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This study analyzed thermal and mass transport in magnetohydrodynamic

Maxwell nanofluids over a cylinder stretched along the z-direction. The

Cattaneo-Christov diffusion theory and Buongiorno’s model were employed

to model the problem. The influences of Joule heating, chemical reaction rate,

and heat generation were also considered. Appropriate similar variables were

utilized to transform the constitutive equations. A semi-analytical method,

namely the homotopy analysis method (HAM) in Wolfram Mathematica, was

used to compute the problem solution. The results demonstrated the inverse

variation in flow behavior with increased Maxwell parameter values; however,

thermal and solutal transport displays the opposite trend. Additionally, the flow

field showed resistance due to the presence of the magnetic field, while Joule

heating enhanced the energy and mass transport phenomena. The results

regarding the coefficient of skin friction along the radial direction are

consistent with values reported in the literature.
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1 Introduction

Maxwell [1] proposed a rate-type model, which is well-known because of its viscoelastic

conduct and the prediction of stress-relaxation. The study of stretching surfaces is also an

intriguing topic for mathematicians, physicists, and engineers. The non-Newtonian

Maxwell model also has significant application to problems in industrial fields,

including aerodynamics, petroleum, and pharmaceutical processes. Mukhopadhyay [2]

adopted the boundary layer theory to model the Maxwell MHD flow and shooting scheme.
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Yang et al. [3] distinguished the thermal conductivity of a two-

phase medium for the Maxwell fluid. They reported decreased

conduction due to insulating pores caused by stretchiness. In their

heat transport study of the Maxwell model with variable

conditions, Ahmad et al. [4] reported a decreased heat-flux

because of additions to the stretching parameter. Ramzan et al.

[5] examined convective Maxwell flow with Dufour impression,

while Hsiao [6] analyzed a thermal extrusion problem with

radiation and dissipation for the Maxwell model, in which they

inferred that free convection is more reliable than forced

convection energy transformation. Madhu et al. [7] investigated

the viscoelastic behavior of the flow with thermal radiation and

MHD. Irfan et al. [8] applied the HAM for Maxwell fluid with the

consideration of source/sink. Aziz and Shams [9]evaluatedthe

importance of thermal radiation and heat source in entropy

generation for a permeable surface. Their quantitative results

showed significantly decreased entropy generation with

increased magnetic field strength and medium permeability.

The term nanofluid refers to nanometer-sized structured

particles suspended in a base-fluid, generally water or intricate

hydrocarbon compounds. Recently, due to their extensive use in

applied science, biomedicine, industries, etc., nanofluids have

attracted increased attention. Choi [10] pioneered the term

nanofluid; since then, many studies have been conducted. The

mathematical modeling of nanofluid transport has adopted the

two-phased model described by Buongiorno [11]. To understand

the flow pattern and heat transport capacities of nanofluids,

numerous studies have been conducted in aerospace, biosciences,

and industrial fields. Cattaneo [12] modified the traditional Fourier

model by incorporating the thermal relaxation time property,

resulting in the Maxwell-Cattaneo principle. Christov [13]

modifiedCattaneo’s findings with the Oldroyd derivative to

produce an invariant form. The Cattaneo-Christov model and

Fourier law were compared by Han et al. [14]. Mustafa [15]

deduced the viscoelastic behavior of flow through the Cattaneo-

Christov theory on a stretching surface and inferred that heat

transport was inversely associated with the relaxation time. Li

et al. [16] analyzed the heat transfer and viscoelastic conduct of

models used with a steady boundary layer and the Cattaneo-

FIGURE 1
Flow configuration.

TABLE 1 Comparison values of −~f 99(0) for β1 ≥ 0 when α = M = 0.

−~f 99(0)

β1 Reference [34] Reference [35] Reference [36] Reference [37] Present

0.0 1.000000 0.999978 1.000000 1.0000000 1.000000

0.2 1.051948 1.051945 1.051889 1.0518890 1.051556

0.4 1.101850 1.101848 1.101903 1.1019035 1.101603

0.6 1.150163 1.150160 1.150137 1.1501374 1.150356

0.8 1.196692 1.196690 1.196711 1.1967114 1.196711

1.0 1.241722

1.2 1.285257 1.285253 1.285363 1.2853630 1.285355

TABLE 2 Comparison values of −~f 99(0) for M ≥ 0 when α = β1 = 0.

−~f 99(0)

M Reference [38] Reference [39] Reference [40] Reference [41] Present

0.5 1.1180 1.118034 1.224745 1.224742

1.0 1.41421 1.414214 1.414213 1.414213

1.5 1.581136

2.0 1.732045

5.0 2.44948 2.449483 2.449474 2.446251
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Christov theory. Khan [17] reported the numerical significance of

the heat-mass transference rate on the Carreau fluid flow. Acharya

et al. [18] presented a generalized model for Fourier-Fick’s law, in

which they concluded the concentration distribution increased due

to Fick’s law. Additional studies on heat transfer in nanofluids and

the Cattaneo-Christov theory are discussed in Refs. [19–33].

Motivated by these previous studies, the present study discussed

Maxwell nanofluid flow and its heat transport rate over a stretching

cylinder at a steady state. This study also utilized Cattaneo-

Christov’s theory to develop energy and concentration equations.

The theory of double diffusion was applied to examine the

characteristics of heat transfer in viscoelastic flow. The effects of

magnetic field (Lorentz force and Joule heating), heat source/sink,

and the chemical reaction rate on the temperature and

concentration profiles were also evaluated. The practical

applications of this study include deforming and stretching

surfaces, particularly in application and development in industrial

processes such as fiber-glass production, enhancement of electronic

devices by employing microchips, plastic manufacturing, etc. We

also examined the response of fluid motion, concentration, and

energy distribution by altering attrition and other relevant

parameters. All the graphs show exponential decay, which

highlights the dependence of these profiles on the independent

variable η. The homotopy analysis method (HAM) was used to

develop the series of convergent solutions for the ordinary

differential equations (ODEs). We applied this analytical scheme

to quantitatively compare our results to those previously reported.

Section 2 of this report describes the mathematical modeling

of the problem. Section 3 discusses the solution approach to solve

the problem. Section 4 discusses the graphs and tables showing

the results of comparisons with Refs. [22–29]. Finally, Section 5

presents the concluding remarks.

2 Mathematical formulation

Consider a steady laminar two-dimensional incompressible flow

over a cylinder of radius R0 stretched along the z-direction with

velocity ~uw(z) � Az, (where A � U0
l > 0 is the ratio of the reference

velocity to a specific length), drenched into the Maxwell nanofluid.

The geometry of the flow is shown in Figure 1. The magnetic field

B � [B0, 0, 0] is applied normal to the axis of the cylinder; i.e., the z-

axis. Moreover, the Cattaneo-Christov diffusion causes thermal and

solutal transportation in the flow. At the cylinder surface, the

temperature and concentration of the Maxwell nanofluid are

constant; i.e., ~T � ~Tw and ~C � ~Cw, respectively. At the free-

stream, their values are ~T � ~T∞ and ~C � ~C∞, respectively. The

extra stress tensor S for the Maxwell fluid is:

1 + λ1
D

Dt
( )S � μA1, (1)

where A1 � (gradV) + (gradV)T is the first Rivlin–Ericksen

tensor, μ is the dynamic viscosity, D
Dt is the upper convective

time derivative (Oldroyd derivative), and λ1 is the

relaxation time.

The Cattaneo-Christov model is utilized in preference to the

classical Fourier’s law of heat conduction and Fick’s law of

diffusion, with the heat flux q and the mass flux J given as:

q + λt
zq
zt

+ V · ∇q + (∇ · V)q − q · ∇V( ) � −k∇~T, (2)

J + λc
zJ
zt

+ V · ∇J + (∇ · V)J − J · ∇V( ) � −Db∇~C, (3)

where λt, λc, k, and Db are the thermal time relaxation, the mass

time relaxation, the thermal conductivity of the fluid, and the

Brownian diffusion coefficient, respectively. Eqs 2 and 3 are

reduced to the classical Fourier’s law of heat conduction and

Fick’s law of diffusion when λt = λc = 0. For incompressible flow

(∇ · V � 0), Eqs 2, 3 reduce to:

q + λt
zq
zt

+ V · ∇q − q · ∇V( ) � −k∇~T, (4)

J + λc
zJ
zt

+ V · ∇J − J · ∇V( ) � −Db∇~C. (5)

Given the above assumptions, and eliminating S, q, and J, the

governing equations for the Maxwell nanofluid flow are:

z~u

zr
+ ~u

r
+ z ~w

zz
� 0, (6)

~u
z ~w

zr
+ ~w

z ~w

zz
+ λ1 ~w2z

2 ~w

zz2
+ ~u2z

2 ~w

zr2
+ 2~u ~w

z2 ~w

zrzz
[ ] � ]

z2 ~w

zr2
+ 1
r

z ~w

zr
[ ]
−σB

2
0

ρf
~w + λ1~u

z ~w

zr
[ ],

(7)
~u
z~T

zr
+ ~w

z~T

zz
+ λt ~u2z

2 ~T

zr2
+ ~w2z

2 ~T

zz2
+ 2~u ~w

z2 ~T

zrzz
+ ~u

z~u

zr

z~T

zr
+ ~u

z ~w

zr

z~T

zz
[

+ ~w z~u

zz

z~T

zr
+ ~w

z ~w

zz

z~T

zz
] � τ

Dt

~T∞

z~T

zr
( )2

+ 2λt ~u
z~T

zr

z2 ~T

zr2
+ ~w

z~T

zz

z2 ~T

zz2
( )⎡⎣ ⎤⎦

+τDb
z~C

zr

z~T

zr
− λt ~u

z2 ~T

zr2
z~C

zz
+ ~u

z2 ~C

zr2
z~T

zr
+ ~w

z2 ~T

zrzz

z ~C

zr
+ ~w

z2 ~C

zrzz

z~T

zr
( )[ ]

+α1
1
r

z

zr

z~T

zr
( )[ ] + Q0

ρcp
~T − ~T∞( ) + λt ~u

z~T

zr
+ ~w

z~T

zz
( )[ ]

+σB
2
0

ρcp
~w2 + 2λt ~w2z ~w

zz
+ ~u ~w

z~u

zr
( )[ ],

(8)

TABLE 3 Convergence of homotopic solutions for fixed β1 = Nb = Nt =
Le = M = S = 0.1, βt = βc = 0.5, and Pr = 2.0.

Order of approximation −f 99(0) −θ9(0) −ϕ9(0)

1 1.0051 0.9959 0.9908

2 1.0102 0.9919 0.9863

4 1.0201 0.9804 0.9819

6 1.0250 0.9802 0.9774

8 1.0250 0.9801 0.9774

10 1.0250 0.9801 0.9774
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~u
z~C

zr
+ ~w

z~C

zz
+ λc ~u2z

2 ~C

zr2
+ ~w2z

2 ~C

zz2
+ 2~u ~w

z2 ~C

zrzz
+ ~u

z~u

zr

z~C

zr
+ ~u

z ~w

zr

z~C

zz
[

+ ~w z~u

zz

z~C

zr
+ ~w

z ~w

zz

z~C

zz
] � Db

z2 ~C

zr2
+ 1
r

z~C

zr
[ ] + Dt

~T∞

z2 ~T

zr2
+ 1
r

z~T

zr
( )[

+λc ~u
z3 ~T

zr3
+ ~u

r2
z~T

zr
+ ~u

r

z2 ~T

zr2
+ ~w

z3 ~T

zr2zz
+ ~w

r2
z2 ~T

zrzz
( )]

−K0
~C − ~C∞( ) + λc ~u

z~C

zr
+ ~w

z~C

zz
( )[ ].

(9)

In the above equations, ρf, σ, B0, τ, cp, α1, Dt, Q0, and K0 are

the density of the fluid, the electric conductivity of the fluid, the

intensity of the magnetic field, the effective heat capacity of the

nanoparticles in the base fluid, the heat capacity, the thermal

diffusivity of the nanofluid, the thermophoresis coefficient, the

volumetric rate of heat absorption/generation source, and the

chemical reaction rate, respectively.

The corresponding boundary conditions are:

~u z, r( ) � 0, ~w z, r( ) � Az, ~T � ~Tw, ~C � ~Cw at r � R0, (10)
~u → 0, ~T → ~T∞, ~C → ~C∞ as r → ∞ . (11)

The conversion ansatz for the flow, thermal, and mass

transport are:

~u � −R0

r

���
A]

√
~f η( ), ~w � Az~f′ η( ), θ η( ) � ~T − ~T∞

~Tw − ~T∞
,

ϕ η( ) � ~C − ~C∞
~Cw − ~C∞

, with η �
��
A

]

√
r2

2R0
− R0

2
( ). (12)

Note that Eq. 6 is satisfied and Eqs 7–9 yield the following

dimensionless ODEs.

FIGURE 2
(A) ~f′(η) as a function of β1. (B) θ(η) as a function of β1. (C) ϕ(η) as a function of β1.
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1 + 2ηα( )~f′′′ − ~f
′2 + ~f~f

′′ + 2α~f
′′ + 2β1

~f~f′~f′′ − β1
~f
2 ~f

′′′

− αβ1
1 + 2ηα( ) ~f2 ~f

′′ −M ~f′ − β1
~f~f

′′( ) � 0,

(13)
1 + 2ηα( )θ′′ + 2αθ′ + Pr ~fθ′ − βt

~f~f′θ′ + ~f
2
θ′′( )[ ] + PrNb 1 + 2ηα( )θ′ϕ′[

−βt 2α~fθ′ϕ′ + 1 + 2ηα( ) ~fθ′′ϕ′ + ~fθ′ϕ′′( ){ }] + PrNt 1 + 2ηα( )θ′2[
−2βt 1 + 2ηα( )~fθ′θ′′ + α~fθ′2{ }] + 2PrMEc ~f

′2 + βt
~f
′3 − ~f~f′~f′′( )[ ]

+PrQ* θ + βt
~fθ′( )[ ] � 0,

(14)
1 + 2ηα( )ϕ′′ + 2αϕ′ + Sc ~fϕ′ − βc

~f~f′ϕ′ + ~f
2
ϕ′′( )[ ]

+Nt

Nb
1 + 2ηα( )θ′′ − βc

~fθ′′′ − 4α~fθ′′( )[ ] − ScK* ϕ + βc
~fϕ′( )[ ] � 0.

(15)

with boundary conditions:

~f η( ) � 0, ~f′ η( ) � 1, θ η( ) � 1, ϕ η( ) � 1, as η � 0, (16)
~f′ η( ) � 0, θ η( ) � 0, ϕ η( ) � 0 as η → ∞ . (17)

The dimensionless parameters involve the fluid relaxation

time parameter β1, the curvature parameter α, the magnetic field

parameterM, the Prandtl number Pr, the Schmidt number Sc, the

Brownian diffusion parameterNb, the thermophoresis parameter

Nt, the thermal relaxation time parameter βt, the solutal

relaxation time parameter βc, the Eckert number Ec due to

the stretching of the cylinder in the z-direction, the heat

generation parameter Q*, and the chemical reaction parameter

K*, respectively.

FIGURE 3
(A) ~f′(η) as a function of α. (B) θ(η) as a function of α. (C) ϕ(η) as a function of α.
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β1 � Aλ1, α � 1
R0

��
]
A

√
, M � σB2

0

ρA
, Pr � ]

α1
, Sc � ]

Db
,

Nb �
Db

~Cw − ~C∞( )τ
]

, Nt �
Dt

~Tw − ~T∞( )τ
]~T∞

, βt � Aλt, βc � Aλc,

Ec � ~u2
w

cp ~Tw − ~T∞( ), Qp � Q0

A ρcp( ), Kp � AK0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

3 Solution approach

The resultingODEswere highly non-linear; therefore, to obtain a

numerical solution, we used a semi-analytical scheme, namely the

HAM in Wolfram Mathematica. The advantages of this technique

include its utility if the equations under consideration include any

large or small parameters. Furthermore, it can be applied to achieve a

non-linear approximate problem by selecting distinct sets of base

functions. The detail of this technique can be seen in [30]. Eqs 13–15

for the flow, temperature, and concentration fields are solved

analytically by implementing the principles of homotopy. In this

technique, the corresponding auxiliary linear operators (L ~f,Lθ ,Lϕ)
and initial guesses (~f0, θ0,ϕ0) are selected to obtain a convergent

series solution. Thus, the non-linear problem is converted into an

infinite series of linear ones. The selected linear operators with initial

guesses for this problem are:

~f0 η( ) � 1 − e−η, θ0 η( ) � e−η, ϕ0 η( ) � e−η, (19)
L ~f

~f η( )[ ] � ~f
′′′ − ~f′, Lθ θ η( )[ ] � θ′′ − θ, Lϕ ϕ η( )[ ] � ϕ′′ − ϕ.

(20)

FIGURE 4
(A) ~f′(η) as a function of M. (B) θ(η) as a function of M. (C) ϕ(η) as a function of M.
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4 Solution convergence

The parameters -f, -θ, and -ϕ for the velocity field, temperature,

and concentration distribution, respectively, ensure the convergence

of the homotopic series solutions. The values of these parameters are

found by applying the following least-square error formula:

Ff,m � 1
N + 1

∑N
j�0

Nf ∑m
i�0

Fj iΔη( )⎡⎣ ⎤⎦2. (21)

The velocity, temperature, and concentration field solutions

converge at the sixth order of estimate.

5 Discussion of results

This section discusses the impact of the factors affecting the

flow, thermal, and mass transportation. The behavior of the

Maxwell parameter β1, the curvature parameter α, the magnetic

field parameter M, the thermophoresis parameter Nt, the

Brownian parameter Nb, the heat source/sink parameter Q*,

the thermal relaxation time parameter βt, the solutal

relaxation time parameter βc, the Prandtl number Pr, the

Eckert number Ec, and the Schmidt number Sc are scrutinized

for the velocity ~f′(η), temperature θ(η) and concentration ϕ(η)
fields.

FIGURE 5
(A) θ(η) as a function of βt. (B) ϕ(η) as a function of βc. (C) θ(η) as a function of Q*. (D) ϕ(η) as a function of K*.
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Since the behaviors of fluid motion, thermal, and mass

distributions are dependent on η (on the x-axis), fluid is

closer to the boundary, i.e., at η = 0; thus, we noted the

maximum values of velocity, temperature, and concentration

profiles, as shown in the graphs. Physically, the stretching

effect is most prominent for fluid near the boundary;

however, as the value of η increases, the stretching effect

starts to decrease. This behavior is strictly/continuously

decreasing and can be defined as a monotonic decreasing

behavior. Furthermore, the motion near the surface is

signified when a graph converges more easily. To achieve a

better solution convergence, we fixed the values of the

relevant parameters, as follows: β1 = α = 0.8, M = 1.0, Nt =

0.4, Nb = 0.1, Q* = K* = 0.6, and βt = βc = 0.5.

Tables 1 and 2 compare our findings to those reported previously.

The numerical outcomes attained here are in best agreement with

these studies. Table 3 shows that the values of the skin friction

coefficient along the radial direction −~f′′(0) increased for β1 ≥ 0.

Table 1 shows that by incrementing the values of the magnetic

parameterM≥ 0, the coefficient of skin friction−~f′′(0) also increased.
Figures 2A–C illustrate the influence of the Maxwell parameter

β1 on ~f′(η), θ(η), and ϕ(η). Figure 2A shows that by increasing the

value of β1 from0.1, 0.6, 1.1, to 1.6, the velocity field decreases because

β1 causes friction against the flow field. However, the opposite

behavior is shown for thermal and mass transport in Figures

2B,C. The energy of the system increases with increasing Maxwell

parameter values. Physically, β1 corresponds to the deformation of

viscoelastic fluids. The stress relaxation phenomenon increases with

FIGURE 6
(A) θ(η) as a function of Nt. (B) ϕ(η) as a function of Nt. (C) θ(η) as a function of Nb. (D) ϕ(η) as a function of Nb.

Frontiers in Physics frontiersin.org08

Ahmed et al. 10.3389/fphy.2022.1005056

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1005056


increased β1values, which hardens the material under observation;

i.e., it behaves as solid, with the distance between fluid particles

decreasing. This requires more time to sustain deformation and

lowers the velocity profile. Furthermore, the thermal conductivity of

the fluid improves simultaneously, which eventually boosts the heat

and mass transport phenomenon. Figures 3A–C show the influence

of the curvature parameter α on ~f′(η), θ(η), and ϕ(η). The graphs
demonstrate the increased flow field and energy of the system due to

increased α values; i.e., their behavior varies linearly for α. The radius

of curvature reduces, which decreases the surface-liquid interface

constituency and boosts the velocity profile. The root cause of this

behavior is an increment in the collision rate among the particles,

which decays the heat transfer rate and raises the temperature and

concentration distribution as illustrated in Figures 3A–C. In Figures

4A–C influence of magnetic parameter M is seen on ~f′(η), θ(η),
and ϕ(η). The higher values of M strengthen the Lorentz/

electromagnetic force due to the external magnetic field, which

produces resistance against the fluid flow. Thus, the velocity field

decreases with increasing M value from 1.0 to 3.0, 5.0, and 7.0.

However, this force inducesmore collisions among the fluid particles,

which significantly increases the temperature and mass distribution.

This effect is shiwn in Figures 4B,C.

Figures 5A,B illustrate the effect of the thermal relaxation time

parameter βt and the solutal relaxation time parameter βc on θ(η)
and ϕ(η), respectively. The thermal and concentration fields are

compressed by magnifying the thermal and the solutal relaxation

time parameters. In a physical sense, the particles require additional

time to conduct heat towards the adjacent particles, which results in a

deterioration of the fluid temperature. However, due to an accretion

of βc, particles require extra time to diffuse mass, resulting in a

reduced concentration distribution. Figures 5C,D show the

consequences of the heat source/sink parameter Q* and the

FIGURE 7
(A) θ(η) as a function of Pr. (B) θ(η) as a function of Ec. (C) ϕ(η) as a function of Sc.
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chemical reaction parameter K* on θ(η) and ϕ(η), respectively. The
mass distribution decreases with increasing chemical reaction rateK*,

as illustrated in Figure 5D. The species transfer in chemical reactions

results in a decreased mass distribution. However, Figure 5C shows

the increased energy of the system due to the random motion of the

particles, which ultimately increases the fluid temperature forQ* > 0.

Figures 6A–D highlight the significance of the thermophoresis

parameter Nt and the Brownian diffusion parameter Nb on θ(η)
and ϕ(η). The effects of Nb on the thermal and mass transport are

shown in Figures 6C,D, respectively. Due to Brownian motion, the

particles exhibit erratic movements, which magnifies their rapidity

and, hence, increases the average kinetic energy of the system. This

immediate boost in kinetic energy provokes more tumultuous

collisions among particles by directly increasing the temperature

field; however, the concentration distribution decreases, as shown in

Figure 6D. However, as demonstrated in Figure 6B, the rate of mass

transport is amplified and drives the particles to relocate into areas of

low concentration by inducing the thermophoresis phenomenon.

The massive particles quickly experience the positive Soret effect, in

which they proceed from warmer to lower temperature zones. These

effects lead to increased fluid temperature and concentration fields, as

shown in Figures 6A,C. In Figures 7A,B the effect of Prandtl number

Pr and Eckert number Ec is determined on θ(η). The thermal

diffusivity of the fluid decreases due to increased Pr as Pr enhances

the specific heat capacity of the liquid, whereas heat transmission

delays fluid flow. Thus, the heat transfer rate and temperature field

decrease. Figure 7B shows the dissipation of energy due to increased

Ec values owing to the stretching of the sheet, which causes changes

in thermal transportation, for Ec = 0.1, 0.5, 0.8, 1.2. Physically, fluid

friction is generated due to increased Ec values, which causes the

transformation of mechanical energy into heat energy. Therefore,

θ(η) rises. Figure 7C illustrates the impact of Schmidt number Sc on

ϕ(η). Since Sc corresponds to the momentum and mass diffusivity,

with increases in the diffusion ratio to 3, 7, 11, and 15, the

momentum diffusion predominates over the mass diffusion. Thus,

the mass transport decreases.

6 Conclusion

This study assessed 2D Maxwell nanofluid flow over a

stretched cylinder along the z-direction with the thermal and

solutal transportation in flow induced by Cattaneo-Christov

diffusion. The effects of the chemical reaction, heat generation

source/sink, and Joule heating were also considered in the heat

and mass transport analysis. A semi-analytical method, the

homotopy analysis method (HAM) in Wolfram Mathematica,

was used to compute the convergent series solution. The main

outcomes were:

• The coefficient of skin friction along the radial direction

−~f′′(0) was enhanced for non-negative values of Maxwell

and magnetic parameters.

• The Maxwell parameter decreased the behavior of the flow

field. However, improving the thermal conductivity

strengthened the temperature and concentration profiles.

• The Lorentz force induced by the magnetic field produced

resistance and reduced the flow field; however, the thermal and

mass transport increased due to the Joule heating effect.

• Due to Brownian motion and thermophoresis, the thermal

transport escalated. However, the concentration field was

decayed by the former and augmented by the latter.

• The temperature distribution increased due to the effects of

the heat source/sink. However, the chemical reaction rate

reduced the concentration profile.

• The thermal and mass relaxation parameters reduced the

heat and mass transfer rates, respectively.

• The fluid friction generated as a result of Ec converted the

mechanical energy into thermal energy, which increased the

temperature field.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors without undue reservation.

Author contributions

AA: modeled the problem and solved the governing equation.

MS: discussed the outcomes of the problem. All authors

contributed to the article and approved the submitted version.

Acknowledgments

The authors extend their appreciation to theDeanship of Scientific

Research at King Khalid University, Saudi Arabia, for funding this

work through the Research Group Program (grant no. RGP.2/12/43).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors, and the reviewers. Any product

that may be evaluated in this article, or claim that may bemade by its

manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Physics frontiersin.org10

Ahmed et al. 10.3389/fphy.2022.1005056

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1005056


References

1. Maxwell JC.A treatise on electricity and magnetism, (Vol. 1). Clarendon Press (1881).

2. Mukhopadhyay S. Heat transfer analysis of the unsteady flow of aMaxwell fluid
over a stretching surface in the presence of a heat source/sink. Chin Phys Lett (2012)
29:054703. doi:10.1088/0256-307x/29/5/054703

3. Yang X, Lu T, Kim T. Thermal stretching in two-phase porous media: Physical basis
for Maxwell model. Theor Appl Mech Lett (2013) 3:021011. doi:10.1063/2.1302111

4. Ahmad M, Ahmad I, Sajid M. Magnetohydrodynamic time-dependent three-
dimensional flow of Maxwell fluid over a stretching surface through porous space
with variable thermal conditions. J Braz Soc Mech Sci Eng (2016) 38:1767–78.
doi:10.1007/s40430-016-0501-2

5. Ramzan M, Bilal M, Chung JD, Farooq U. Mixed convective flow of Maxwell
nanofluid past a porous vertical stretched surface–An optimal solution. Results Phys
(2016) 6:1072–9. doi:10.1016/j.rinp.2016.11.036

6. Hsiao KL. Combined electrical MHD heat transfer thermal extrusion system
using Maxwell fluid with radiative and viscous dissipation effects. Appl Therm Eng
(2017) 112:1281–8. doi:10.1016/j.applthermaleng.2016.08.208

7. Madhu M, Kishan N, Chamkha AJ. Unsteady flow of a Maxwell nanofluid over
a stretching surface in the presence of magnetohydrodynamic and thermal radiation
effects. Propulsion Power Res (2017) 6:31–40. doi:10.1016/j.jppr.2017.01.002

8. Irfan M, Khan M, Khan WA, Ayaz M. Modern development on the features of
magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat
transport. Phys Lett A (2018) 382:1992–2002. doi:10.1016/j.physleta.2018.05.008

9. Aziz A, Shams M. Entropy generation in MHD Maxwell nanofluid flow with
variable thermal conductivity, thermal radiation, slip conditions, and heat source.
AIP Adv (2020) 10:015038. doi:10.1063/1.5129569

10. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with
nanoparticles, developments and applications of non-Newtonian flows. In:
1995 International mechanical engineering congress and exhibition. San
Francisco, CA (United States): Argonne National Lab (1995). p. 99–105.

11. Buongiorno J. Convective transport in nanofluids. J Heat Transfer (2006) 128:
240–50. doi:10.1115/1.2150834

12. Cattaneo C. Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena
(1948) 3:83–101.

13. Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo
model of finite speed heat conduction.Mech Res Commun (2009) 36:481–6. doi:10.
1016/j.mechrescom.2008.11.003

14. Han S, Zheng L, Li C, Zhang X. Coupled flow and heat transfer in viscoelastic
fluid with Cattaneo-Christov heat flux model. Appl Math Lett (2014) 38:87–93.
doi:10.1016/j.aml.2014.07.013

15.MustafaM. Cattaneo-Christov heat fluxmodel for rotating flow and heat transfer of
upper-convected Maxwell fluid. AIP Adv (2015) 5:047109. doi:10.1063/1.4917306

16. Li J, Zheng L, Liu L. MHD viscoelastic flow and heat transfer over a vertical
stretching sheet with Cattaneo-Christov heat flux effects. J Mol Liq (2016) 221:
19–25. doi:10.1016/j.molliq.2016.05.051

17. Khan M. On Cattaneo-Christov heat flux model for Carreau fluid flow over a
slendering sheet. Results Phys (2017) 7:310–9. doi:10.1016/j.rinp.2016.12.031

18. Acharya N, Das K, Kundu PK. Cattaneo-christov intensity of magnetised
upper-convected Maxwell nanofluid flow over an inclined stretching sheet: A
generalised fourier and Fick’s perspective. Int J Mech Sci (2017) 130:167–73.
doi:10.1016/j.ijmecsci.2017.05.043

19. Loganathan K, Alessa N, Kayikci S. Heat transfer analysis of 3-D viscoelastic
nanofluid flow over a convectively heated porous riga plate with cattaneo-christov
double flux. Front Phys (2021) 379:1. doi:10.3389/fphy.2021.641645

20. Loganathan K, Alessa N, NamgyelKarthik NTS. MHD flow of thermally
radiative Maxwell fluid past a heated stretching sheet with Cattaneo–Christov dual
diffusion. J Math (2021) 2021:1–10. doi:10.1155/2021/5562667

21. Loganathan K, Mohana K, Mohanraj M, Sakthivel P, Rajan S. Impact of third-
grade nanofluid flow across a convective surface in the presence of inclined Lorentz
force: An approach to entropy optimization. J Therm Anal Calorim (2021) 144(5):
1935–47. doi:10.1007/s10973-020-09751-3

22. Venkata Ramana K, Gangadhar K, Kannan T, Chamkha AJ.
Cattaneo–Christov heat flux theory on transverse MHD Oldroyd-B liquid over
nonlinear stretched flow. J Therm Anal Calorim (2022) 147(3):2749–59. doi:10.
1007/s10973-021-10568-x

23. Gangadhar K, Kumari MA, Chamkha AJ. EMHD flow of radiative second-
grade nanofluid over a Riga Plate due to convective heating: Revised Buongiorno’s
nanofluid model. Arab J Sci Eng (2022) 47(7):8093–103. doi:10.1007/s13369-021-
06092-7

24. Gangadhar K, Kumari MA, Subba Rao MV, Alnefaie K, Khan I, AndualemM.
Magnetization for burgers’ fluid subject to convective heating and heterogeneous-
homogeneous reactions. Math Probl Eng (2022) 2022:1–15. doi:10.1155/2022/
2747676

25. Turkyilmazoglu M. Heat transfer enhancement feature of the Non-Fourier
Cattaneo–Christov heat flux model. J Heat Transfer (2021) 143(9):1. doi:10.1115/1.
4051671

26. Turkyilmazoglu M. Flow and heat over a rotating disk subject to a uniform
horizontal magnetic field. Z für Naturforschung A (2022) 77(4):329–37. doi:10.
1515/zna-2021-0350

27. Turkyilmazoglu M. Exact solutions concerning momentum and thermal fields
induced by a long circular cylinder. Eur Phys J Plus (2021) 136(5):483–10. doi:10.
1140/epjp/s13360-021-01500-1

28. Yaseen M, Rawat SK, Kumar M. Hybrid nanofluid (MoS2–SiO2/water) flow
with viscous dissipation and Ohmic heating on an irregular variably thick convex/
concave-shaped sheet in a porous medium. Heat Trans (2022) 51(1):789–817.
doi:10.1002/htj.22330

29. Yaseen M, Kumar M, Rawat SK. Assisting and opposing flow of a MHD
hybrid nanofluid flow past a permeable moving surface with heat source/sink and
thermal radiation. Partial Differ Equ Appl Math (2021) 4:100168. doi:10.1016/j.
padiff.2021.100168

30. Gumber P, Yaseen M, Rawat SK, Kumar M. Heat transfer in micropolar
hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and
suction/injection effects. Partial Differ Equ Appl Math (2022) 5:100240. doi:10.
1016/j.padiff.2021.100240

31. Yaseen M, Rawat SK, Kumar M. Cattaneo–Christov heat flux model in
Darcy–Forchheimer radiative flow ofMoS2–SiO2/kerosene oil between two parallel
rotating disks. J Therm Anal Calori (2022) 6:1–23.

32. Iqbal MS, Ghaffari A, Riaz A, Mustafa I, Raza M. Nanofluid transport through
a complex wavy geometry with magnetic and permeability effects. Inventions (2021)
7(1):7. doi:10.3390/inventions7010007

33. Abdelmalek Z, Khan SU, Waqas H, Riaz A, Khan IA, Tlili I. A
mathematical model for bioconvection flow of Williamson nanofluid over a
stretching cylinder featuring variable thermal conductivity, activation energy
and second-order slip. J Therm Anal Calorim (2021) 144(1):205–17. doi:10.
1007/s10973-020-09450-z

34. Abel MS, Tawade JV, Nandeppanavar MM. MHD flow and heat transfer for
the upper-convected Maxwell fluid over a stretching sheet. Meccanica (2012) 47:
385–93. doi:10.1007/s11012-011-9448-7

35. Megahed AM. Variable fluid properties and variable heat flux effects on the
flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady
stretching sheet with slip velocity. Chin Phys B (2013) 2013:094701. doi:10.1088/
1674-1056/22/9/094701

36. Waqas M, Khan MI, Hayat T, Alsaedi A. Stratified flow of an Oldroyd-B
nanofluid with heat generation. Results Phys (2017) 7:2489–96.

37. Irfan M, Khan M, Khan WA. Impact of homogeneous–heterogeneous
reactions and non-Fourier heat flux theory in Oldroyd-B fluid with variable
conductivity. J Braz Soc Mech Sci Eng (2019) 41:135. doi:10.1007/s40430-019-
1619-9

38. Fang T, Zhang J, Yao S. Slip MHD viscous flow over a stretching sheet – an
exact solution. Commun Nonlinear Sci Numer Simul (2009) 14:3731–7. doi:10.1016/
j.cnsns.2009.02.012

39. FathizadehM,Madani M, Khan Y, Faraz N, YıldırımA, Tutkun S. An effective
modification of the homotopy perturbation method for MHD viscous flow over a
stretching sheet. J King Saud Univ - Sci (2013) 25:107–13. doi:10.1016/j.jksus.2011.
08.003

40. Hayat T, Shafiq A, Alsaedi A. MHD axisymmetric flow of third grade fluid by
a stretching cylinder. Alexandria Eng J (2015) 54:205–12. doi:10.1016/j.aej.2015.
03.013

41. Ahmed A, Khan M, Irfan M, Ahmed J. Transient MHD flow of Maxwell
nanofluid subject to nonlinear thermal radiation and convective heat transport.
Appl Nanoscience (2020) 10:5361–73. doi:10.1007/s13204-020-01375-1

Frontiers in Physics frontiersin.org11

Ahmed et al. 10.3389/fphy.2022.1005056

https://doi.org/10.1088/0256-307x/29/5/054703
https://doi.org/10.1063/2.1302111
https://doi.org/10.1007/s40430-016-0501-2
https://doi.org/10.1016/j.rinp.2016.11.036
https://doi.org/10.1016/j.applthermaleng.2016.08.208
https://doi.org/10.1016/j.jppr.2017.01.002
https://doi.org/10.1016/j.physleta.2018.05.008
https://doi.org/10.1063/1.5129569
https://doi.org/10.1115/1.2150834
https://doi.org/10.1016/j.mechrescom.2008.11.003
https://doi.org/10.1016/j.mechrescom.2008.11.003
https://doi.org/10.1016/j.aml.2014.07.013
https://doi.org/10.1063/1.4917306
https://doi.org/10.1016/j.molliq.2016.05.051
https://doi.org/10.1016/j.rinp.2016.12.031
https://doi.org/10.1016/j.ijmecsci.2017.05.043
https://doi.org/10.3389/fphy.2021.641645
https://doi.org/10.1155/2021/5562667
https://doi.org/10.1007/s10973-020-09751-3
https://doi.org/10.1007/s10973-021-10568-x
https://doi.org/10.1007/s10973-021-10568-x
https://doi.org/10.1007/s13369-021-06092-7
https://doi.org/10.1007/s13369-021-06092-7
https://doi.org/10.1155/2022/2747676
https://doi.org/10.1155/2022/2747676
https://doi.org/10.1115/1.4051671
https://doi.org/10.1115/1.4051671
https://doi.org/10.1515/zna-2021-0350
https://doi.org/10.1515/zna-2021-0350
https://doi.org/10.1140/epjp/s13360-021-01500-1
https://doi.org/10.1140/epjp/s13360-021-01500-1
https://doi.org/10.1002/htj.22330
https://doi.org/10.1016/j.padiff.2021.100168
https://doi.org/10.1016/j.padiff.2021.100168
https://doi.org/10.1016/j.padiff.2021.100240
https://doi.org/10.1016/j.padiff.2021.100240
https://doi.org/10.3390/inventions7010007
https://doi.org/10.1007/s10973-020-09450-z
https://doi.org/10.1007/s10973-020-09450-z
https://doi.org/10.1007/s11012-011-9448-7
https://doi.org/10.1088/1674-1056/22/9/094701
https://doi.org/10.1088/1674-1056/22/9/094701
https://doi.org/10.1007/s40430-019-1619-9
https://doi.org/10.1007/s40430-019-1619-9
https://doi.org/10.1016/j.cnsns.2009.02.012
https://doi.org/10.1016/j.cnsns.2009.02.012
https://doi.org/10.1016/j.jksus.2011.08.003
https://doi.org/10.1016/j.jksus.2011.08.003
https://doi.org/10.1016/j.aej.2015.03.013
https://doi.org/10.1016/j.aej.2015.03.013
https://doi.org/10.1007/s13204-020-01375-1
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1005056

	Material and wave relaxation phenomena effects on the rheology of Maxwell nanofluids
	1 Introduction
	2 Mathematical formulation
	3 Solution approach
	4 Solution convergence
	5 Discussion of results
	6 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


