore probable.We also note that the small value ofϒi does not

necessarily mean that the local structure around particle i is highly

ordered, as is evident in the case of the KAM.

4.4.2 Tong-Tanaka order parameter
The second interpretable structural indicator is the TT-OPΘ.

As mentioned in Section 3.4, of the various locally defined

structural indicators reported to date, TT-OP captures the

dynamical behavior of many classes of glasses very well,

FIGURE 5
The “time” evolution of the correlation between Grad-CAM
score 1 − Γ and dynamic propensity Δ as a function of the intensity
of the cage-relative displacement δ. Results for (A) KAM and (B)
ABM. Each simulation was performed for 3 × 108 steps, and
δ(t) during those simulations is plotted on the abscissa for each
plot. Different markers are used to distinguish different
temperatures as shown in the legend. The vertical dotted lines
indicate the delta values visualized in Figures 1, 2.
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especially universally. The characteristic structures of glasses in

terms of the TT-OP are specified by small values of Θi, which

means that the local structure is highly ordered.

The results for the KAM system are shown in Figure 1C. We

note that because of the non-additive nature of the potential

parameters, defining a reference three-particle ideal

configurational angle θ1 in the case of the KAM is non-trivial. In

this study, we employed the definition using the additive assumption

(σAA = 1.0, σBB = 0.88, and σAB = (σAA+σBB)/2 = 0.94) rather than the

parameters used in the simulations because the reference structure is

easier to interpret with this additive assumption. Surprisingly, the

coarse-grained Θ field looks very similar to other indicators and

appears correlated to the long-time propensity field. The results for

the ABM system are shown in Figure 2C. In contrast to the findings

of Tong and Tanaka [21, 22], the structure is not well developed, and

the spatial modulation is much smaller than that in the KAM:

Intermediate values are system-spanning. This is likely because our

samples were generated by quenching at a fixed cooling rate and,

thus, were not well annealed. We expect these samples to exhibit

aging behavior.

4.5 Correlations between different
indicators

To interpret the Grad-CAM scores (Γ) obtained by our

method, we further calculated the Pearson’s correlation

coefficients between different indicators for both the KAM

and ABM. The results are summarized in Figure 6. In this

figure, we show violin plots of the coefficients between

different indicators (Γ, ϒ and Θ) calculated using 600 samples

for each case (KAM or ABM and glasses or liquids). In this

subsection, for clarity, we employ different values of ξα from

those used in other subsections as shown in Table 3. The change

in the value of ξα does not change the qualitative discussion here,

while the distributions (those are plotted in Figure 6) become

broader, and thus the differences between them are less

pronounced when ξα increases.

We call the correlation coefficients between the Grad-CAM

score and the Voronoi volume CΓ,ϒ and define those between

different pairs in a similar manner: CΓ,Θ and CΘ,ϒ. Although the

results below are mostly those for the glass configurations only,

we also mention the results for the liquids when we discuss their

differences from those of the glass samples. Finally, we stress that,

in the main text, all correlations are based on the Pearson’s

definition. As presented in the Supplementary Material, however,

we also obtained semi-quantitatively consistent results using

Spearman’s definition. Below, we explain the results for the

ABM and KAM systems.

4.5.1 ABM
In the ABM system, CΓ,ϒ (the Grad-CAM score vs. the

Voronoi volume) is the largest in terms of the intensity

(Figure 6B), and its average is an intermediate positive value:
�C
G
Γ,ϒ � 0.585, where the bar represents the average over samples

and the superscript G indicates that only the glass samples are

considered (see Supplementary Table S2 for the summary of the

average and the standard deviation of the correlation

coefficients). This means that structures with large local

volumes are judged to be characteristic of the glass. This

behavior is consistent with the TT-OP: Both CΓ,Θ and CΘ,ϒ
(those for the Grad-CAM score vs. the TT-OP and the TT-

OP vs. the Voronoi volume, respectively) are negative, with the

intensities being slightly smaller (�CG
Γ,Θ � −0.378 and

�C
G
Θ,ϒ � −0.327), meaning that structures with large values of

the Voronoi volume tend to be more ordered.

However, importantly, the difference between glasses and

liquids is most evidently quantified by CΓ,Θ, which becomes

almost completely negative for glasses but positive for liquids.

On the other hand, the probability distribution of CΓ,ϒ shows a

large overlap between glasses and liquids; moreover, in the

case of liquids, the distribution is centered around zero,

indicating that the Voronoi-volume-like aspect of the

Grad-CAM score is likely unable to distinguish glasses and

liquids accurately. Therefore, our method seems to rely on

structures that are qualitatively consistent with the TT-OP

rather than on the Voronoi volume when a decision is made,

although ϒ is closer to Γ than Θ in terms of the correlation for

glass samples, as mentioned above (�CG
Γ,ϒ > �C

G
Γ,Θ). We stress

that it has been shown that the TT-OP can extract the

characteristic structures associated with the dynamics in

FIGURE 6
Violin plots of the Pearson’s correlation coefficients between
distinct structural indicators. Results for the (A) ABM and (B) KAM
systems. The dark and light gray parts represent the results for
glasses liquids, respectively, as shown in the legend. The
dashed lines indicate the quartiles.
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binary additive glass formers [22], and our results seem

consistent with this.

4.5.2 KAM
In the case of the KAM system, CΓ,ϒ and CΓ,Θ for glasses are

negative and positive, respectively, at odds with the results for the

ABM (Figure 6A). Such a qualitative difference indicates that the

structures extracted by our method respect the details of the

systems. It should also be noted that, from the perspective of the

intensity of the correlation coefficients, CΓ,ϒ is significantly larger

than CΓ,Θ, and only CΓ,ϒ exhibits a clear difference in the signs

between the results for glasses and liquids. This is another

qualitative difference from the ABM system, where the

difference in sign is evident for CΓ,Θ. However, although the

TT-OP is a good descriptor for the ABM, as presented above, it is

unlikely to characterize the properties of KAM systems. Thus,

our method regards structures with high CΓ,ϒ as characteristic

while CΓ,Θ is small. In particular, the intensity of CΓ,Θ is lower

than that of CΘ,ϒ (�CG
Γ,Θ � 0.426, �CG

Θ,ϒ � −0.597), suggesting that
our method attempts to avoid correlation with the TT-OP

selectively.

4.5.3 Summary of this subsection
Interestingly, although we could interpret the Grad-CAM

scores in terms of other conventional indicators (the Voronoi

volume and the TT-OP) to some extent in both the KAM and

ABM, the correlations are not perfect, and Grad-CAM seems to

blend different indicators in an “appropriate” manner. In

particular, we emphasize that the precise recipe of such

blending is obviously dependent on the system details.

Therefore, it would be meaningful to regress the obtained

Grad-CAM score field Γ symbolically to achieve a fuller

interpretation using recently invented methods [26, 54, 55].

4.6 Dynamics vs. other indicators

In Section 4.3, we studied the predictability of the Grad-CAM

score Γ with respect to the dynamics Δ by measuring the

correlation coefficient between them. In this subsection, we

further investigate the correlation between dynamics and

other indicators, namely, the Voronoi volume ϒ and the TT-

OP Θ. Figure 7 presents the correlation coefficient between the

dynamic propensity and the structural indicators. Note that, in

this subsection, when calculating the correlation Cα,Δ, we

sometimes use 1 − α instead of α to obtain a positive value

(the choices obey those in Figures 1, 2). We explain the results for

ϒ and Θ one by one below.

4.6.1 Voronoi volume
The time evolution of the correlation coefficient between the

Voronoi volume ϒ and the dynamic propensity Δ, Cϒ,Δ, is quite

similar to that of CΓ,Δ: it changes non-monotonically (reaches the

maximum at δp > 1.0 and then starts decreasing) in the KAM

system, and grows monotonically as a function of δ and saturates

at δp > 1.0 in the ABM system. The maximum correlation Cmax
α,Δ

and the value of δp at which Cα,Δ(δp) � Cmax
α,Δ holds are

summarized in Table 5. Here, the subscript α ∈ {Γ, ϒ, Θ}
distinguishes the indicator of interest. The maximum Cmax

ϒ,Δ
reaches high values in both systems: 0.966 in the KAM and

0.858 in the ABM (to obtain a positive value, we employed 1−ϒ
for the ABM). These values are higher than Cmax

Γ,Δ in both systems.

This is a quite unanticipated consequence since the predictability

of the free volumes with respect to the dynamic propensity has

been negated previously [41, 42]. On the other hand, it has been

FIGURE 7
The evolution of the correlation between structural
indicators (Grad-CAM score Γ, Voronoi volume ϒ, and TT-OP Θ)
and dynamic propensity Δ (or 1 − Δ depending on the target
indicator and system) as a function of the mean intensity of
the cage-relative displacement δ. Results for (A) KAM and (B) ABM.
The meaning of the abscissa is the same as the one in Figure 5.
Different markers distinguish different indicators, as shown in the
legend. Data for all temperatures are plotted without distinction.
The vertical dotted lines indicate the delta values visualized in
Figures 1, 2.

TABLE 5 Maximum values of correlations and their locations.

KAM ABM

Cmax
α,Δ δ* Cmax

α,Δ δ*

CΓ,Δ 0.925 1.167 0.712 2.620

Cϒ,Δ 0.966 2.860 0.858 2.620

CΘ,Δ 0.885 1.402 0.790 0.148

The best Cmax
α,Δ is shown in bold letters for each system.
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reported that the local potential field is strongly correlated with

the dynamics when coarse-grained [48, 56, 57]. Since both the

local potential and the Voronoi volume detect the metric-based

information of the local packing, we expect them to possess

qualitatively similar information. Therefore, it is possible that the

good predictability of the Voronoi volume is a result of the

coarse-graining. To draw a decisive conclusion, however, a

thorough investigation using the same setup as that in [41,

42] is required.

4.6.2 Tong-Tanaka order parameter
Interestingly, the correlation between the TT-OP and the

dynamic propensity, CΘ,Δ, reaches high values: 0.885 and 0.790,

respectively, in the KAM and ABM systems (1 − Θ and Θ were

employed). It is unexpected that the TT-OP provides a good

predictability of the dynamics even in the KAM (the correlation

is higher in the KAM than in the ABM). This good predictability is

achieved maybe because we employed the additive convention of

the reference angle θ2ij or because we focused on the non-

equilibrium aging dynamics. We also note that the high

correlation with dynamics is observed only for long-time

regimes, and the correlation is very low around the α relaxation

regime (δ ≈ 0.3). Further comprehensive investigations are

necessary to identify the cause of the unexpectedly high

predictability.

In the KAM system, the qualitative trend is the same as those

for correlations of other indicators (CΓ,Δ and Cϒ,Δ): it starts from

a small value and follows an upward convex curve. In the ABM

system, in contrast, the time evolution of CΘ,Δ is qualitatively

different from those of CΓ,Δ or Cϒ,Δ. It is high even at the early-

stage small δ regime and changes in a non-monotonic manner

with the increase in δ: it increases only a little bit, reaches the

maximum value at δ* ≈ 0.148, remains almost at the same level,

and then starts decreasing.

4.6.3 Summary of this subsection
To summarize, first, the Voronoi volume has the largest

correlation with the dynamics in both KAM and ABM

systems, in terms of the Cmax
α,Δ . Regarding the comparison

between the Grad-CAM score and the TT-OP, the latter

shows a stronger correlation in the ABM system (note

again that the TT-OP is known to be a good descriptor of

the dynamics in the ABM) while the former outperforms in

the KAM.

The results presented in this article indicate that the

characteristic structures extracted by the Grad-CAM

capture information consistent with that of other coarse-

grained structural indicators proposed in previous works

[27, 30] in the sense that all structures are correlated with

the dynamic propensity to some extent. However, we do

observe clear differences between the correlation coefficient

for the TT-OP and the other two indicators (the Voronoi

volume and the Grad-CAM score), particularly in the ABM:

although CΓ,Δ and Cϒ,Δ reach their maximum values at δ >
1.0, which corresponds to the longer time scales than α

relaxation time, only CΘ,Δ exhibits clearly smaller values

of δ* (Table 5). This may suggest that the structures

specified by the TT-OP and those identified by the other

indicators signal qualitatively different aspects of

heterogeneous dynamics. Indeed, while the TT-OP focuses

on angular information, the other two indicators take into

account the whole structural information.

4.7 Do the coarse-graining lengths have a
structural origin?

Thus far, we have shown that, coarse-grained with proper

choices of ξα, structural indicators show strong correlations

with the dynamics Δ. In this subsection, we discuss whether

we can find the structural origin of these “proper” coarse-

graining lengths. To this end, we measured the same spatial

correlation functions as the one in Eq. 8 for structural

indicators. The results are presented in Figure 8. We can

first tell, from this figure, thatϒ andΘ decay very fast to Cα = 0

(particularly in the case of KAM). In contrast, Γ decays

relatively slowly in both KAM and ABM systems: CΓ

FIGURE 8
The spatial correlation functions of structural indicators α(α ∈
{Γ, ϒ, Θ}), Cα, as a function of the distance from the reference
particle r. Results for (A) KAM, (B) ABM systems. Different line styles
distinguish different indicators as shown in the legend. In the
insets of both panels, the magnified images of CΓ in the vicinity of
CΓ = 0 with error bars. In these insets, the vertical axes are in the
logarithmic scale. Although the values of CΓ are negative when
markers are missing, the error bars are crossing CΓ = 0.
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reaches zero at rΓ ≈ 3.0 − 4.0. This indicator-dependence of the

correlation length is evident in the visualizations of bare fields

shown in Supplementary Figures S6, S7. Results in Figure 8

suggest that relying on Γ, and we can extract relatively long

purely structurally-based correlation length. Note that, here,

we define the correlation length as the one where CΓ becomes

zero, not 1/e. We employed this choice because, unlike the case

of Δ for which we introduced the coarse-graining to smooth

out the intra-domain noises, we are interested in the average

size of the domains as discussed below.

In both systems (KAM and ABM), the length scale rΓ
defined here as CΓ(rΓ) = 0 is roughly half of the optimal coarse-

graining length ξα used in the aforementioned analyses (ξα =

8.0 for KAM and ξα = 5.0 for ABM). Because rΓ is expected to

correspond to the average domain size, the length scale ξα ≈
2rΓ corresponds to the average distance between domains with

the same sign of δΓ ≡ Γ − �Γ. This correspondence suggests that
the dynamical domains become larger than the static ones due

to collective excitations of nearby mobile domains (that are

expected to be indicated by low values of Γ). This picture is

consistent with a recent theoretical work [58] where the

dynamic heterogeneity was explained by collective

behaviors of local instabilities (that correspond to mobile

domains) via elastic interactions.

To further give a concrete interpretation of the coarse-

graining length on a purely structural basis, we must

understand the interactions between domains via the

elastic field. To provide useful data for such an exploration

of new understandings, it is important to perform a

comprehensive measurement of Γ for equilibrated well-

annealed low-temperature samples. We leave this problem

as a future work.

4.8 Relation to recent works

In the closing remarks for this section, we discuss the

relation of our work to several recent works using machine

learning-based methods. Recently, much effort has been

dedicated to challenges in explaining the heterogeneous

slow dynamics of glasses from a purely structural

perspective. For instance, in Refs. [28, 29], supervised

learning of graph neural networks was performed with

information on dynamics as part of the training data. The

trained networks succeeded in predicting the long-time glassy

dynamics of the KAM system at very low temperatures (the

lowest value T = 0.44 is comparable to the mode coupling

transition point TMCT = 0.435) solely from static structures

with high precision (the correlation coefficient exceeds 0.6).

As examples of unsupervised approaches, Refs. [27, 30]

similarly tried to extract characteristic structures of glasses

from static configurations. In these studies [27, 30],

information from dynamics was not used, even in the

training stage, similarly to our method. The major

difference to our method was that only glass configurations

were provided during the training stage [27, 30]; the liquid

samples were absent. Surprisingly, the obtained structures

were well-correlated with the long-time dynamics,

particularly the dynamic propensity at approximately the α

relaxation time. For the KAM system, the correlation

coefficient reaches around 0.4 and 0.7 in Refs. [27, 30]

respectively.

Because our method similarly does not require any

information about the dynamics, we can say that it is also

unsupervised in regard to dynamics prediction. Accordingly, it

is non-trivial and interesting that the structures extracted using

our method exhibit a strong correlation with the long-time

heterogeneous dynamics at a longer time than the α

relaxation time, as was the case for methods in Refs. [27, 30].

This implies that the characteristic structures governing the

relaxational dynamics are extracted in a similar way, whether

we try to identify the structural difference between glasses and

liquids (our approach) or specify structurally distinct parts from

the glass sample only (approaches in Refs. [27, 30]). This may

support the view that the characteristic glass structures, if exist,

grow gradually from completely random liquid configurations as

the temperature decreases. It would be very meaningful to

investigate the similarity of structures extracted by different

machine learning methods.

We also note the quantitative difference in the predictability

of different machine-learning methods with respect to the

dynamics. Although we cannot make direct quantitative

comparisons because of the varied setups in the references,

our method provides the highest-level performance in terms

of the simple correlation coefficient between extracted

characteristic structures and long-time dynamic propensity:

for our 2D ABM and KAM system, the correlation between

the Grad-CAM score and dynamics reached approximately 70%

and 90%, respectively.

5 Summary and overview

In this work, we proposed a method to extract the

characteristic structures of amorphous systems solely from

a couple of classes of static random configurations by means

of classification with a CNN and quantification of the

grounds for classification using Grad-CAM. We applied

the proposed method to two qualitatively different binary

glass-forming mixtures, viz. The ABM and KAM, and

showed that our method could automatically extract the

system-detail-dependent mesoscopic characteristic

structures of glasses. The proposed method has three

outstanding features. First, our method can extract

characteristic structures solely from the instantaneous

static structures without any information about the
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dynamics. Second, the extracted characteristic structures are

system-dependent; in other words, our method

automatically identifies the tailor-made structural

indicator suitable for each distinct system. Finally, the

extracted structures are strongly correlated with the

dynamic propensity. The time evolution of the correlation

reveals that the characteristic structure is closely related to

the dynamics at a longer time scale than that for the α

relaxation, where the mean intensity of the cage-relative

displacement is of the order of unity: δ U 1. Moreover,

such a correlation is robust over a wide range of

temperatures, at least in the range T* ≤ T ≤ 1.5T*. We

again stress that, unlike in the previously reported studies,

our dynamic propensity quantifies the non-equilibrium

aging processes, not the intra-metabasin equilibrium

relaxational dynamics, and is coarse-grained.

In addition, we discuss several future research directions. First,

we should conduct a similar analysis using well-annealed glass

configurations because the equilibrium dynamics are important

to understand the properties of glasses more deeply. In

particular, it is challenging to determine whether the

characteristic structures that our method extracts for equilibrium

glass configurations are correlated with the equilibrium dynamics.

Moreover, our method can find the characteristic structures from

the static configurations alone, even when the microscopic physical

quantity that characterizes the two classes (e.g., the dynamic

propensity) is not available, as long as the two different classes

are defined, for example, by specifying macroscopic quantities such

as the temperature. Therefore, it allows us to directly ask, for

example, whether we observe any structural differences between

normal and ultrastable glasses [59, 60], for which the dynamical

properties are numerically intractable. Because Ref. [61] reported

that the stability of glass samples is structurally reflected by the

density of the quasi-localized vibrational (QLV) modes, it would be

interesting to see if Grad-CAM also quantifies the QLV modes or

highlights completely different structures. Similarly, it has been

shown that the structural difference between instantaneous

configurations under different external shear speeds is quantified

by the density of the imaginary normal modes [62]. Our method is

also applicable in these situations.

In general, we expect that the extracted structures are

dependent on the precise setup of the classification problem,

such as the temperature choice for each class. It would be

interesting to compare the characteristic glass structures

obtained from different reference high temperatures.

Further, such structures could be sensitive to the details of

the protocols, for example, the network architecture or the

number of epochs. The investigation of the effects of these

factors would be valuable.
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