
Multi-layer Rotation Memory
Model-based correlation filter for
visual tracking

Yufei Zhao1, Yong Song2,3*, Guoqi Li1, Lei Deng1, Yashuo Bai2,3

and Xiyan Wu2,3

1Department of Precision Instrument, Center for Brain-Inspired Computing Research, Tsinghua
University, Beijing, China, 2School of Optics and Photonics, Beijing Institute of Technology, Beijing,
China, 3Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and
Technology, Beijing, China

Object tracking technology is of great significance in laser image processing.

However, occlusion or similar interference during visual object tracking may

reduce the tracking precision or even cause tracking failure. Aiming at this issue,

we propose a Multi-layer Rotation Memory Model-based Correlation Filter

(MRMCF) for visual trackingin this paper. First, we establish a Multi-layer

Rotation Memory (MRM) model, in which a set of three rotating concentric

rings is used to simulate the three memory spacesand their updating

processsimulate the memory spaces. Then we introduce the MRM model

into the correlation filter tracking framework, which realizes realizing the

dynamic updating of classifier parametersin the correlation filter. When the

object is occluded or there is similar interference, the proposed tracker can use

the Pre-occ classifier parameters stored in the memory spaces in the MRM

model MRMmemory spaces to retarget the object, thereby reducing the impact

of these factors. The experimental results on the OTB50 dataset show that

compared with trackers such as CNN-SVM, MEEM, Struck, etc., the proposed

tracker achieves higher accuracy and success rate.
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1 Introduction

Object tracking technology has a wide range of application in laser spectroscopy

including LiDAR (Light Detection And Ranging) image processing [1, 2], active laser

detection [3, 4] and real-time laser tracker [5, 6], etc. Generally, object tracking is the task

of estimating the state of an arbitrary object in each frame of a video sequence. In the most

general setting, the object is only defined by its initial state in the sequence. Most current

approaches address the tracking problem by constructing an object model, and these

approaches are capable of differentiating between the object and background

appearance [7, 8].

At present, there are mainly two types of object trackers: generative trackers and

discriminative trackers. Among them, the basic idea of the generative trackers is to learn
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an object appearance model and search for the most similar area

in the image as the object area [9–12]. The discriminative

trackers (also called detection-based trackers) regard the

tracking problem as a detection problem. This kind of tracker

trains a classifier using the object and the background area of the

current frame as the position and negative sample, respectively.

And the trained classifier is adopted to find the optimal object

area in the next frame.

In the classifier training process of discriminative trackers,

different training methods can be used, such as Correlation Filter

(CF) [13–15], Deep Learning (DL) [16–18], and Support Vector

Machine (SVM) [19, 20]. Among them, CF has been widely used

due to its advantages of high speed and good robustness.

Specifically, in the CF method, a classifier is firstly learned

from a set of training samples. Then the classifier is trained

by performing a cyclic shift operation on the training sample,

which allows the training and detection process can be performed

in the Fourier domain. The amount of calculation is greatly

reduced, thereby obtaining higher efficiency. However, CF only

considers the samples of the current frame during each training.

Therefore, when facing common problems such as occlusion,

deformation, or background clutter [8, 21], the CF does not

consider the influence of previously appeared samples, and the

trained classifier is not robust enough, which may lead to

tracking failure.

On the other hand, the memory mechanism in the Human

Visual System (HVS) can extract old information stored in the

memory space when a new similar one appears. Therefore, the

memory mechanism has the potential to solve the problem of

occlusion during the tracking process. In terms of object tracking,

Ma et al. [22] proposed a tracker based on an adaptive CF with

long-termmemory and short-term memory, which achieves long-

term stablememory of the appearance of the object;Wan et al. [23]

introduced Long Short-Term Memory (LSTM) into the tracking

process, obtaining good tracking results; Mikami et al. [24]

adopted the memory model for face posture tracking, and

obtained higher robustness in the complex background.

However, the above methods are based on machine memory.

Unlike human memory, machine memory does not consider

some key characteristics of the memorymechanism in HVS, such

as the uncertainty, fuzziness, and associativity of human brain

memory. When the object disappears for a long time or is

interfered with by similar objects during the tracking process,

the tracking accuracy will be greatly reduced.

In this paper, we established an MRM model to update the

classifier parameters in the CF tracker. The MRMmodel consists

of multiple layers of concentric rings, which simulate different

levels of memory space. When multiple similar information

exists in the outer ring, these data will be merged and enter

the inner ring. This process simulates the memory from shallow

to deep. At the same time, each ring rotates at a certain speed,

which simulates the dynamic update of the information stored in

the memory space. Furthermore, we proposed an MRM model-

based CF tracker, which can dynamically update the classifier

parameters in the CF tracker and enable the CF tracker to

remember object features. When the object is occluded or

interfered with by similar objects, the proposed tracker can

use the reliable classifier parameters stored in the MRM

model to relocate the object, thereby improving the anti-

interference ability. Comparison experiments show that

compared with 18 comparison trackers such as CNN-SVM,

MEEM, Struck, etc., the proposed tracker has advantages in

tracking accuracy and tracking success rate, the results on the

OTB50 are improved 4.9% and 3.7% compared with CNN and

SVM, respectively.

2 Related works

One can find various surveys that review the most current

developments in visual tracking research in [8, 25]. In this

section, only the works that are most relevant to our own are

covered, including correlation tracking methods and memory

models for visual tracking.

2.1 Correlation tracking

Due to DCFs’ exceptional accuracy and efficiency, the object

tracking community has been studying them extensively in

recent years. The Minimum Output Sum of Squared Error

(MOSSE) high-speed tracker, proposed by Bolme et al. in

[26], can be regarded as the ground-breaking work that first

applied correlation filters to visual tracking. Henriques et al. [13]

utilized the circulant structure of training samples and HOG

features to develop Kernelized Correlation Filters (KCFs) in the

Fourier domain. To maintain a manageable computational cost,

Danelljan et al. [27] introduced Color Name (CN) descriptors

and also advanced a proposal for an adaptive dimensionality

reduction technique. To manage scale fluctuations of the target,

Danelljan et al. [28] introduced a Discriminative Scale Space

Tracker (DSST). To reduce model drift, Mueller et al. [29]

included global context information in the typical

construction of CFs. Ma et al. [30]proposed a Long-term

Correlation Tracking (LCT) framework featuring a redetection

module. When a tracking failure took place in this system, the

redetector was engaged to retrace the target’s location. By

merging the HOG template model with the color histogram

model, Bertinetto et al. [31] created the Staple algorithm, which

improved the tracking robustness.

2.2 Memory model for visual tracking

Due to its ability to handle sequential input and acquire long-

term dependencies, the recent and well-liked Long Short-Term

Frontiers in Physics frontiersin.org02

Zhao et al. 10.3389/fphy.2022.1003517

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1003517


Memory (LSTM) network demonstrated significant promise in

visual tracking. By fusing an LSTM and a residual framework,

Kim et al. [32] created an RLSTM tracker for spatiotemporal

attention learning. Through the use of an LSTM network, Yang

et al. [33] learned a recurrent filter and modified it to account for

target appearance fluctuations. To increase the precision of

template-matching trackers, a dynamic memory network was

developed in [34], where the LSTM was used to maintain target

appearance variations with an accessible memory.

3 MRM model

3.1 Memory mechanism

To simulate memory, the process by which the human brain

encodes, stores, and extracts from the received information,

Atkinson and Shiffrin [35, 36] proposed the multi-store

model. They believe that the received information will

experience three stages of memory, i.e., sensory memory,

short-term memory, and long-term memory. In each stage,

the information will go through the process of encoding,

storage, and extraction. Meanwhile, information that is rarely

used or extracted will be forgotten.

Among the three memory spaces, sensory memory space

stores basic sensory information, which is the first step of human

brain memory. Short-term memory space stores and processes

complex information, which is the main space for information

processing. Long-term memory space stores a large amount of

prior knowledge, which enables the human brain to recall various

events and recognize various patterns. Only the information that

is repeatedly appeared in the short-term memory space can be

transferred to the long-term memory space for storage.

However, compared with human brain memory, existing

memory models lack some key functions. For example: (1) The

information extracted by human brain memory is often vague,

especially when the extracted information occurred a long time

ago; (2) Human brain memory always links multiple related

information, the human brain searches the memory space for

information related to the received information and merges

them; (3) The quality of the information retrieved by the

human brain memory is usually related to the time and effort

spent in memorizing the information; (4) In some cases, the

human brain cannot recall a message at a certain time, but it may

succeed after a while.

In short, the memory mechanism in HVS has some key

characteristics:

Uncertainty At a certain moment, only part of the

information stored in the human brain can be retrieved, but

not all the information is clearly presented in the brain;

Fuzziness Similar information in the memory space will be

merged, resulting in that the stored information will gradually

become blurred over time;

Associativity The human brain memory will associate the

related old information in the memory space with the newly

received information.

Existing memory models simply simulate the memory

mechanism of the human brain, but not the characteristics of

uncertainty, fuzziness, and associativity. This limits its

application, such as difficulty in solving the problems of

object occlusion and similar object interference during tracking.

3.2 Structure of MRM model

Based on the above analysis, we established an MRM model

as shown in Figure 1.

The MRM model includes a three-layer concentric ring, a

Filter unit, two Compare and Merge units, a Compare unit, and

some Data Storage units (including Memorized Data units and

Empty Data units). At the same time, there are three different types

of windows in each of the three layers of concentric rings, namely

the Input window, Output window, and Observation window.

The main functions of each component are as follows:

Three-layer concentric ring: Simulates the different memory

spaces of the human brain and the dynamic update of information

in the human brain memory space. Each layer of concentric rings

simulates a memory space. From the outer to the inner layer, they

are sensory, short-term, and long-termmemory space. At the same

time, each layer of concentric rings rotates at a certain speed, and

the speed from the outer layer to the inner layer is v1, v2, and v3.

Filter unit: Filters the information entering the memory space.

The filter unit compares the input information with the information

that exists in the outer concentric ring (i.e., the sensory memory

space). When the distance between the input information and any

information in the sensory memory space is within the tolerance

distance, the input information can enter the memory space.

Compare and Merge unit: Screens the information in the shallow

memory space and send the qualified information into the deep

memory space. The specific process includes two operations:

comparison and merging. Among them, the comparison operation

simulates the associativity of the human brain, and the similarity is

obtained by calculating the normalized Euclidean distance between the

two pieces of information. The merging operation simulates the

fuzziness of the human brain and realizes the fusion of information

by calculating the average value of two or more pieces of information.

There is oneCompare andMerge unit between the outermost layer-the

middle layer and the middle layer-the innermost layer, respectively.

Compare unit: Evaluates the similarity between the output

information of each layer of memory space and the initial input

information, ensuring that the most similar information to the

initial input information is output. The specific process is the same

as the comparison operation in the Compare and Merge unit.

Data Storage unit: Mainly used to store information. Each

layer of concentric rings has multiple data storage units,

including memorized data units and empty data units.

Frontiers in Physics frontiersin.org03

Zhao et al. 10.3389/fphy.2022.1003517

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1003517


Window: Including input window, output window, and

observation window. Three kinds of windows exist on each

layer of the concentric ring. As the concentric ring rotates,

any information will only appear in a specific window at any

time. This simulates the uncertainty of human brain memory,

that is, not all the stored information can be used at any time.

3.3 Workflow of MRM model

Figure 2 shows the workflow of the MRM model. The

detailed process is as follows:

1) The filter unit evaluates whether the initial input information

can enter the memory space. If it is permitted to enter, go to

step (2). Otherwise, go to step (6);

2) The initial input information enters the sensory memory

space and is named sensory input information. If there

exists an empty data storage unit in the input window of

the sensory memory space at the current moment, the

sensory input information is directly stored in the

corresponding unit. Otherwise, calculate the normalized

Euclidean distance between the sensory input information

and each piece of information in the input window, and

merge it with the information with the smallest distance.

At the same time, the normalized Euclidean distance

between each information in the output window and the

sensory input information is compared, and the

information with the smallest distance will be let out as

the sensory output information;

3) Use Compare and Merge unit to merge two or more pieces of

information within the tolerance distance in the observation

window of the sensory memory space. The merged

information is fed into the short-term memory space,

called short-term input information;

4) The process of inputting and outputting information in the

short-term memory space is similar to step (2), and its output

is called short-term output information;

5) Similar to step (3) and step (4), use Compare and Merge unit

to merge two or more pieces of information within the

tolerance distance in the observation window of the short-

term memory space. Then input them into the long-term

memory space, which is called long-term input information.

At the same time, output long-term output information;

FIGURE 1
Schematic ofMRMmodel, the input information enters three layers of concentric rings representing three differentmemory spaces through a filter
unit, and the concentric rings rotate at different speeds, so that the input information can be transmitted to different locations in the memory space.
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6) If there is no output in the three memory spaces, the initial

input information is treated as the final output information.

Otherwise, the distances between three output information

and the initial input information are calculated separately,

and the output information with the smallest distance from

the initial input information is regarded as the final output

information.

4 MRM-based CF tracker

After the establishment of the MRMmodel, we introduce it into

the CF tracking framework and propose anMRM-based CF tracker.

4.1 CF tracking framework

A typical CF tracking framework mainly implements object

tracking by repeating the detection-training-update process for

each frame of the input image.When any frame of image is input,

the search window of the current frame is first determined

according to the predicted position in the previous frame,

then the feature map of the search image is extracted. Next,

the previously learned classifier is used to convolve the feature

map to generate a response map. The position of the maximum

value on the response map is regarded as the object position of

the current frame. Finally, the classifier parameters are trained

and updated according to the feature map at the current object

position.

Let (m̂t−1, n̂t−1, a, b) be the position and size information of

the object in the (t − 1)th frame of image, where m̂t−1 and n̂t−1
are the center coordinate of the tracking box, a and b are the

width and height of the tracking box. Expand the tracking box

to create a search window (m̂t−1, n̂t−1, ρa, ρb) for the tth frame

of image, where ρ is the expansion factor.

Extract the deep convolution feature map in the search

window of the tth frame image, and use xt to denote the cyclic

shift of the featuremap with size ofM ×N ×D × L in the tth frame,

whereM, N, D, and L respectively represent the width, height, the

number of channels and layer of the feature map. Then xt [d, l]

represents the feature map of channel d in the lth layer of the tth

frame of image, where d ∈ {1, . . . , D}, l ∈ {1, . . . , L}.

FIGURE 2
Workflow of the MRM model.
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For the feature map of the lth layer, the corresponding classifier

wt−1 [d, l] of the (t − 1)th frame image and the feature map xt [d, l] of

the tth frame image are respectively subjected to Fourier transform,

after the dot multiplication, sum along the channel, and the sub-

response map ft [l] of this layer can be obtained through inverse

Fourier transform, as shown in Eq. 1,

ft l[ ] � F −1 ∑D
d�1

F wt−1 d, l[ ]( ) ⊙ F xt d, l[ ]( )⎛⎝ ⎞⎠, (1)

whereF andF −1 represent DFT (Discrete Fourier Transform) and

inverse DFT, respectively, and ⊙ represents Hadamard product.

Then, take γl as the weight coefficient to add the sub-response

maps ft[l]ofall layers toget thetotalresponsemap ft, asshowninEq.2,

ft � ∑L
l�1

γl · ft l[ ] � ∑L
l�1

γlF −1 ∑D
d�1

F wt−1 d, l[ ]( ) ⊙ F xt d, l[ ]( )⎛⎝ ⎞⎠.

(2)
The position of the maximum value in the total response map

ft is the center position of the tracking box in the tth frame, as

shown in Eq. 3,

m̂t, n̂t( ) � argmax
m,n

ft m, n( ), (3)

where (m, n) ∈ {1, . . . , M}×{1, . . . , N}.

Create a training sample set xt′ by cyclic shift at the object

position (m̂t, n̂t) of the tth frame image. Each sample has a 2-D

Gaussian label, which can be expressed by Eq. 4,

yu,v � exp − u −M/2( )2 + v −M/2( )2
2ε2

[ ], (4)

where (u, v) ∈ {1, . . . , M}×{1, . . . , N}, and ε represents

bandwidth.

Next, the new classifier wt′[l] of the lth layer in the tth frame

image can be obtained by minimizing ℓ2 loss function of the

output wt[d, l]*xt′[d, l] and the corresponding Gaussian label

yu,v, that is,

wt′ l[ ] � arg min
wt l[ ]

∑D
d�1

wt d, l[ ]*xt′ d, l[ ] − y

									
									
2

+ λ∑D
d�1

wt d, l[ ]‖ ‖2,

(5)
where λ is the regularization coefficient of ℓ2, and * represents the

correlation operation, that is, the operation shown in Eq. 1.

It can be solved by DFT

wt′ d, l[ ] � F −1 F y( )p ⊙ F xt′ d, l[ ]( )
∑D
i�1

F xt′ i, l[ ]( )( )p ⊙ F xt′ i, l[ ]( ) + λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (6)

where * represents conjugation, and ⊙ represents Hadamard

product.

By performing the above operations on each frame of the

input image, the position of the object in each frame will be

obtained, and the classifier can be updated at the same time.

4.2 Design of MRM-based CF tracker

Two MRM models are introduced in the CF framework to

form an MRM-based CF tracker, which enhances the classifier’s

ability to resist the occlusion of objects and interference from

similar objects.

Specifically, in the MRM-based CF tracker, when processing

a new image, after the classifier training process in the

conventional CF framework, the trained classifier is input into

the MRM model and updated according to the MRM model

update rules. Then a reliable classifier for the current frame will

be output. This reliable classifier integrates the characteristics of

similar classifiers stored in the MRM model, and can better deal

with object occlusion and interference from similar objects in the

tracking process. The overall framework of the proposed

algorithm is shown in Figure 3.

On the other hand, considering that the classifier includes a

large number of parameters, its update process in the MRMmodel

includes many operations, which will lead to excessive calculations

and affect the tracking speed. Therefore, we design a “Command-

Follow” mechanism to update the classifier, as shown in Figure 3.

In the command channel, send the histogram feature into an

MRMmodel to get its update process. Then, in the follow channel,

the classifier can be updated in another MRM model only

according to the same update process, without participating in

the calculation. Since the data amount of the histogram feature is

usually much smaller than the classifier, the dynamic update of the

classifier can be realized with less calculation.

The specific steps of the MRM-based CF tracker are as

follows:

(1) Initialization: At the first frame, initialize the search window

and the two MRM models in the command and follow

channels. Then extract the histogram feature q1 and deep

features x1 of the search window, and train a classifier W1 at

the same time;

(2) Classifier updating: When tracking the tth (t > 1) frame

image, first extract the histogram feature of the search

window in the (t − 1)th frame qt−1. Then, update qt−1
with the MRM model in the command channel.

According to the “Command-Follow” mechanism, the

classifier Wt−1 can be updated with the same update

process with the MRM model in the follow channel.

Finally, a reliable classifier Ŵt−1 will be obtained;

(3) Object locating: Extract the deep feature of the search

window in the (t − 1)th frame image xt−1, and calculate

the response map by Eq. 2. Then the object locating location

of the tth frame image can be obtained by Eq. 3;
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(4) Classifier training: Train the classifier to obtain the

new classifier of the tth frame image Wt, as shown in

Eqss 5, 6.

5 Experiment

5.1 Experiment setup

A PC (Intel (R) Xeon E5-2620 (2.10 GHz) × 2 CPU, NVIDIA

Quadro P2000 GPU, 64 GB memory) is used to carry out a

comparative experiment of the proposed tracker.

The comparative experiment is based on the OTB50 [8]

dataset, including 50 image sequences, each of which has

different attributes. These image sequence attributes are

factors that easily occur in the tracking process and affect

the tracking accuracy. There are 11 types, namely:

Illumination Variation (IV), Out-of-Plane Rotation (OPR),

Scale Variation (SV), Occlusion (OCC), Deformation (DEF),

Motion Blur (MB), Fast Motion (FM), In-Plane Rotation

(IPR), Out-of-View (OV), Background Clutter (Background

Clutter, BC) and Low Resolution (LR). In addition, the

specific parameter settings of the memory space of

each layer in the comparison experiment are shown in

Table 1, and the tolerance distance in the algorithm is set

to 0.35.

The tracking precision and success rate were evaluated by

precision plot and success plot, respectively.

The tracking precision is the percentage of frames whose

estimated locations lie in a given threshold distance to

ground-truth centers. By setting a series of different

thresholds, the corresponding tracking precision values

can be calculated to generate a curve, i.e., a precision plot.

Generally, the value obtained when the

threshold is 20 pixels is treated as the tracking precision

of the tracker.

As for the success rate, let axdenote the area of the

tracking box and bydenote the ground truth. An Overlap

Score (OS) can be defined by OS = |a ∩ b|/|a ∪ b|OS = |x ∩ y|/|x

∪ y|where ∩ and ∪ are the intersection and union of two

regions, and |X| counts the number of pixels in the

corresponding area X. Afterward, a frame whose OS is

larger than a certain threshold is referred to as a successful

frame, and the ratios of successful frames at the thresholds

ranging from 0 to one are plotted in success plots. Generally,

the value when the threshold is 0.5 is used as the tracking

success rate of the tracker.

FIGURE 3
Pipeline of the MRM-based CF Tracker, the MRM model in the command channel gets the memory information update rule, and the follow
channel updates the classifier in the CF tracker according to the rule, thereby improving the performance of the classifier.

TABLE 1 Parameter settings of the MRM model.

Outer ring Middle ring Inner ring

Number of data storage 20 15 10

Rotation speed 2 1 1

Input window size 5 3 2

Observation window size 6 5 3

Output window size 5 5 3
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5.2 Results

5.2.1 Overall performance
The proposed MRMCF is compared with 18 trackers,

including CNN-SVM [37], MEEM [20], KCF [13], DSST [28],

Struck [38], SCM [39], TLD [40], VTD [41], VTS [42], CCT [43],

ASLA [44], LSK [45], PCOM [46] etc.

Figure 4 is the overall comparison results under one pass

evaluation (OPE). For readability, only the first 10 trackers are

plotted. It can be seen that the tracking precision of the proposed

MRMCF reaches 89.4%, and the tracking success rate reaches

76.1%, which is higher than comparison trackers, indicating that

the proposed tracker has better tracking performance.

Figure 5 shows some of the tracking results of the proposed

tracker and comparison trackers including sequences coke, deer,

football, freeman4, girl, lemming, andmatrix of the OTB50 [8]. In

order to show the tracking boxes more clearly, only the top five

trackers are shown in the figure.

Sequence coke has six attributes, including IV, OCC, FM,

IPR, OPR, and BC. In the early stage of the tracking process

(#0050 and #0116), the object keeps moving smoothly, so all five

trackers are able to track the object steadily. Then, the object

rotates in frame #0210, and the tracking boxes of DSST and

MEEM drifted. Next, the object is blocked by a plant in frame

#0260, and the tracking boxes of DSST and CNN-SVM drifted

greatly. In the end, the object reappeared in frame #0270, while

DSST, MEEM, and KCF could not find the object back;

Sequence deer has five attributes, includingMB, FM, IPR, BC,

and LR. Similarly, in the early stage, the five trackers all

performed well (#0010). In the following tracking process, due

to the fast movement of the object and the interference of similar

objects, KCF lost the object in frames #0030, #0036, and #0050,

DSST lost the object in frame #0030 and #0040, and the tracking

box of MEEM has a small drift in #0040;

Sequence football has four attributes, including OCC,

IPR, OPR and BC. In the beginning, all five trackers can

track the object well (#0100). With the rapid movement of

the object, the tracking boxes of DSST, MEEM, and KCF

drifted (#0200). Due to the interference of similar objects, the

tracking boxes of DSST, MEEM, CNN-SVM, and KCF have

drifted (#0283 and #0290). Then, in frame #297, DSST, CNN-

SVM, and KCF lost their targets, while the proposed

MRMCF was not disturbed, maintaining good tracking

performance.

Sequence freeman4 has four attributes, including SV,

OCC, IPR, OPR. Due to the object being occluded, object

rotation, and other factors, the tracking boxes of the

comparison trackers have drifted to different degrees. For

example, in frame #0080, MEEM and KCF drifted, in frame

#0150, DSST, CNN-SVM and KCF drifted, and MEEM drifted

in a smaller range, and in frame #0270, all four comparison

trackers drifted. Meanwhile, the proposed MRMCF

maintained a good tracking result throughout the tracking

process;

Sequence girl has four attributes, including SV, OCC, IPR

and OPR. In the early stages, all the five trackers have good

tracking performance, only DSST has a small range of drift

(#0300 and #0420). When interfered with by a similar object,

KCF, DSST, MEME, and CNN-SVM are affected. Among

them, the tracking frame of KCF has a large drift, while

DSST, MEME, and CNN-SVM have a small drift (#0438).

With time, the tracking box of DSST also drifted widely

(#0470 and #0490). In the whole process, the proposed

MRMCF can achieve stable tracking without being

disturbed by a similar object;

Sequence lemming has six attributes, including IV, SV, OCC,

FM, OPR, and OV. Similarly, in the early stages of the tracking

process, all five trackers perform well (#0200). When the object

FIGURE 4
OPE comparison results of the proposed tracker and the comparison methods on OTB50. (A) Precision plots, (B) Success plots.
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rotates in frame #0370, the tracking boxes of DSST, MEEM, and

KCF all drift in a small range. Later, as the object moved quickly,

DSST and KCF lost the object, and the tracking boxes of CNN-

SVM andMEEM also drifted (#0382 and #0776). In frame #1070,

the posture and scale of the object changed, and the tracking

boxes of the five trackers could not fully contain the object, while

FIGURE 5
Part of tracking results of the proposed tracker and comparison trackers on the OTB50.
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the position of the tracking box of the proposed MRMCF is

relatively accurate;

Sequencematrix has seven attributes, including IV, SV, OCC,

FM, IPR, OPR, and BC. In frame #0021, DSST, CNN-SVM, and

KCF lost the object, and MEEM drifted in a small range. In frame

#0024, DSST, CNN-SVM, and KCF lost their targets. In frame

#0047, CNN-SVM also lost the target, while DSST, MEEM, and

KCF drifted in a small range. In frame #0084, all trackers lost the

target due to the rapid movement of the object. While in the

following frame #0086, the proposed MRMCF retrieved the

object again.

In summary, for the above-mentioned typical

sequences, the proposed MRMCF tracker shows better

performance.

5.2.2 Attribute-based evaluation
For detailed analyses, an attribute-based evaluation in

OTB50 is also conducted. The Area Under Curve (AUC)

scores of MRMCF and the comparison trackers under

11 image sequence attributes are shown in Table 2. The

results demonstrate that MRMCF performs well on most

attributes, especially on occlusion, scale variation, illumination

variation, background clutter, and out-of-plane rotation, etc.

5.3 Ablation studies

We performed an ablation analysis for different MRM

structures. As shown in Figure 1, the proposed MRM consists

TABLE 2 AUC values of success plot corresponding to each attribute (%), the highest values are highlighted in bold.

IV OPR SV OCC DEF MB FM IPR OV BC LR

MRMCF 60.3 59.5 55.5 58.7 62.7 58.5 57.0 58.6 56.5 64.1 49.4

CNN-SVM 55.6 58.2 51.3 56.3 64.0 56.5 54.5 57.1 57.1 59.3 46.1

MEEM 53.3 55.8 49.8 55.2 56.0 54.1 55.3 53.5 60.6 56.9 36.0

DSST 56.1 53.6 54.6 53.2 50.6 45.5 42.8 56.3 46.2 51.7 40.8

KCF 49.3 49.5 42.7 51.4 53.4 49.7 45.9 49.7 55.0 53.5 31.2

SCM 47.3 47.0 51.8 48.7 44.8 29.8 29.6 45.8 36.1 45.0 27.9

Struck 42.8 43.2 42.5 41.3 39.3 43.3 46.2 44.4 45.9 45.8 37.2

LSK 37.1 40.0 37.3 40.9 37.7 30.2 32.8 41.1 43.0 38.8 23.5

VTD 42.0 43.4 40.5 40.3 37.7 30.9 30.2 43.0 44.6 42.5 17.7

TLD 39.9 42.0 42.1 40.2 37.8 40.4 41.7 41.6 45.7 34.5 30.9

VTS 42.9 42.5 40.0 39.8 36.8 30.4 30.0 41.6 44.3 42.8 16.8

CCT 28.6 36.4 33.5 37.8 34.5 31.2 33.1 35.5 46.7 38.5 18.9

FOT 28.6 36.4 33.5 37.8 34.5 31.2 33.1 35.5 46.7 38.5 18.9

PCOM 28.6 36.4 33.5 37.8 34.5 31.2 33.1 35.5 46.7 38.5 18.9

ASLA 42.9 42.2 45.2 37.6 37.2 25.8 24.7 42.5 31.2 40.8 15.7

FIGURE 6
OPE comparison results of trackers with different configuration MRM models on OTB50. (A) Precision plots, (B) Success plots.
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of three rings, representing the sensory, short-term and long-

termmemory space, respectively. In the ablation analysis, we take

the CF tracker without the MRM model as the baseline tracker

and compared it with three different MRM models with the

following configurations: the MRM model including only the

outer ring, the MRMmodel including the outer and middle rings

and the MRM model including three rings (i.e. the proposed

MRMCF), the results shown in Figure 6.

As shown in Figure 6, compared with the baseline tracker, the

performance of the tracker incorporating the MRM model has

improved. Moreover, the improvement of the tracker

performance is limited by the incomplete MRM model, while

the performance improvement of the tracker with the complete

MRM model is very obvious.

5.4 generality analysis

The MRM model proposed in this paper is a relatively

independent module in the whole tracker, which is mainly

used to strengthen the connection with the previous classifier

in the update process in the CF tracking framework. In most

tracking-by-detection visual tracking methods, the classifier

or object template update process is involved, so the

proposed MRM model can be added to the update process

of these trackers. Through reasonable parameter settings,

performance improvement such as anti-occlusion

similar to the tracker proposed in this paper can be finally

achieved.

6 Conclusion

In this paper, anMRMCF tracker is proposed. Firstly, anMRM

model based on the memory mechanism of HVS is established. By

introducing theMRMmodel into the CF framework, the MRMCF

tracker is formed,which realizes the dynamicupdate ofCFclassifier

parameters. Under conditions such as occlusion or similar

interferences, MRMCF can extract the reliable classifier

parameters stored in the memory space of the MRM model to

relocate the object, thereby achieving accurate object tracking. The

experimental results based on theOTB50 show that comparedwith

the comparison trackers, the proposed MRMCF has advantages in

tracking precision and success rate, especially under various

challenging conditions such as object occlusion and image clutter.
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