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We study here the effectiveness of the optimal homotopy asymptotic method

(OHAM) in solving non-linear differential equations of non-Newtonian fluids. To

this consequence, we consider the Oldroyd 6-constant fluid when it

demonstrates slippage between the plate and fluid generating non-linear

boundary value problems. The problems of plane Couette flow, generalized

Couette flow, and plane Poiseuille flow are considered. Graphs of the results are

plotted to show the performance of the method in terms of velocity profile. It is

observed that the method is quite easy to implement, having latent potential to

handle such kinds of non-linear problems and yield accurate results at

minimum to low computational work.
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1 Introduction

Analysis of the traditional spatial patterns from animate and inanimate natural

processes has been a source of marvelous attraction since the early stages of scientific

exploration and in recent advancements. Experimental investigation and quantitative

understanding of the essential mechanisms are a rather recent achievement, which has

been possible only due to firm determination, rationale approach, and rigorous effort in

the course of research in non-linear physics and mathematics. While contemplating non-

linear phenomena, which appear in a variety of ways, researchers have been facing

difficulties at the outset.

In fluid mechanics, the effect of slip conditions on the behavior of flow was first

studied by Navier [1]; the Navier–Stokes’s equations, which are the governing

equations for Newtonian fluid flow, describe it well. The calculations about slip

boundary conditions were based on molecular weights. But rheological complex

fluids such as polymeric solutions, blood, paint, shampoo, starch, certain oils, and

grease, whose flow behavior and characteristics cannot be described at all by the

Navier–Stokes’s equations, having non-linear relationship between shear stress and

strain rate, are called non-Newtonian fluids. Their extensive use in the oil industry,
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chemical industry, food industry, construction and power

engineering, and commercial and rheological applications

has led to the emergence of several theories and rigorous

work in non-Newtonian fluid mechanics.

Rajagopal and Bhatnagar [2], Rajagopal [3], Baris [4],

Hayat et al [5, 6], and Siddiqui AM et al [7, 8] have tried to

explain this behavior of non-Newtonian fluids. Due to

important technological and engineering applications,

numerous attempts have been made to elucidate the slip

phenomena [9–12]. A number of attempts have been made

to numerically explain the behavior and concerning

parameters of non-Newtonian flow with slip effect

[13–17]. Recently, Hayat et al [18] had studied the effect

of the slip conditions on the flow of an Oldroyd 6-constant

fluid.

The objective of this work is to see the effectiveness of the

optimal homotopy asymptotic method (OHAM) by studying

and analyzing different parameters of the equations describing

6-constant Oldroyd fluid flow and presenting the solutions in

terms of velocity profiles. This method was proposed by

Marinca et al. [19]. The advantage of the OHAM is the

integrated convergence criteria that is similar to HAM but

flexible to a greater extent in implementation. Marinca et al.

[20–22] and Iqbal et al. [23–30], in a series of articles, have

established the validity, usefulness, simplification, and

consistency of the method and acquired reliable solutions of

currently significant applications in science and technology.

The considered model is present in the literature [18] and has

unique characteristics of earlier fluids. The OHAM

demonstrates the imbedding potential and tenders a reliable

solution for three steady flows (Couette, Poiseuille, and

generalized Couette).

2 Governing equations

The governing equation for Oldroyd 6-constant fluid [18] is

expressed as

du

dy
+ α1

du

dy
( )3

− yK + β1( ) α2
du

dy
( )2

+ R2[ ] � 0 (1)

where K � dp̂/dx, γ � μ/ρ, R is the Reynolds number, α1, α2
are constants, and β1 is the constant of integration. The

laminar flow of an Oldroyd 6-constant fluid between two

infinite parallel plates at a fixed distance apart are of three

types:

•Plane Couette flow: The lower plate is stationary and the

upper plate moves. Flow is due to the motion of the upper

plate, since the pressure gradient is zero in the x-direction,

i.e., p̂ � 0 (K � 0) having
u 0( ) − γu/ 0( ) � 0 and u 1( ) + γu/ 1( ) � 1 (2)

•Plane Poiseuille flow: Both the plates are at rest and the flow

is due to the pressure gradient in the x-direction,

i.e., (K � dp̂/dx) having
u 0( ) − γu/ 0( ) � 0 and u 1( ) + γu/ 1( ) � 0 (3)

• Plane Couette–Poiseuille flow: Flow starts due to both the

pressure gradient in the x-direction, i.e., (K � dp̂/dx) and
the motion of the upper plate having

u 0( ) − γu/ 0( ) � 0 and u 1( ) + γu/ 1( ) � 1 (4)

3 Optimal homotopy asymptotic
method formulation

The OHAM [19–27, 31, 32] is tested to find the velocity field

u(y) of the governing differential Equation 1 with the slip

boundary conditions (2)–(4) given in Section 2. According to

the OHAM [19–22, 31], the differential equation can be

written as

A v y( )( ) + f y( ) � 0, y ∈ Ω (5)

whereΩ is the domain. Now Equation 5 is decomposed into

A(v) � L(v) +N(v). We have the freedom to choose the linear

part L. According to the OHAM, one can construct an optimal

homotopy ϕ(y;p): Ω × [−1, 1] → R which satisfies

1 − p( ) L ϕ y;p( )( ) + f y( ){ } −H p( ) A ϕ y;p( )( ) + f y( ){ } � 0

(6)
where p ∈ [0, 1] is an embedding parameter, H(p) � pC1 +
p2C2 + ... is a non-zero auxiliary function for p ≠ 0, H(0) � 0,

where C1, C2,... are constants to be determined. Eq. 6 is called

optimal homotopy equation. To get an approximate solution, we

expand ϕ(y;p, Ci) in the Taylor series about p in the following

manner:

ϕ y;p, Ci( ) � v0 r, t( ) +∑∞
k�1

vk y;Ci( )pk, i � 1, 2, ... (7)

It has been observed that the convergence of the series’

Equation 7 depends upon the auxiliary constants C1, C2,.... If

it is convergent at p � 1, one has

v
~

y;Ci( ) � v0 y( ) + ∑
k≥ 1

vk y;Ci( ) (8)

Substituting Equation 8 into Equation 5 results in the

following expression for the residual:

R y;Ci( ) � L( v
~

y;Ci( )) + f y( ) +N( v
~

y;Ci( )) (9)

If R(y;Ci) � 0 , then v
~
(y;Ci) will be the exact solution.

This does not generally happen, especially in non-linear

problems. For determining the optimal values of the
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convergence-control parameters, Ci , i � 1, 2, ..., m, one can see

the [23–29].

3.1 Plane Couette flow

Now, the OHAM is applied to give an explicit, uniformly

valid, analytic solution to the governing differential Equation 1,

and the slip conditions (2). The OHAM constructed zeroth-order

deformation equation as

du0

dy
− R2β1 � 0 u0 0( ) − γu/

0 0( ) � 0 (10)

u0(y) � R2β1(y + γ) is the solution of Equation 10. By

applying the boundary condition u0(1) + γu0/(1) � 1, one can

get β1 � 1/R2(1 + 2γ). Therefore,

u0 y( ) � y + γ

1 + 2γ
(11)

The first-order deformation equation is constructed as

du1

dy
� 1 + C1( ) du0

dy
− C1α2β1

du0

dy
( )2

+ C1α1
du0

dy
( )3

− 1 + C1( )R2β1

u1 0( ) − γu/
1 0( ) � 0

(12)

The first-order solution is obtained by solving Equation 12

using zeroth order solution (11) and β1 � 1/R2(1 + 2γ) as

u1 y( ) � y + γ( ) R + 2Rγ( )2 + C1 R2α1 − α2( )( )
R2 1 + 2γ( )3 (13)

Hence, by adding the zeroth-order and first-order

solutions, and other higher order solutions if necessary, one

gets

u y( ) � y + γ( ) 2 R + 2Rγ( )2 + C1 R2α1 − α2( )( )
R2 1 + 2γ( )3 (14)

Using the procedure mentioned in [19–27, 31, 32], for the

constant C1, an optimal value of the auxiliary constants is

presented in Table 1 for different slip parameters.

3.2 Plane Poiseuille flow

An explicit analytic solution of the governing differential

Equation 1, and the slip conditions (3) for plane Poiseuille flow is

determined. The OHAM constructed zeroth-order deformation

equation is

du0

dy
−KR2y − R2β1 � 0 u0 0( ) − γu/

0 0( ) � 0 (15)

The solution of zeroth-order deformation in Equation 15 is

given as

u0 y( ) � KR2y2 + 2R2β1 y + γ( )
2

(16)

Now, by using the condition u0(1) + γu0/(1) � 0 in Equation

16, one can get the integration constant β1 � −K/2. By using the

value of β1 in Equation 16, one can get the zeroth-order solution as

u0 y( ) � KR2 y2 − y − γ( )
2

(17)

The first-order deformation equation is

du1

dy
� 1 + C1( ) du0

dy
− C1α2 Ky + β1( ) du0

dy
( )2

+C1α1
du0

dy
( )3

− 1 + C1( ) KR2y + R2β1( )
u1 0( ) − γu/

1 0( ) � 0

(18)

The first-order solution is obtained by solving Equation 18

using the zeroth-order solution (17) and β1 � −K/2 as

u1 y( ) � 1
8
K3R4 −y + 3y2 − 4y3 + 2y4 − γ( )C1 R2α1 − α2( ) (19)

By adding the zeroth-order and first-order solutions given in

Eqs. 7, 18, one gets

u y( ) � 1
2
KR2 −y + y2 − γ( )

+K
3R4

8
−y + 3y2 − 4y3 + 2y4 − γ( )C1 R2α1 − α2( ) (20)

Using the procedure “Least Squares Method” mentioned in

[19–22, 31], for constant C1, the optimal value of the auxiliary

constant for the different slip parameters

is C1 � −0.7380617718616882$.

3.3 Plane Couette–Poiseuille flow

The solution of the governing differential Equation 1, and the

slip condition (4) for plane Couette–Poiseuille flow is

determined. The OHAM constructed zeroth-order

deformation equation is

TABLE 1 Optimal values of auxiliary constant C1 for different slip
parameters (plane Couette flow).

R α1 � α2 γ C1

2 0.2 0 −7.3586775103633535

0.05 −8.794709626207474

0.2 −13.874325154499104

0.5 −27.559161967723423
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du0

dy
− KR2y − R2β1 � 0 u0 0( ) − γu/

0 0( ) � 0 (21)

Eq. 21 implies the zeroth-order solution as

u0 y( ) � KR2y2 + 2R2β1 y + γ( )
2

(22)

By using the condition u0(1) + γu0/(1) � 1 in Equation 22,

one gets

β1 �
2 − KR2 1 + 2γ( )
2R2 1 + 2γ( ) (23)

By putting this value of the integration constant β1 in

Equation 22, one gets the zeroth-order solution as

u0 y( ) � KR2y2

2
+ 2 −KR2 1 + 2γ( )( ) y + γ( )

2 1 + 2γ( ) (24)

The first-order deformation equation is given as

du1

dy
� 1 + C1( ) du0

dy
− C1α2 Ky + β1( ) du0

dy
( )2

+C1α1
du0

dy
( )3

− 1 + C1( ) KR2y + R2β1( )
u1 0( ) − γu/

1 0( ) � 0

(25)

The first-order solution is obtained by solving Equation 25

using the zeroth-order solution (24) and β1 given in Equation

23 as

u1 y( ) � C1 R2α1 − α2( )
8R2 1 + 2γ( )3

2R6y4 K + 2Kγ( )3 − y + γ( ) −2 +KR2 1 + 2γ( )( )3
−4R4y3 K + 2Kγ( )2 −2 +KR2 1 + 2γ( )( )
+3 KR2y2 1 + 2γ( ) −2 +KR2 1 + 2γ( )( )2

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
(26)

By adding the zeroth-order and first-order solutions given in

Eqs. 24, 26, one gets

u y( ) � KR2y2

2
+ 2 −KR2 1 + 2γ( )( ) y + γ( )

2 1 + 2γ( )
+C1 R2α1 − α2( )
8R2 1 + 2γ( )3

2R6y4 K + 2Kγ( )3 − y + γ( ) −2 + KR2 1 + 2γ( )( )3
−4R4y3 K + 2Kγ( )2 −2 +KR2 1 + 2γ( )( )
+3 KR2y2 1 + 2γ( ) −2 + KR2 1 + 2γ( )( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

Using the procedure mentioned in [19–22, 31], for the

constant C1, the optimal values of the auxiliary constants are

presented in Table 2 for different slip parameters.

4 Results and discussions

Figure 1, Figure 2, and Figure 3 present the velocity profile

u(y) of the plane Couette, plane Poiseuille, and plane

Couette–Poiseuille flow for various values of the slip

TABLE 2 Optimal values of auxiliary constant C1 for different slip
parameters (plane Couette–Poiseuille flow).

R K α1 � α2 γ C1

2 −0.5 0.2 0 −0.4499730038638498

0.05 −0.469862499715897

0.2 −0.5165219180615618

0.5 −0.5747491281848552

FIGURE 1
Effect of the slip parameter γ on the dimensionless velocity
profile u(y) using OHAM for plane Couette flow.

FIGURE 2
Effect of the slip parameter γ on the dimensionless velocity
profile u(y) using OHAM for plane Poiseuille flow.
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parameter γ � 0.0, 0.05, 0.2, and 0.5. It is observed from Figure 1

and Figure 3 that the velocity increases near the fixed plate and

decreases near the moving plate as γ increases. The solution

exhibited in Figure 2 shows that the u(y) velocity field increases

with increase in γ. The first-order OHAM results are in complete

agreement with the HAM solutions [18]. The results show the

reliability and potential of the method.

5 Conclusion

In this presentation, Oldroyd 6-constant fluid flow and its

response for different slip conditions are discussed for three non-

linear boundary value problems. The OHAM is successfully

applied to study the constant viscosity models, namely, plane

Couette flow, plane Poiseuille flow, and plane Couette–Poiseuille

flow for velocity profiles. Graphs are plotted to show the

performance of the method in terms of the velocity profiles.

This method provides a convenient way to control the

convergence by optimally determining the auxiliary constants.

The results reveal that the method is precise, effective, and easy to

use for non-linear differential equations for Oldroyd 6-constant

type fluids.
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