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Membranes of organelles in the intracellular trafficking pathway continuously

undergo recycling through fission and fusion processes. The effect of these

recycling processes on the large-scale morphology of organelles is not well

understood. Using a dynamically triangulated surface model, we developed a

membrane morphology simulator that allows for membrane trafficking, and

analyzed the steady state shape of vesicles subjected to such active remodeling.

We study a two-component vesicle composed of 1) active species which can

have nonzero spontaneous curvature and participate in the recycling and 2)

inactive species which do not participate in the recycling. We obtain a plethora

of steady state morphologies as a function of the activity rate, spontaneous

curvature, and the strength of interaction between species. We observe that

morphology changes, as a function of rate of activity, are diametrically opposite

for the two signs of the spontaneous curvature, but only have a weak effect on

its magnitude. The interplay between the in-plane diffusion, the activity rate,

and the spontaneous curvature are shown to determine the vesiclemorphology

at the steady state. It is shown that the spontaneous curvature and activity

inhibits the formation of clusters of active species on the surface. We carry out

linear stability analysis of a continuummodel and show that the spherical shape

of a vesicle is indeed unstable when subjected to active membrane recycling

above a certain activity rate.
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1 Introduction

Organelle membranes exhibit a wide variety of morphologies that are believed to be

crucial for their function [1–3]. While peroxysomes and lysosomes are spherical, the

endoplasmic reticulum (ER) has sheet-like and tube-like regions [4]. Adjacent sheets of

the rough ER are connected through parking-garage like structures called “Terasaki spiral

ramps” [5]. The Golgi apparatus consists of flattened membrane compartments called the

cisternae and the mitochondria is made of an outer membrane and a highly convoluted

inner membrane. There are a number of structural motifs that are commonly observed in

these organelle membranes such as sheets, tubules, or interconnected networks [6, 7]. The

dimensions of such features have managed to remain conserved throughout evolution.
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For instance, the diameter of the tubules in the cristae junction of

the inner mitochondrial membrane are strictly maintained at

28 nms [7]. To know the functional organization within a cell, it

is essential to understand the mechanisms that are responsible

for generation and maintenance of organelle morphologies.

Together with the fact that organelles dissolve and reassemble

to take nearly the same structure during each cell cycle suggests

that the generation and stabilization of organelle morphology is

the product of a concerted effort. Although there are several

molecular players and complex feedback loops involved in the

processes of organelle morphogenesis, it is possible that these

process can be understood in terms of a few self-organizing

principles [8–10].

Different models and mechanisms, that can spontaneously

generate such complex shapes have been proposed [6, 7, 11, 12].

One such mechanism, which is specially relevant for the

organelle membranes in the membrane trafficking pathway, is

the regulated rates of fission and fusion of vesicles. This

mechanism is reported to be a crucial factor for maintaining

the morphology and composition of these organelles [13]. This

process of fission and fusion are active in the sense that they

require external energy input through hydrolysis of ATP/GTP

and are assisted by special proteins such as SNAREs [14]. It is

accepted that such active recycling of essential proteins and lipids

are imperative to maintain the composition and function of the

membranes. However, an understanding of the effect of such

active processes on the morphology and organisation of organelle

membranes is still lacking.

In a planar membrane subjected to active deposition and

evaporation of membrane materials, it was found that the activity

can result in a dynamical instability resulting in long tubular

shapes of the membrane [15]. Ramakrishnan et al. [16] studied

the spontaneous morphological changes of a vesicle under

adsorption and desorption of active curvature modifying

agents. It was seen that spontaneous curvature fluctuations

can lead to shape transitions through an activity-dependent

tension. On a similar line, Goutaland et al. explored the

stability of a free standing membrane subjected to active and

thermal spontaneous curvature fluctuations induced by binding/

unbinding of curvature active components [17]. Both these

models however do not consider actual area changes of the

membrane due to deposition and evaporation or binding and

unbinding of curvature active agents. Another recent work

investigates the role of nonequilibrium recycling involving

actual material exchange on the conformations of 1D active

polymer models [18].

In a work that is closely related to what is presented here

Tachikawa and Mochizuki carried out coarse-grained

simulations that capture the reassembly of Golgi apparatus as

a result of vesicle aggregation, fusion, and membrane shape

relaxation [19]. While their work is focused on reproducing

the shape of Golgi, our emphasis is on understanding the steady

states shapes that results from energy consuming transport of

membrane components and curvature modifying agents.

In-plane organisation of membrane components, that are

curvature active, can have significant effect on the morphology

of the membrane. Coarsening dynamics and domain size

distributions of membrane domains undergoing active recycling

is investigated in Ref. [20]. It was shown that active stresses in a thin

sheet, that depend on the concentration of a stress-regulating

molecular species which are dynamically changing in response to

flows on and deformations of the surface, can result in spontaneous

generation of nontrivial surface shapes and shape oscillations [21].

Another factor that can contribute to the morphology of a vesicle is

the rate of growth of volume relative to that of area, which was

addressed recently [22].

In contrast, to the above mentioned works, the work

presented in this paper addresses the question of the

morphology of vesicles, with continuous flux of materials into

and out of its surface, at the steady state. We explore the effects of

fluctuations in local density and spontaneous curvature using a

new method based on Dynamical Triangulation Monte Carlo

(DTMC) and local density based potentials. DTMC is a useful

technique to explore the non-axisymmetric shapes of membranes

which are analytically intractable [23]. Here, we introduce a

modified DTMC method, that now allows for addition and

removal of membrane material, and explore the steady-state

morphology of the vesicle as a function of material addition

and removal rates. Here, the recycling of membrane material is

considered as an active (energy consuming) process. We observe

that such nonequilibrium processes lead to shape instabilities

when material exchange is coupled to local membrane curvature.

2 Simulation method

The vesicle is represented by an infinitely thin triangulated

surface where each triangle represents a patch of lipid bilayer.

The length unit of the simulation is set by the diameter of the

vertex beads. The configuration of the system is specified by the

number of vertices, their position vectors ( �R), the connectivity of
the mesh (T ), and the nature of each species ( �ρ). From the

position vectors for the vertices, one can directly calculate the

area and normal for each triangle on the surface. Using this, an

area associated with the vertex Ai and a surface normal ni can be

evaluated by appropriate weighted averaging. One can then

define mean curvature at each vertex using [23],

Hi � 1
σ i
ni ·∑

j i( )

σ ij
lij

Ri − Rj( ). (1)

Here, lij is the distance between the two vertices located at Ri

andRj, σij is the length of the bond in the dual lattice, σi is the area

of the dual cell of vertex i. In Eq. 1, j(i) denotes all vertices j that

are neighbors of vertex i.
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The equilibrium dynamics of themembrane is simulated using

the vertex displacement and bond flip MC moves, which

respectively captures the local radial fluctuations and the in-

plane lipid diffusion. More details about the DTMC technique

is available in Refs. [23, 24]. The process of fusion of a smaller

vesicle is considered to add more membrane material (lipids and

proteins). For the large vesicle, the process of fusion essentially

increases its area. Similarly, the process of fission removes a small

amount of area from the vesicle. In simulations, the addition and

removal of area from the vesicle is captured with the help of MC

moves for addition and removal of a vertex respectively. The

conventional DTMC method has a restriction on the length of the

tether connecting neighboring vertices. In order to introduce

vertex addition and removal MC moves, we need to relax this

restriction on the maximum length of the tether. We use a local

density based attractive interaction potential between the vertices

to keep the triangulated surface intact [25]. The local density at

each vertex is defined using,

ρi � ∑
j i( )

fcut lij( ) (2)

where the fcut is a cutoff function defined as

fcut r( ) � exp A 1 + 1

r/rcut( )n − 1
( ){ } r< rcut( )

0 r≥ rcut( )

⎧⎪⎪⎨⎪⎪⎩ (3)

with n = 12, rcut = 2.1, rhalf = 1.8,

A � log(2)[(rcut/rhalf )n − 1] ≈ 3.715. The total energy of the

surface includes three contributions—the bending energy

(Ebend), the energy from local density based attractive

potential (Eatt), and the interaction energy (Eint),

H � Ebend + Eatt + Eint (4)

� κ

2
∑Nv

i�1
2Hi − Cpϕi( )2Ai

+ϵ
4
∑Nv

i�1
log 1 + e −4 ρi−ρ*( )[ ]( ) − J∑Nv

i�1
∑
j∈i

ϕiϕj

(5)

where ρ* = 8 is taken as the preferred local density and ϵ = 6 is

used for the strength of the potential. The two parameters of the

attractive potential, ϵ and ρ* was chosen such that simulations

reproduce the edge length and coordination number

distributions similar to those obtained using the tether

potential (Figures 1A,B). The last term in Eq. 5 allows for

interaction between the species on the surface. Here, ϕi denotes

the nature of the species occupying the vertex; ϕi = 1 indicates

that an active species occupies vertex i and ϕi = 0 indicates that a

passive species is occupying vertex i. The interaction is

attractive if J > 0 and repulsive otherwise.

We assume that the fission and fusion processes are actively

assisted by and happens only with the help of protein

machineries that are present on the smaller vesicle. In

simulations, the presence of the protein machinery is taken

into account by tagging a vertex as active. Thus, a two

component membrane is considered by tagging each vertex as

either active or passive to indicate two types of species. Since the

protein machinery residing on the small vesicle can also induce

membrane curvature, the active species is assigned a preferred

FIGURE 1
The histogram for edge length (A) and coordination number (B) distribution for different parameter choices for the local density based potential
in our modified DTMC technique. The histograms for the conventional DTMC technique is shown as “Tether” for comparison. (C) Schematic
representation of fission/fusion process in our model. The fission/fusion process takes place with rates r−/r+ respectively. (D) Schematic showing the
local configurational changes during vertex addition and removal MC moves in the simulation.
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curvature Cp. On the other hand, the passive species is assumed

to have no preferred curvature. The equilibrium dynamics of the

membrane is simulated using the vertex displacement, edge flip,

and protein diffusion MC moves. To simulate active processes of

fusion and fission, we introduce two new MC moves—vertex

addition and vertex removal respectively (Figure 1D). Addition

of a vertex to the triangulated surface is considered here as

equivalent to fusion of a small vesicle to a large membrane

surface. Since the typical size of transport vesicles in the

intracellular environment is around 50 nms, this is considered

as the size of a vertex. Similarly, removal of a vertex is considered

equivalent to fission of a small vesicle from the membrane

surface. Note that these 2 MC moves break the detailed

balance condition and therefore drives the simulations away

from equilibrium. The details of the implementation of the

two active MC moves are described below.

Each vertex addition MC move increases the number of

vertices in the triangulated surface by one and thereby increases

the total area. We perform the vertex addition move in two

ways—three neighbor addition and six neighbor addition. In the

former, we choose a random face on the surface and attempt to

add a vertex at a distance d ∈ (0, dadd) above (outside the surface)

it along the face normal. The initially chosen face is removed and

three new faces are added along with the new vertex. The

coordination number of the newly added vertex in this case is

three.

In six neighbor addition, a random face is chosen and a new

vertex placement is attempted above it at a distance d ∈ (0, dadd)

along the face normal. If the move is accepted, the chosen face

and the three edges of the chosen face are removed. This results

in six vertices surrounding the newly added vertex. Six new faces

and edges are added by connecting the newly added vertex with

the six vertices. Thus the coordination number of the newly

added vertex is six in this algorithm. The vertex addition attempt

is rejected if it violates the self- avoidance criteria. We observed

that when dadd < = 0.7, almost all the addition attempts were

rejected due to self-intersection. For dadd > 1.1, most of the newly

added vertices results in highly obtuse triangle faces wherein the

curvature computations are not accurate. Within the range 0.7 <
dadd < 1.1, we observed that the results of our simulation do not

vary significantly. For the results presented here, we used

parameter value dadd = 0.9. Note that vertex addition adds

“bumps” on the surface (Figure 2) that models the fusion of a

small vesicle to the membrane surface. The sharp edges of these

FIGURE 2
(A) Activity makes the spherical shape unstable when Cp ≠ 0.0. When Cp > 0, the reduced volume of the vesicle undergoes a sharp decrease as
the activity rate is increased, indicating a sharp change in the vesicle morphology from spherical to flattened shapes. When Cp < 0, the reduced
volume undergoes a diametrically opposite transitionwith activity rate, corresponding to amorphology change from tubular to spherical shapes. The
blue filled star, which is overlapping with the red symbols, corresponds to simulations where Cp = −0.1 with no in-plane diffusion of active
species. The interaction strength J is set to zero in all these cases. (B) A qualitativemorphology phase diagram indicating the parameter ranges where
the vesicle assumes a flattened/tubular shape (dark regions) and spherical shape (light regions). The dashed vertical lines show three cross sections
corresponding to three different regimes of morphology changes observed in our model—tubular to spherical when Cp < 0 (blue), always spherical
when Cp = 0 (black), and spherical to tubular/stomatocyte when Cp > 0 (red). (C) Snapshots of morphologies observed at the steady state
for—Cp = −0.1 (blue outline), Cp = 0 (black outline), and Cp = 0.1 (red outline)—at different activity rates. The parameter values used in the simulation
are �N � 1200, ζ = 0.1, and κ = 10kBT.
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bumps are short-lived compared to the timescale for morphology

change of the vesicle.

As vesicle fusion is an active process driven by energy supply

from the hydrolysis of ATP molecules, we assume that the

statistics of vertex addition is not controlled by the

Hamiltonian. Rather, we use the following probability for

accepting the addition move

Padd � α+
1

η + eζ Nv− �N( ) (6)

whereNv is the number of vertices in the vesicle at any instant, �N is a

parameter determining the mean size of the vesicle, and ζ controls

the width of size fluctuations. Such an assumption is reasonable

because it is generally considered that there are regulatory

mechanisms which are responsible for controlling the size of

organelles. The parameter α+ Nv is the number of attempts to

add a vertex in 1 MC Sweep (MCS). Fusion process is always

assumed to add an active species. Since a vertex is always added

from outside, this also implies a positive curvature at the added

vertex independent of the value of preferred curvature. The fission

process is captured by the vertex removal MC move, wherein a

randomly chosen vertex with an active species is removed from the

surface. The resultant polygon shaped opening on the surface is then

retriangulated while maintaining self-avoidance. The probability for

vertex removal is taken as

Prem � α−
1

1 + e−ζ Nv− �N( ), (7)

where α− Nv is the number of attempts to remove a vertex in one

MCS. The parameters α+ and α− respectively affects the rate of

fusion and fission processes with respect to the rate of bending

relaxation. In order to satisfy the condition that the addition and

removal probabilities are equal when Nv � �N, we choose the

parameter η = 2α+/α− − 1 in Eq. 6. For simplicity, we assume that

α+ = α− = α throughout this work.

Note that, we have neglected the Gaussian curvature term in

the free energy of the vesicle as we are only allowing vesicles of

spherical topology. In order to maintain self-avoidance of the

surface during addition and removal moves, we performed

collision checks between vertices, edges, and faces during each

active MC attempt. Collision checks are optimized by using an

Octree data structure to represent and perform spatial queries

using the geometric objects.

3 Linear stability analysis in the
presence of membrane recycling

In this section, we derive the dynamical equations for a nearly

spherical vesicle subjected to active membrane recycling. A two

component vesicle, which has an active component that takes

part in the active processes of fission/fusion and an inactive

component that does not, is considered. The active component

may represent either curvature inducing proteins or small lipid

vesicles having a preferred curvature Cp. We derive the coupled

dynamical equations for the vesicle radius field and the density of

the active component, that includes the equilibrium bending

relaxation, the diffusion of the active components and the effects

of recycling. The stability of the spherical shape of such a vesicle

is analyzed with respect to the activity strength.

The vesicle is modeled as a nearly spherical 2D surface. The

configuration of the vesicle is represented using spherical

parametrization where the distance from the centre of mass,

to each point on the surface, is given by,

�r θ,φ( ) � r0 1 + u θ,φ( )[ ]êr. (8)

Here r0 is the radius of a reference sphere and u is the scaled

deviation in radius at point (θ, φ). Assuming that the deviation

(u) from the reference spherical shape is small, the relevant local

geometric quantities—square root of determinant of the metric

tensor and the mean curvature—upto 2nd order in u are,

��
g

√
≈ 1 + 2u + u2 + ∇⊥u( )2

2
( ), (9)

H ≈ − 1
2r0

−2 + 2u + ∇2
⊥u − 2u2 − 2u∇2

⊥u( ), (10)

where ∇⊥ is the surface gradient operator defined as

∇⊥ � êθzθ + (1/ sin θ)êφzφ. With the overall minus sign in H,

we follow the convention that a sphere has positive curvature.

The local density of the active component is denoted by ~ψ(θ,φ)
and the projected local density is obtained as

ψ(θ,φ) � ��
g

√
~ψ(θ,φ). We consider small fluctuations (ϕ ≪ 1)

of this projected density about its steady state value ψst,

ψ � ψst + ϕ. (11)

An effective energy functional can be written for the vesicle

based on the Helfrich Hamiltonian as [26],

H � ∫ dA
��
g

√
σ + κ

2
2H − Cp ~ψ( )2 + χ

2
~ψ2{ } (12)

where κ is the bending rigidity of the membrane and Cp is the

preferred curvature of the active component. The integral is

defined over the entire area of the reference sphere, where

dA � r20 sin θdθdφ. The equilibrium dynamical equation of

this system is given by,

ztu � −Γ δH
δu

+ ξu t( ), (13)

ztϕ � M∇2
⊥
δH
δϕ

+ ξϕ t( ), (14)

where Γ is the membrane mobility andM is the lateral mobility of

the active species. The first term on the right hand side of Eq. 13

and Eq. 14 represent the relaxation of the local radius and the

density field respectively. The second term represents the

equilibrium random noise. In this paper we only look at the

regime where random forces from the surroundings on the

Frontiers in Physics frontiersin.org05

Sachin Krishnan and Sunil Kumar 10.3389/fphy.2022.1003558

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1003558


system are small compared to the active noise (to be introduced

below) and set ξu(t) = 0 and ξϕ(t) = 0 for the rest of the analysis.

The active processes shown schematically in Figure 1C are

modeled as follows. Fusion can happen anywhere on the surface

regardless of whether active species are present in the region or

not. In a very general case, the rates of fusion may also depend on

the local curvature and composition of the active species. Thus,

we assume the following form for the rate of fusion

r+ � λ1 + λ2H + λ3 ~ψ + λ4 ~ψH (15)
where λ1 represents a uniform rate of fusion and λ2, λ3, and λ4 are

appropriate coupling constants. In our model, fission is allowed

only from regions where active species are present on the surface,

therefore it must always be coupled to ~ψ. The rate of fission is

taken as,

r− � μ1 ~ψ + μ2 ~ψH (16)

where μ1 and μ2 are coupling constants. Note that, in the special

case of spatially uniform fission and fusion, all the coupling

parameters except λ1 and μ1 are zero. For a perfectly spherical

(u = 0) and homogeneous (ϕ = 0) vesicle, the steady state is

attained when the rates are balanced, (r+ − r−)u�0,ϕ�0 � 0. From

this condition, the steady state concentration can be written in

terms of the coupling parameters as,

ψst �
− λ1 + λ2

r0
( )

λ3 + λ4
r0

( ) − μ1 +
μ2
r0

( )
� −

λ1 + λ2
r0

δ1 + δ2
r0

,

(17)

where δ1 = λ3 − μ1 and δ2 = λ4 − μ2. We now have four parameters

related to the activity—1) λ1: the uniform rate of fusion, 2) λ2: the

local curvature dependent rate of fusion, 3) δ1: the activity rate

that depends on the local density of active species, and 4) δ2: the

activity rate that depends both on the local density and the local

curvature. They are not all independently controllable as the

steady-state concentration imposes a constraint. Thus, we can

write the parameter δ2 in terms of the other three as,

δ2 � − r0δ1 + 1
ψst

r0λ1 + λ2( )[ ]. (18)

For a configuration that deviates from the reference state by u

and ϕ respectively in the radius and local density fields, the net

change due to activity is,

r+ − r−( )u,ϕ � − 1
ψst

λ1 + λ2
r0

( )ϕ + 2 λ1 + λ2
r0

( )u + 1
2

λ1 + ψstδ1( )
× 2u + ∇2

⊥u( ).
(19)

The dynamical equations for the local radius and the local

density fields of the active vesicle are,

ztu � −Γ δH
δu

+ l

τ
r+ − r−( ) (20)

ztϕ � M∇2
⊥
δH
δϕ

+ a

τ
r+ − r−( ), (21)

where the quantities l and a represent the temporal variation of

local radius and local density field, respectively, due to activity

and τ represents the activity timescale. In both Eqs 20, 21, the first

term of the right hand side captures the equilibrium relaxation

and the second term corresponds to the nonequilibrium

dynamics. So as to carry out a linear stability analysis, the

variables u and ϕ are expanded in the spherical harmonic

basis as

u θ,φ, t( ) � ∑∞
n�2

∑n
m�−n

unm t( )Ynm θ,φ( ) (22)

ϕ θ,φ, t( ) � ∑∞
n�1

∑n
m�−n

ϕnm t( )Ynm θ,φ( ), (23)

where Ynm (θ, φ) represents a spherical harmonic mode. The

modes corresponding to n = 0 and n = 1 with respect to variable u

capture the radial expansion and the lateral translation modes

respectively. As these two modes do not change the energy of the

system, they are neglected in the spherical harmonic expansion.

From Eq. 20 and Eq. 21, we get the linearized coupled dynamical

equation for the spherical harmonic coefficients unm and ϕnm as,

zt
unm

ϕnm
( ) � 1

τκ

−�σ n n + 1( ) + 2[ ] − n n + 1( ) n − 1( ) n + 2( ) − 4Cpψst n n + 1( ) − 1[ ] Cp n n + 1( ) − 2[ ] + 2ψst Cp
2 + �χ( )

+1
2
ψ2
st Cp

2 + �χ( ) n n + 1( ) − 6[ ] −
�l

2
λ1 + ψstδ1( ) n n + 1( ) − 2[ ] + 2�l λ1 + �λ2( ) −

�l

ψst

λ1 + �λ2( )
�MCpn n + 1( ) n − 1( ) n + 2( ) + 2 �Mψst Cp

2 + �χ( )n n + 1( ) − �M Cp
2 + �χ( )n n + 1( )

−�a
2

λ1 + ψstδ1( ) n n + 1( ) − 2[ ] + 2�a λ1 + �λ2( ) − �a

ψst

λ1 + �λ2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
unm

ϕnm
( ),

(24)

where, 1/τκ = Γκ. The dimensionless quantities in Eq. 24 are

defined as given in Table 1.

In the absence of activity [τκ/τ = 0], the dynamical equations

represent equilibrium relaxation of the membrane. In addition to

this, when Cp = 0, the dynamical matrix becomes diagonal and

the eigenvalues are ~ − n4 and − �M�χn2. These are respectively the

bending relaxation and diffusion modes of a membrane in

equilibrium [27]. A non-zero preferred curvature (and a non-

zero protein density) will result in coupling of the two relaxation

modes.

4 Results

4.1 Activity-induced steady state
morphologies

We use the modified DTMC method (described in 2) to

explore and characterize the steady state morphologies of a two-
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component vesicle with a minority component that is curvature

inducing. Only the curvature inducing components on the

membrane undergo active recycling, when vertices labelled

with these components are added on the outer side or

removed from the vesicle. The simulation ensures that the

mean and the width of fluctuation in the number of these

active species is set to specific values. A nearly spherical

vesicle is used as the initial configuration in the simulation

runs. The reduced volume, defined as the ratio of the vesicle

volume to the volume of a sphere having the same area, is used to

broadly characterize the shapes. A value of reduced volume close

to unity indicates that the vesicle shape is nearly spherical,

whereas values smaller than unity indicates that the vesicle is

deformed. The organization of active sites on the surface is

quantified with the help of cluster size probability

distributions. In all the simulations, the spherical topology of

the membrane is maintained, the vesicle volume is allowed to

change, and the net pressure difference between the inside and

outside is set to be zero. We choose the bending modulus and

spontaneous curvature values such that in the absence of activity

(no vertex addition or vertex removal MC moves) the vesicle

remains spherical.

For the results presented in this subsection, we assume that

there is no direct interaction between the active components

(i.e., J = 0 in Eq. 5). The dependence of the average reduced

volume of steady state vesicle configurations on activity rate is

shown in Figure 2A. When the preferred curvature of the active

species is zero (Cp = 0.0), the reduced volume does not deviate

significantly from unity even at higher activity rates suggesting

that the vesicle remains spherical (see black curve in Figure 2A).

For non-zero spontaneous curvatures, Figure 2A shows a sharp

transition in the average reduced volume with increasing activity

rate. Such a change in the average reduced volume indicates that

there is a drastic change in the vesicle morphology. When the

preferred curvature of the active species is positive, we observe a

transition from spherical shape to flattened sacs and

stomatocytes. On the other hand, when the preferred

curvature is negative, we see tubular shapes at lower activity

which transitions sharply to spherical shape at higher activity.

The steady state shapes obtained at various values for the activity

rate and spontaneous curvatures are shown in Figure 2C. A

morphology phase diagram as a function of activity rate and

preferred curvature of the active components is shown in

Figure 2B.

The morphology changes can be understood vis a vis three

competing timescales involved in the process; 1) curvature

relaxation, 2) membrane recycling or activity and 3) in-plane

diffusion. In our simulations, we observed that it requires ~ 500

MCS for the curvature, added through vertex addition, to relax.

Membrane recycling/activity timescale τ is defined as the

average time between successive active events (fusion or

fission). The membrane recycling timescale is set by the

activity rate in our simulations. We find that the two time

scales are comparable when the activity rate is 0.2/MCS. The

activity rate is referred to as low/high in comparison with this

rate. Since the addition of material is always from outside the

added curvature is always positive irrespective of the value of

Cp. For the case of Cp > 0.0, since the preferred curvature is

closer to the curvature of the newly added vertex, the curvature

active component takes longer to diffuse out from the region,

i.e., the in-plane diffusion is slow in this case. This implies that

the probability of material removal from the same region where

it was added is higher. At low activity rates, the membrane gets

enough time to relax the added curvature to the Cp value.

TABLE 1 Parameters considered in the model, their dimensionless form, and the (range of) scaled values used for the stability analysis.

Parameter Typical value Dimensionless form Scaled value

Vesicle radius (r0) 10 μm

Membrane bending rigidity (κ) 20 kBT

Membrane mobility (Γ) 3.57 (pN μm s)−1

Membrane tension (σ) 0–4 pN μm−1 [29] �σ � σr20
κ

0–5,000

Spontaneous curvature of active species (Cp) −0.5–0.5 (μm)−1 �Cp � Cpr0 −5–5

Inverse susceptibility of active species (χ) 0.2 × 10−3 (pN μm s)−1 �χ � χr20
κ

0.25

Lateral mobility of active species (M) 0.5 (pN μm s)−1 �M � M
Γ 0.14

Local curvature dependent rate of fusion (λ2) �λ2 � λ2
r0

−2–2

Scaled form

Steady state density of active species (ψst) 0.1

Change in local scaled radius with activity (l) 0.1 �l � τκ
τ l 0.1 × γ

Change in local areal density with activity (a) 0.001 �a � τκ
τ a 0.001 × γ

Bare fusion rate (λ1) 1

Local density dependent activity rate (δ1) −5–5

Frontiers in Physics frontiersin.org07

Sachin Krishnan and Sunil Kumar 10.3389/fphy.2022.1003558

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1003558


Whereas at high activity rates, i.e., when the curvature

relaxation timescale is much larger than the activity

timescale, the curvature fluctuation due to addition/removal

is high and leads to spherical shape of the vesicle being

destabilized as the result of the dynamic tension [16]. Since

the membrane-recycling time dominates this regime, the added

vertex do not get sufficient time to sense the preferred

curvature. This explains the low-sensitivity to the magnitude

of Cp (see red curves in Figure 2A). In the case of negative

spontaneous curvature Cp < 0.0, due to a mismatch between the

added curvature, which is always positive due to the addition of

vertices only on the outer side of the vesicle, and the preferred

curvature, the active species quickly diffuses out of the addition

site (i.e., fast in-plane diffusion) and eventually gets removed

from a different site. At low activity rates, the membrane has

time to relax to the preferred curvature of the active species.

Hence, what gets removed is the negatively curved region,

while what is added is a positively curved region. This biased

curvature fluctuation drives an instability leading to tubular

shapes as seen in Figure 2C. At high activity rates the

membrane recycling dominates over the curvature

relaxation. What makes Cp < 0 different from that of Cp >
0 at this high activity rate is that in the former the vertex

removed will have the average curvature value of the vesicle

while in the latter it is most likely that the added vertex with a

higher curvature itself gets removed. This disparity arises due

to two factors 1) the curvature added is always more than the

average curvature of the vesicle and 2) the active species moves

faster out of the regions with unfavorable curvature. Thus, in-

plane diffusion of the active species is a deciding factor for the

stability of the spherical shape. In order to cross check the role

played by in-plane diffusion, in deciding the steady state

shapes, we ran simulations without in-plane diffusion for

the case of Cp = −0.1. Since there is no in-plane diffusion of

active species, the site of vertex addition and removal remains

the same and we see a transition from spherical to flattened

shapes similar to the case of Cp > 0.0 (see blue filled stars in

Figure 2A). Thus, we see that an interplay between the in-plane

diffusion, the activity rate, and the added curvature offers a

mechanism to spontaneously generate and stabilize various

morphologies of the vesicle.

The transition from low activity to high activity is

independent of the value of Cp and is set by the typical shape

relaxation time. The shape relaxation in our simulations is ~ 500

MCS and at steady state, we have ~ 120 active species on the

membrane surface. In order for each one of the active species to

have a chance for removal within the curvature relaxation time,

the rate of activity should be greater than 0.2/MCS. Since the

diffusion time scale is larger, this correlates with the region of

transition shown in Figure 2 for Cp > 0. On the other hand, when

Cp < 0 diffusion dominates and the competition is between

diffusion and activity rate which we verify explicitly in our

simulation as described above.

4.2 Active recycling inhibits formation of
large clusters

When the interaction strength J, between the active species, is

greater than zero, it is energetically favourable for the active

species to form clusters. In this subsection, we focus on the effect

of activity rate and the spontaneous curvature on the size of such

clusters. Figure 3A shows, a log-log plot between the probability

of observing a cluster of a particular size versus the cluster size.

The dependence on activity rate and the preferred curvature of

the active species Cp are shown separately. The shoulder like

regions in both the plots show that there is a preference for

clusters having around 10 active species for low activity and low

Cp values.

Figure 3A compares the cluster size distributions at different

activity rates when the spontaneous curvature of the active

species is fixed at 0.6. We see that as activity rate is increased,

the probability of larger clusters diminishes. Similarly, Figure 3B

shows the cluster size distributions at a low activity rate (0.06 per

MCS) for different spontaneous curvatures. In this case too, we

see that the probability of large cluster sizes diminishes with

increase in spontaneous curvature. Thus, we conclude that both

activity rate and its coupling to the curvature of the membrane

inhibit the formation of clusters on the vesicle surface.

4.3 Stability of the spherical shape

We have carried out a linear shape stability analysis of a

two-component vesicle subjected to active membrane

recycling. The derivation of the linearized dynamical

equation about the homogeneous spherical reference state

is given in Section 3. The spherical shape of the vesicle

remains stable at all Cp values in the absence of activity

when the steady state density of the active component ψst

is fixed at 0.1. The stability phase diagram of the vesicle in the

(Cpr0, ψst) plane, in the absence of activity, is shown in

Figure 4A. Here r0 is the radius of a reference sphere. The

dark regions in Figure 4A corresponds to the case where

curvature-composition coupling is strong enough to

destabilize the spherical shape [28]. Values for other

dimensionless parameters are chosen as shown in Table 1.

In the presence of activity, the stability is also governed by the

coupling parameters, namely the local curvature dependent rate

of fusion (�λ2) and the local projected density dependent activity

rate (δ1). The activity rate is controlled by changing the ratio of

timescale for equilibrium membrane relaxation and typical

activity timescale, defined as γ = τκ/τ. For the analysis, we fix

the coefficient representing the bare rate of fusion λ1 as unity.

When both the coupling parameters (�λ2, δ1) are negative

(Figure 4B), we observe that the spherical shape is stable for

all negative spontaneous curvatures and unstable for positive

spontaneous curvatures above a certain activity rate. On the other
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hand, when the curvature coupling parameter �λ2 is positive,

i.e., more fusion in positively curved regions, we see that the

spherical shape is unstable in the negative half-plane of �Cp and

stable up to a certain activity rate for positive �Cp (Figure 4C).

Figure 4 (bottom panel) shows the �λ2–γ plane of stability phase

diagram for three values of �Cp while the δ1 is fixed. The stability

phase diagrams for δ1 = 5 (not reported in Figure 4) were

qualitatively similar to those for δ1 = −5.

FIGURE 3
(A) The dependence of the cluster size distribution on activity rate. Increasing the activity rate suppresses the formation of large clusters. The
spontaneous curvature for all the curves isCp=0.6. (B) The dependence of the cluster size distribution on the spontaneous curvature. Increasing the
spontaneous curvature suppresses the formation of large clusters. The activity rate for all the curves is 0.06 per MCS. The parameter values used in
the simulation are �N � 1200, ζ = 0.1, κ = 10kBT, and J = 1.0.

FIGURE 4
(A) Stability phase diagram for the vesicle without activity. Spherical morphology is unstable in the high Cp and high ψst regime (dark blue). The
dashed line marks the case of ψst = 0.1, where the spherical shape of the vesicle is stable for the range of spontaneous curvature values considered
here. (B,C) The stability diagram in the presence of activity in �Cp–γ plane for two values of �λ2. (D–F) The stability diagram in the presence of activity in
�λ2–γ plane for two values of �Cp. The values of all other parameters are as shown in Table 1.
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The linear stability analysis predicts the conditions under

which the spherical shape is unstable in a certain parameter

space. As a general trend, we observe that, when activity is large

and non-uniform (�λ2 ≠ 0), the spherical shape is unstable. On

the other hand, when the activity is independent of local

curvature (i.e., �λ2 � 0) the spherical shape is seen to be stable

at all activity rates when �Cp ≥ 0. A more direct mapping of the

coupling parameters to those in simulations is complicated and is

not pursued here. Moreover, it is difficult to predict using such a

stability analysis, whether the unstable vesicle achieves a non-

spherical steady state shape and if yes, discern what those

shapes are.

5 Discussion

Active transport of membrane materials is considered

essential for maintaining the composition of intracellular

membranes, particularly for those in the endocytic pathway.

Such transport is also expected to influence the large scale

morphology of organelles. We have developed a

nonequilibrium simulation method based on DTMC to study

the effect of fluctuations in area and spontaneous curvature on

the steady state morphology of a vesicle. The spherical shape of

the vesicle was found to be stable at all activity rates as long as the

spontaneous curvature of the active component was zero. At

positive spontaneous curvatures, the vesicle is spherical at low

activity rates (< 10−1/MCS). At very high activity rates

(> 1/MCS), the vesicle assumes a stomatocyte shape

(Figure 2A). For intermediate activity rates between 0.1–1.0/

MCS, the vesicle assumes a tubular or a flattened disc

morphology. On the other hand, for Cp < 0.0 we see almost

the opposite trend, with tubular shapes for low activity and

spherical vesicle for high activity. Thus the steady state vesicle

morphology was found to depend on the spontaneous curvature

of the active species, the interaction between active species, and

the activity rate. A qualitative morphology phase diagram is

presented in Figure 2B, which shows the parameter range in

which the three classes of steady state shapes are observed. The

results presented here is qualitatively different from that shown

earlier for membranes with only active curvature fluctuation [16],

where the transitions were found to be insensitive to the sign of

the spontaneous curvature of the active species. The primary

difference between the work reported here and that in Ref. [16] is

that we allow for local membrane area fluctuations along with

active curvature fluctuations. The fact that the fusion considered

here is in/out asymmetric could be the cause for this sign

dependence of shape transition as active species with positive

spontaneous curvature are more likely to stay in the region of

fusion, while active species with negative Cp is more likely to

diffuse out of the region of fusion.

The distribution on themembrane, of active proteins that can

cause membrane curvature, will have serious implications on the

morphology of the vesicle. We expect a non-zero attractive

interaction between the active species to result in formation of

large clusters on the surface.While at low activity rates we do find

the formation of such large clusters, higher activity rates and high

spontaneous curvatures were seen to inhibit the formation of

large clusters. Our results show that regulation of the membrane

recycling rate could offer a robust mechanism to maintain the

vesicle in spherical, tubular, or a stomatocyte morphology,

without having large clusters of curvature active components.

In order to gain a little more understanding of the factors

that drive the membrane shape instability, we derived the

dynamical equations for the local shape and composition

fields of a nearly spherical vesicle that is subjected to active

material transport. The coupled dynamical equations took

into account the bending relaxation of the membrane, the

diffusion of the components, and changes in the local radius

and local composition due to the active processes. The vesicle

was composed of passive and active components, with the

passive species having no preferred curvature while the

active species possessed a spontaneous curvature and took

part in membrane fission and fusion. The conditions under

which the active recycling of membrane material can

destabilize a spherical vesicle was identified using a linear

stability analysis.

Though the biological membranes, with its chemical

diversity, is far more complex than the simplified models used

in this work, we are able to see that membrane area and curvature

fluctuations, resulting from active transport of materials, can lead

to non-trivial vesicle shapes. Future work will explore the effect of

multiple active agents that undergo reaction and diffusion on the

vesicle surface.
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