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Owing to the complexity of urban transportation networks and temporal

changes in traffic conditions, the assessment of real-time traffic situations is

a challenge. However, the development of mobile information devices using

the global positioning system (GPS) has made it easier to obtain personal

mobility information. In this study, we developed a method for evaluating

the mobility of people in a city using GPS data. We applied two methods:

evaluating human mobility using temporal networks constructed from GPS

data, and searching for the shortest path by constructing and solving the time-

dependent traveling salesman problem (TDTSP). The estimation is expected to

be more realistic if transportation delays from congestion are considered. This

study makes two major contributions. First, we propose a new method for

estimating the time weights of edges in temporal networks using probability

density functions for the travel time. Second, to apply ant colony optimization to

the TDTSP, we propose a newmethod for estimating the congestion level from

GPS data and calculating the transition probability using the estimated

congestion level. As a case study, we conducted a human mobility analysis

in Kyoto City.
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1 Introduction

Transportation planning is a significant issue in urban areas [1]. Although smooth

transportation contributes significantly to satisfaction in the daily lives of residents,

transportation planning is becoming more difficult to achieve owing to the global

population growth occurring in urban areas. In addition, the development of tourism

has increased the number of visitors to these areas and a known tourism problem has

emerged [2], negatively affecting both visitors and residents [2–4].

Three factors complicate urban transportation [5]. First, cities are often densely

populated with tunnels and elevated structures that form complex transportation

networks with numerous roads. Second, travelers may be heading toward different

destinations. This creates significant uncertainty in transportation planning as the
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number of travelers increases. Third, the road traffic changes over

time. Depending on the traffic congestion, travelers may change

their mode of transportation and travel route, and travel times for

the same traveling route can vary significantly.

However, owing to the recent development of mobile

information devices, it has become easier to obtain and

provide mobility information to individuals. Mobile devices

such as smartphones are now widely used and carried by

most individuals. It has therefore become possible to compose

big data from the global positioning system (GPS) measured

using such devices and to apply the data in analyzing human

mobility [6].

Network science is a useful approach in this regard [7,8].

Networks whose connection status changes over time,

i.e., temporal networks [9], are more difficult to evaluate than

static networks because of their time-varying nature; however,

because they represent real-world problems well, they have been

used in various fields such as interpersonal communication

[10–13], transmission to an unspecified number of people

using Social networking service (SNS) and the web [14–17],

physical contact [18–21], and cytology [22–25]. Temporal

networks are also preferred for representing movement and

capturing changes in traffic conditions over time. Kujala et al.

used temporal networks to evaluate a public transportation

system in Helsinki [26]. They constructed networks from

timetables and open map information and evaluated the

public transportation system by focusing on the travel time

and number of transfers.

In addition, the shortest-path problem can be used to

determine an efficient travel route and in recent years has

become a real-world problem with a time component [27].

Heuristic solutions to such problems, including the time-

dependent traveling salesman problem (TDTSP), have been

devised [28–31].

In this study, we applied two methods: evaluating human

mobility using temporal networks constructed from GPS data,

and searching for the shortest path by constructing and solving

the TDTSP. With both methods, the location information

measured from mobile devices is converted into a timetable of

location transitions, called “transfer connections,” from which an

optimal set of paths to the destination is obtained for

constructing a mobility network. By improving the existing

methods used in constructing temporal networks developed

for an evaluation of public transportation [32], we created

temporal networks using the GPS data from mobile devices.

We estimated the time weights of the edges in the TDTSP from

the GPS data based on a method used to create a temporal

network [32]. In evaluating movement using temporal networks,

networks are visualized and compared according to seasons, time

slots, and whether the person moving is a resident or a visitor.

With the methodology applied in finding the shortest path, the

time weights of the TDTSP are determined from the set of

optimal paths, and the ant colony optimization (ACO)

method is used to solve the problem. When applying the

ACO method, the congestion level is separated from the GPS

and used in calculating the optimization.

The estimation is expected to be more realistic if

transportation delays from congestion are considered. The

main contributions of this study are as follows: We propose a

new method for estimating the time weights of the edges in

temporal networks using probability density functions for the

travel time. In addition, to apply ACOmethod to the TDTSP, we

propose a new method for estimating the congestion level from

GPS data and calculating the transition probability using the

estimated congestion level.

The remainder of the paper is organized as follows. We

introduce the primary methodology in Section 2. In Section 3, we

discuss improvements to the basic methodology. In Section 4, the

proposed method is described. Next, we discuss the results of a

case study in Section 5. Finally, we provide some concluding

remarks in Section 6.

2 Basic methodology

2.1 Temporal network configuration
method

Although the static network theory is used in various fields,

several real-world networks have changed over time. Networks in

which edge connections change over time are called temporal

networks [9]. Temporal networks are often more realistic than

static networks, and have been used in road traffic analyses.

Kujala et al. [26] constructed a temporal network using public

transport timetables to model the movement of people. To

construct the network, the authors used the multi-criteria

profile connection scan algorithm (mcpCSA) [32], which is an

extension of the profile connection scan algorithm (pCSA). The

mcpCSA extends the Pareto-optimal (departure time and arrival

time) treated in the pCSA to the multi-criteria Pareto-optimal

(departure time, arrival time, and number of transfers). This

algorithm is used to compute the optimal travel time in a

dynamic public transportation network, which can represent

many events occurring between nodes as a temporal network.

2.1.1 Connection scan algorithm
The connection scan algorithm (CSA) is the original form of

many different derived algorithms. The CSA can calculate the

fastest time to reach each stop from a given starting node. Denote

each stop by p. Let P be the set of stops, and let p ∈ P. Connection
information c consists of the departure stop, arrival stop,

departure time, and arrival time. Let C be the set of

information, and let c ∈ C. Instead of using a graph, such as

with Dijkstra’s algorithm, this algorithm uses an array C of

timetable connections sorted by the departure time. Upon

receiving the origin ps and departure time τ of ps as inputs,
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labels τ(p) representing the shortest arrival time at each stop are

initialized to infinity. Subsequently, c ∈ C is scanned to determine

whether it is reachable. A connection c is considered reachable if

either the traveler is already traveling on a primary connection of

the same trip or standing at the departure stop of the connection

at departure time. Here, parr(c) denotes the arrival stop of the

connection information c. If it is reachable, the arrival time of c

improves the label τ(parr(c)) of the destination and updates the

label. The process is repeated until all C have been scanned.

2.1.2 Profile connection scan algorithm
An extension of the CSA for more complex scenarios is the

profile CSA (pCSA). This algorithm returns a set of Pareto-

optimal paths (departure and arrival times) from each stop to a

particular destination. Here, Pareto-optimal means that the

departure time is optimized to be slower, and the arrival time

is optimized to be faster. This algorithm uses array C of timetable

connections sorted in descending order of the departure time.

When destination pt is given as an input, it creates an empty set of

Pareto-optimal paths for each stop, c ∈ C is scanned in turn, and

pt is checked to determine if it is reachable. If it is reachable, and

if (τdep(c), τ*) is Pareto-optimal compared with the set of paths

held by the starting node of c, it is added to the set. Here, τdep(c)

represents the departure time of c, and τ* represents the arrival

time to pt. This is conducted until all of C has been scanned.

2.2 Time dependent traveling salesman
problem

To avoid traffic congestion, it is essential to determine the

efficient travel routes and thereby facilitate movement. We

formulate and solve the TDTSP to determine the travel route.

2.2.1 Problem formulation
The TDTSP is the shortest path problem on a time-

dependent network represented by a directed graph G = (V,

E,W, T). Here, V represents the set of nodes, E represents the set

of edges, W represents the set of time weights, and T represents

the time interval. With the TDTSP, the weights on the graph

change after a specific period. Interval T is the set of time periods

for which the weights are constant. The weight w(i, j, τ) ∈ W

depends on the starting node i ∈ V, ending node j ∈ V, and time τ

∈ T. In addition, Path[v0, v1, . . ., vn] represents the transition

permutation of the nodes from v0 ∈ V to vn ∈ V. When the time

starting from v0 is τ0 ∈ T, the sum of the time weights of Path[v0,

v1, . . ., vn], fτ0(Path[v0, v1, . . . , vn]), is calculated recursively as

follows,

fτ0 Path v0, v1[ ]( ) � w v0, v1, τ1( ) , (1)
fτ0 Path v0, . . . , vi[ ]( ) � w vi−1, vi, τ0 + fτ0 Path v0, . . . , vi−1[ )( ]( )

+fτ0 Path v0, . . . , vi−1[ ]( ).
(2)

The TDTSP is a combinatorial optimization problem for finding

a path such that fτ0(Path[v0, . . . , vn]) is minimized.

2.2.2 Ant colony optimization
The ACOmethod [33] iterates the search byK agents S times to

find a solution to the TDTSP, i.e., path Path[v0, . . ., vn] with the

minimum total time cost fτ0(Path[v0, . . . , vn]) [28–31]. With the

ACOmethod, each edge e(vi, vj) ∈ E has a pheromone σi,j(τ) for each

time τ ∈ T. Agent k at node i ∈ V at time τ calculates the transition

probability pk
i,j(τ) to the next node according to the pheromone,

pk
i,j τ( ) �

σ i,j τ( )[ ]α · ηi,j τ( )[ ]β
∑

s∈Ω σ i,s τ( )[ ]α · ηi,s τ( )[ ]β if j ∈ Ω

0 else

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

. (3)

The next node can be randomly determined using a certain probability

to avoid a local solution. Here,Ω is the set of nodes that agent k has not

yet visited, and ηij(τ) is heuristic information. Parameters α and β are

constants that control the relative importance of a pheromone versus

heuristic informationηij. Forα andβ in Eq. 3,α=2 andβ=3were used

throughout the study. For our problem, the results did not change

significantly within the ranges of α and β = 2 through 4. Heuristic

information ηij is calculated using the following equation:

ηi,j τ( ) � Q

w i, j, τ( ), (4)

where Q = 50 is used throughout the study. The results did not

depend on the value of Q.

The transition path from v0 to vn and the corresponding total

time cost of agent k are defined as Pathk[v0, . . ., vn] and

fk
τ0
(Pathk[v0, . . . , vn]), respectively. If the paths Pathk[v0, . . .,

vn] by agent k ∈ K and the total time cost fk
τ0
(Pathk[v0, . . . , vn])

are better than the best solutions found thus far, they are stored as

the new best solutions. After all agents have completed their

search, we update the pheromone (see Eq. 7) and finish the

process in step s ∈ S. This is repeated S times to obtain Path[v0,

. . ., vn] with the minimum total time cost fτ0(Path[v0, . . . , vn]).

3 Improvements

We improved the method described in Section 2 to suit our

purposes. The novelty of our improved method is twofold: 1) the

application of the pCSA to GPS data using a mesh transition, and

2) consideration of congestion in the ACO.

3.1 Improvement of profile connection
scan algorithm

We used the pCSA to construct a temporal network. Because

this study uses GPS data to calculate the optimal travel route, we
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must process the GPS data in such a way that they can be used by

the pCSA. Transfer connections are formed from the GPS

movements of the same mobile device. GPS data for personal

mobility consist of the measured time and position information

in latitude and longitude. However, the granularity is too fine;

therefore, we need to divide the map into grids and create a

timetable of transitions between the grid points. GPS data are

converted into transfer connections that represent transitions

between grid points.

For example, suppose an individual is at a latitude and

longitude of 52.0 and 13.0, respectively, at 6:00. The

individual then moves to a latitude and longitude of 53.5 and

14.1 and to 54.8 and 15.3 at 6:40 and 7:15, respectively. The grid

point at a latitude and longitude of 52.0 and 13.0, respectively, is

(1, 1), the grid point at a latitude and longitude of 53.5 and 14.1,

respectively, is (2, 2), and the grid point at a latitude and

longitude of 54.8 and 15.3, respectively, is (3, 3). The transfer

connections for this individual are a departure time of 6:00,

arrival time of 6:40, departure grid point (1, 1), arrival grid point

(2, 2), departure time of 6:40, arrival time of 7:15, departure grid

point (2, 2), and arrival grid point (3, 3).

3.2 Improvement of ant colony
optimization

We estimate the congestion level and obtain the pheromone

for each period. Pheromone σi,j(τ) is expressed as follows:

σ i,j τ( ) �
σ0 i,j( )
θj τ( ) , (5)

where σ0(i,j) is defined in Eq. 7 as the pheromone of e(i, j), and

θj(τ) is defined as the congestion level of destination j at

time τ.

Congestion is given as a number between zero and 1, and the

more congested a location is, the more difficult it is to choose.

The following equation expresses the congestion:

θj τ( ) � lj τ( )
ljmax

. (6)

We can detect the number of people at node j at each time point

from the GPS data. Here, ljmax is the number of people at node j

per time when the number of people staying at node j is the

highest, and l(τ) is the number of people at node j during time τ.

The following equation represents the update of the

pheromone:

σ0 i,j( ) � ρ · σ0 i,j( ) + Δσ i,j, (7)

where ρ is the rate at which the pheromone remains after

evaporation. The closer the value is to 1, the smaller the

amount of pheromone that is evaporated. To ensure that the

pheromone effect is obtained correctly throughout the paper, ρ in

Eq. 7 was set to 0.9. The increment in pheromone Δσi,j is

determined by agent k:

Δσ i,j � ∑m

k�1Δσ
k
i,j, (8)

Δσki,j �
R

γk
if agent k pass the road e i, j( )

0 else

⎧⎪⎪⎨
⎪⎪⎩ . (9)

Here, γk is the total moving cost of agent k, and R is a constant.

We used R = 50 throughout this paper. We confirmed that

varying the value of R did not affect the results.

4 Proposed methodology

With the development of mobile information devices,

tracking individual movements has become possible. Even

mobile phones, including smartphones, can use GPS. With

this trend, it is becoming possible to analyze big data on

personal mobility. Individual mobility can be evaluated in

greater detail, such as when and where people are more likely

to move.

In this section, we propose methods for analyzing individual

mobility using temporal networks and creating the TDTSP to

search for the shortest path with meta-heuristics using the actual

GPS data from individuals.

4.1 Global positioning system data

We used the GPS data provided by Agoop, Inc. These data

were obtained from the users of a mobile device application who

provided their consent. The data are linked to a daily ID that

identifies the device and allows it to be tracked for a single day.

Agoop, Inc. collects GPS data in real-time. The frequency of such

data provisioning to the user (researcher) depends on the

contract. If the proposed method is to be put into practical

use, increasing the frequency of the data provided is necessary.

This study used 58 days of data collected in Kyoto during

February and April 2019. In 2019, Kyoto had the fewest number

of tourists in February, and Kyoto had the highest number of

tourists in April. Table 1 shows the number of data measured

during each month. Although the number of mobile devices used

for the measurements was higher in April, the number of logs was

TABLE 1 Number of daily IDs and logs of GPS data per day in each
month of 2019.

Month The number of ID
per day

The number of logs
per day

February 31,456 1,672,421

April 32,498 1,599,644
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lower. The GPS data used in this study were obtained when the

user conducted an action after the application was launched. As

the application runs in the background, it measures when a user

moves a significant distance, remains in a facility, or after a

certain amount of time, depending on the operating system.

Because the number of logs depends on the user activity, it is

difficult to determine the cause of the low number of logs in

April.

FIGURE 1
Total number of data logs by time slot. Notably, the number ofmeasurements is high during the daytimewhen people are activelymoving and is
low at night.

FIGURE 2
Estimated percentage of residential areas in all logs. Approximately 80% were Kyoto residents, and 1% were visitors from overseas.
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Figure 1 shows the number of logs measured based on the

time zone for all data. This shows that the number of logs is low

during late-night hours when people are immobile, and the

number of logs increases as people become mobile at

approximately 8:00.

These data are accompanied by an estimate of the residence

location of the mobile device owner. The percentages of all logs

classified based on the residential area are shown in Figure 2. A

total of 20% of the visitors were from outside Kyoto Prefecture,

and 1% of all logs were from overseas. The users of the travel

route recommendation system are mainly travelers from

overseas. Because they account for only 1% of the total

number of travelers, changes in the behavior of overseas

travelers will not significantly affect the amount of traffic.

4.2 Temporal network and movement
analysis

We constructed a temporal network using GPS data and

analyzed the movement of people. Figure 3 shows the research

flow, the details of which are as follows: The first step is to sort the

GPS data by mobile device. The second step is to transfer

connections formed from the GPS data of the same mobile

device, and array C is created by sorting them in descending

order of departure time. The third step involves calculating sets of

optimal paths to destination pt using the pCSA. Finally, the

resulting set is analyzed.

To use the pCSA, GPS data are converted into transfer

connections, as described above. In this study, we divided the

study area into 50-m square grids and formed transfer

connections between them. From these transfer connections,

the pCSA is used to calculate the optimal path to the

destination. The algorithm provides sets of optimized paths

for the input pt. For the analysis, we compared the travel time

by season and the time slot by creating a probability density

function of the travel time to the destination, which is discussed

in detail in the following section.

4.3 Travel route search using meta-
heuristics

The TDTSP from GPS data was used to calculate the

shortest path. Figure 3 shows the research flow applied, the

details of which are as follows. The first step is to calculate the

optimal path from the GPS data in the same way as described

above. The second step is to determine the travel time cost and

the TDTSP from the obtained sets of optimal paths. Finally,

meta-heuristics explore paths with low travel time costs around

specified nodes.

Using the pCSA, we find the optimal set of paths to move the

edges in the network. Subsequently, we must determine the time

weight W of dynamic graph G. We now consider how to

determine the time weight w(i, j, τ) from node i to j. We use

the pCSA with j as the input and divide the optimal set obtained

from the pCSA into subgroups according to time τ ∈ T when

departing from node i. For this subgroup, we compute the time

weight w(i, j, τ). Considering real-world scenarios, w(i, j, τ)

should be close to the cost of moving directly from i to j during

that period. Because many paths with long travel times are

formed when connecting intermediate points using the pCSA,

we adopt the shortest travel time within a lower probability of 5%

of the probability density function of the travel time, described in

Section 5.1.2, which is indicated as w(i, j, τ) in this study. The

solution to the TDTSP is determined based on Eqs. 3, 9.

FIGURE 3
Research flowofmobility analysis using temporal networks (top) and a travel route search usingmeta-heuristics (bottom). The flow remains the
same until the GPS data are preprocessed, and the optimal set of paths is formed using the pCSA. In the mobility analysis using temporal networks, a
set of optimal paths is visualized in an analyzable form. In a travel route search using meta-heuristics, a set of optimal paths is used to determine the
TDTSP.
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5 Results and discussion

We conducted a case study of mobility analysis based temporal

networks using GPS data and the shortest travel route search using

metaheuristics with location information observed in Kyoto City.

Figure 4 shows a map of Kyoto City, with the locations (nodes)

used in the case study indicated. The locations surrounded by the

red frame represent the nodes used in the temporal network mobility

analysis.Movement fromHyakumanben toKyoto Station and from the

Ennmachi intersection to Kyoto Station were compared and analyzed.

The nodes surrounded by blue frames represent the points considered

as the nodes for the TDTSP. To validate the method, it this case study,

we selected six typical tourist spots in Kyoto as nodes. When the

proposed method is put into practical use, nodes can be added without

difficulty. The case study is described in detail.

5.1 Movement analysis with temporal
network

5.1.1 Analysis by meantime of movement
We searched sets of optimal paths from GPS data using the

pCSA. We obtained the travel time to the destination for each

time slot from the set of paths. Here, the travel time includes the

waiting time at a departure node until subsequent transportation

is available. Suppose that a traveler at a node at time t0 leaves the

departure node at time t1 and arrives at the destination node at

time t2. Although the exact travel time is t2 − t1, departure time t1
is not recorded in the GPS data, and the travel time obtained from

the GPS data is t2 − t1 + (t1 − t0) = t2 − t0, including the waiting

time t1 − t0 at the departure node.

Figure 5 shows the average travel time fromHyakumanben to

Kyoto Station during February and April. The locations of

Hyakumanben and Kyoto Stations are shown in Figure 4. The

stations are 6.1 km apart by road, and it is therefore expected that

it will take approximately 20 min to arrive at the destination by

car. The average travel time in this study was the monthly average

hourly travel time for each day. Because it takes only

approximately 30 min to travel from Hyakumanben to Kyoto

Station by bus, any trip that takes more than 120 min is excluded

as an outlier. The travel time in the morning is shorter in April,

and remains almost the same from approximately 14:00 onward.

The observed shorter travel time in April is counterintuitive to

the fact that more people travel in April, as shown in Table 1.

However, this result includes the waiting time for movement. If

only a small number of movement data is measured, the waiting

FIGURE 4
Map of Kyoto City showing the locations (nodes) used in the case study. The points surrounded by red boxes are the points handled in the
temporal network mobility analysis, and the points surrounded by blue boxes are the points taken as nodes in the TDTSP.
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time will be much longer. Although the method for evaluating

the travel time, including the waiting time, is also effective for

evaluating public and other transportation types with a

predetermined timetable, there was a concern that the results

of this research would deviate from reality. Therefore, we

considered an analysis method that is unaffected by the

waiting time. We adopted the shortest travel time w(i, j, τ)

within the lower probability of 5% of the probability density

function of the described travel time.

5.1.2 Analysis using the probability density
function of travel time

As a case study, we compared the travel time from the

Hyakumanben and Ennmachi intersections to Kyoto Station.

The locations of these points are shown in Figure 4. The distance

from Ennmachi intersection to Kyoto Station is 5.9 km by road,

which is almost the same as the distance from Hyakumanben to

Kyoto Station. However, the trip from Ennmachi intersection to

Kyoto Station can take approximately 10 min by train from

Ennmachi intersection, which is 150 m away.

We can obtain the optimal set of paths to our destination

using the pCSA with GPS data. Using the pCSA with Kyoto

Station as the destination, we obtained the optimal set of paths

from Hyakumanben and Ennmachi intersections. A comparative

analysis was used to extract subgroups from those sets that

matched the conditions and compare the density functions of

the travel time of the paths included in the subgroups.

Figure 6 shows the travel time from Hyakumanben to Kyoto

Station, and Figure 7 shows the travel time from Ennmachi

intersection to Kyoto Station. The density functions were created

for (a) February and April, (b) Kyoto citizens and visitors, (c)

weekdays and weekends, and (d) departure times at between 8:

00 and 13:00 and between 13:00 and 18:00.

In Figures 6A, 7, we compare the probability density

functions of the travel times in February and April. Figure 6

shows that the peak of the probability density function formed at

a shorter distance in February. Compared to Figure 5, which

shows the same comparison within the same interval, the overall

travel time was longer in February. In other words, in Figure 5,

the waiting time for travel is considered a factor affecting the

travel time.

In Figures 6B, 7, we compare the travel times of Kyoto

citizens and visitors. Comparing the conditions in Figures 6B,

7, we found the following three major characteristics. First, both

Hyakumanben and Ennmachi visitors tend to move quickly

compared to the residents. Second, the movements of the

residents from Hyakumanben and Ennmachi forms a peak at

a much longer time than expected for travel by a passenger car or

public transportation. Third, the probability density of visitor

movement from Ennmachi intersection peaked at a location with

a shorter travel time than the residents.

Focusing on the density function of the movement from

Hyakumanben, the movements of both the residents and visitors

peaked when the time exceeded 60 min. Empirically, we know

that it takes approximately 20 min to reach Kyoto Station by car

from Hyakumanben and approximately 30 min by public

transportation; however, the observed 60 min peak is

considerably longer. In this study, because the routes were

calculated using the pCSA with GPS data, traffic congestion

and other events that lengthen the travel time should be

considered. The first is the lag between the start and end of a

movement and the time at which a mobile device measures the

location information. The second is the actual waiting time for

the bus or train the traveler wants to take at the bus stop or

station, and the third is the impact of detoured or heavily

connected travel formed using the pCSA.

Particular attention should be paid to the impact of long-

distance or heavily connected movements. For trips with long

distances or from places where few people head directly toward

their destination, the set of optimal paths includes those formed

by connecting many short and detouring paths. These effects are

believed to have formed a peak with a travel time longer than the

actual time. By contrast, the probability density of travel for

visitors from Ennmachi intersection peaks at a short distance,

which is thought to be because it is unaffected by detouring paths

or paths with many connections. Considering the significant

difference between travel from Hyakumanben and travel from

Ennmachi intersection, visitors can travel from the nearest

station in Ennmachi intersection to Kyoto Station on the

same train line.

Because most visitors travel by train, we can assume that the

peak travel time is approximately 20 min. According to the

timetable, it takes 7–11 min to travel from Ennmachi

FIGURE 5
The average travel time by time slots from Hyakumanben to
Kyoto Station is compared between February (blue line) and April
(broken red line). The results show that the travel time is shorter in
April during the morning hours and almost the same from
approximately 14:00 onward. Note, however, that this includes the
waiting time for travel, which may be unrealistic if the number of
data is insufficient.
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intersection toKyoto Station. 2However, it is thought that the

peak is formed by a discrepancy of a few minutes owing to the lag

that occurs until a mobile device measures the location

information while in transit and the effect of the waiting time.

Next, as shown in Figures 6C, 7, we compared the

probability density function created from the weekday data

with that created from the weekend data. The travel time from

Hyakumanben tended to be shorter on the weekends. When we

analyzed travel from Ennmachi intersection to Kyoto Station,

we found a travel time of approximately 20 min, and when the

peak of visitors shown in Figure 7B was formed, travel was more

frequent on the weekdays. It can be inferred that visitors who

use this route are mainly business people or commuters, rather

than tourists. In addition, Figure 7A shows the same travel time

of approximately 20 min in February and April, which confirms

this assumption.

In Figures 6, 7D, the ability density function was created for

departures from between 8:00 and 13:00 and 13:00 and 18:00.

From Figure 1, we can see that the movement of people becomes

active at 8:00. Both the Hyakumanben and Ennmachi

intersection movements were shorter from 13:00 to 18:00.

When we focus on the movement from Hyakumanben, we

can see from Figures 6B,C that the weekday movements of

residents tend to become longer. In other words, movement

within this time slot is influenced by the morning commute to

work and school, as well as daily life and business activities.

Focusing on travel from Ennmachi intersection, a travel time of

approximately 20 min is more common between 13:00 and 18:00.

FIGURE 6
A density function is formed for the travel time by classifying the sets of optimal paths for each condition for travel fromHyakumanben to Kyoto
Station. The horizontal axis is the travel time, and the vertical axis is the density. In (A), the density function is formed for the February and April data.
The density function is formed for Kyoto citizens and visitors in (B), for weekdays and weekends in (C), and for a departure time of 8:00 to 13:00 and
13:00 to 18:00 in (D). Note that because the data are from GPS, the travel time includes not only the effect of traffic congestion but also the lag
between the start/end times of the trip, the time of the measurement, and the waiting time.
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In other words, it can be inferred that train travel by visitors,

shown in Figure 7B, is the result of business visitors using the

train on their way home.

For all combinations of nodes, the probability density

function of the travel time was computed using the pCSA,

and the lower 5% point of the probability density function was

set as the shortest travel time (time weight) w(i, j, τ). The

proposed method is equally applicable to any order of nodes to

be visited. Thus, a mobility analysis using temporal networks

allowed us to compare the travel times under various

conditions. Because of the complexity of road networks and

changes in conditions depending on the time slot, the

evaluation of urban road traffic is becoming increasingly

challenging. It is therefore desirable to conduct traffic

evaluations, such as that demonstrated in this study, under

various conditions and to use a method that clarifies the traffic

characteristics in various cities.

5.2 Explore the shortest travel route

5.2.1 Creating the time-dependent traveling
salesman problem

We set up the TDTSP to include visiting seven nodes in

Kyoto City and derived the shortest path. The seven locations of

the nodes are shown in Figure 4. The starting point v0 is Shijo

Kawaramachi, v1 is Arashiyama, v2 is Kinkakuji, v3 is

Kiyomizudera, v4 is Kyotogosyo, v5 is Nijyojyo, and v6 is

Yasakajinjya. Starting from v0 at 8:00, the weights are updated

every 120 min. Shijo Kawaramachi was chosen as departure node

FIGURE 7
A density function is formed for the travel time from Ennmachi intersection to Kyoto Station by classifying sets of optimal paths for each
condition. The conditions in (A–D) are the same as in Figure 6. The traffic characteristics described in the section are clarified by comparing this figure
with Figure 6.
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v0 because there are many hotels in the area, and it is a place of

accommodation for many travelers.

To obtain the Pareto-optimal sets of paths, we used the pCSA

with each node as the input. Subsequently, subgroups of travel

times were created for each time τ, and the lower 5% point of the

probability density function for all transfers was assigned time

weight w(i, j, τ) ∈ W. This is applied so that the sets of Pareto-

optimal paths are unaffected by the detours created by the pCSA

or by the waiting time included in the GPS data. The weights are

listed in Table 2. From front to back, the array shows the weights

for the time slots: 8:00–10:00, 10:00–12:00, 12:00–14:00, 14:

00–16:00, and 16:00–18:00.

For example, it takes approximately 25 min to travel from

v0 to v1 by car if there is no traffic congestion along the way.

According to Table 2, the smallest weight is 28 min, which is

close to the travel time in the absence of traffic congestion. In this

case study, we assumed that the travel route between nodes was

direct without any detours. Therefore, if we take the lower 5% of

the probability density function, we can set the time weights close

to the assumption.

We checked the number of people staying at each node for

each time τ from the GPS data and calculated the degree of

congestion according to Eq. 6. The calculation results are

presented in Table 3.

5.2.2 Route search considering time spent
We set up the TDTSP to include traveling around Kyoto City;

in reality, however, people often stay at each node. We therefore

calculated the travel time by varying the time spent at each node.

In a static network, the shortest path does not change even if the

time spent is considered. However, in a temporal network, the

shortest path may change if the time spent changes.

The maximum stay time used in this case study is shown in

Table 4.We search for the shortest travel route bymultiplying the

same factor (multiplier) by the maximum stay time of all nodes.

We ran the ACO with K = 100 agents and S = 200 iterations

to find the shortest path, the results of which are shown in

TABLE 2 Time weights W.

Destination

depature v0 v1 v2 v3 v4 v5 v6

v0 [0, 0, 0, 0, 0] [42, 33, 31, 28, 32] [54, 52, 50, 45, 49] [52, 37, 38, 35, 33] [12, 16, 13, 14, 15] [23, 22, 25, 24, 21] [4, 4, 6, 6, 7]

v1 [42, 36, 32, 30, 28] [0, 0, 0, 0, 0] [23, 22, 19, 24, 54] [73, 27, 60, 38, 59] [33, 34, 31, 33, 38] [30, 28, 36, 34, 32] [55, 45, 45, 36, 34]

v2 [56, 57, 54, 51, 50] [26, 23, 19, 19, 56] [0, 0, 0, 0, 0] [60, 73, 71, 68, 103] [21, 22, 18, 18, 20] [19, 17, 21, 20, 40] [65, 53, 59, 51, 49]

v3 [38, 36, 35, 30, 30] [70, 29, 20, 15, 37] [83, 82, 68, 67, 67] [0, 0, 0, 0, 0] [51, 48, 45, 45, 48] [59, 51, 45, 39, 42] [17, 19, 17, 18, 16]

v4 [16, 17, 17, 15, 16] [39, 37, 30, 32, 34] [27, 21, 20, 16, 19] [44, 55, 47, 51, 51] [0, 0, 0, 0, 0] [4, 5, 5, 4, 4] [15, 16, 16, 15, 17

v5 [31, 26, 25, 27, 27] [27, 29, 26, 30, 28] [23, 20, 22, 20, 25] [58, 58, 58, 57, 58] [5, 5, 4, 5, 5] [0, 0, 0, 0, 0] [32, 30, 32, 26, 30]

v6 [5, 5, 6, 5, 5] [51, 49, 49, 36, 44] [61, 49, 58, 50, 60] [22, 21, 21, 21, 21] [21, 17, 19, 15, 17] [29, 25, 26, 30, 26] [0, 0, 0, 0, 0]

TABLE 3 Congestion level at each time slot θj(τ).

Time slot τ

Destination j 8:00–10:00 10:00–12:00 12:00–14:00 14:00–16:00 16:00–18:00

v0 0.493 0.686 0.782 0.868 1.00

v1 0.790 1.00 0.833 0.714 0.526

v2 0.757 1.00 0.958 0.975 0.483

v3 0.406 0.704 0.839 1.00 0.654

v4 1.00 0.778 0.854 0.753 0.701

v5 1.00 0.818 0.800 0.806 0.725

v6 0.603 0.819 0.939 1.00 0.906

TABLE 4 Time spent at each node.

Location Stay time

v1 150 min

v2 50 min

v3 50 min

v4 90 min

v5 50 min

v6 40 min
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Table 5. The route changed when the multiplier changed from

0.1 to 0.15, and it remained the same for the larger multiplier. In

Table 2, the travel times per time slot are 73, 27, 60, 38, and

59 min for routes with departure v1 and destination v3,

respectively. When going through the route [v0 → v4 → v5 →
v2→ v1→ v3→ v6→ v0], if the spent time is sufficiently long (with a

multiplier of 0.15 or more), the v1 → v3 trip can fit within the 10:

00–12:00 time slot with a travel time cost of 27 min. However, if the

time spent is short (with a multiplier of less than 0.1), then a time slot

with a longer travel time, such as v1 → v3 with a travel time cost of

73 min, is selected, increasing the total travel time. To avoid this, the

travel route is changed when the time spent is short.

Thus, it is possible to obtain sets of Pareto-optimal paths

from GPS data, define the TDTSP from the sets, and use meta-

heuristics to then search for the shortest path.

5.2.3 Route search considering traffic condition
In urban areas, sudden changes in travel time owing to events

such as accidents or traffic restrictions may prevent travel along a

particular segment. Therefore, in the subsequent case study, we

consider a case in which the time weights of specific edges

connecting v0 to v6 are highly increased.

Although this is an extreme case, we will analyze how the

travel route changes when the time weights w(i, j, τ) and w(j,

i, τ)(i ∈ V, ∀j ∈ V, ∀τ ∈ T) of the edges connected to i are

doubled owing to a large-scale traffic restriction or accident

at point i. After setting the time spent in Table 4, we doubled

the time weight for each node and applied the ACO with

100 agents and 200 iterations to determine the shortest path.

Table 6 shows the results obtained for the change in travel

route when only the time weight of the edge connected to v3 is

doubled; otherwise, the route remains the same as when some

of the times are set as shown in Table 5. This is because the

original route moves from v1 to v3; however, the change in

route moves from v3 to v1, and as shown in Table 2, the

travel time can be reduced by choosing the right time to

travel.

When deciding on a travel route, people may want to avoid

visiting a specific location in a particular time slot because of

congestion. By increasing the time weights w(i, j, τ), it is possible

to select a route that avoids congestion when applying the

proposed method. In addition to the assumption of travel

routes, various restrictions and conditions are considered in

transportation planning and route recommendations. Because

the proposed method uses GPS data, the conditions of the nodes

and edges used in the TDTSP can be tailored to preferred

simulations of the users.

6 Conclusion

Owing to the complexity of urban transportation networks

and temporal changes in traffic conditions, it is challenging to

assess real-time traffic situations. However, the development of

mobile information devices that use GPS has made it easier to

obtain personal mobility information. In this study, we developed

amethod for evaluating the mobility of people in a city using GPS

data. We applied twomethods: one is to evaluate humanmobility

using temporal networks constructed from GPS data, and the

other is to search for the shortest path by constructing and

solving the TDTSP.

We contribute to improving the existing method of creating a

network for public transportation using GPS data obtained from

mobile devices. To apply the existing method to GPS data, we

proposed dividing the map into 50-m square grids and creating a

timetable of transitions between the grids. Using actual data, we can

evaluate actual events, such as travel by nonpublic transportation

and delays in transportation. To visualize and evaluate the network,

we considered the average travel time. We created a probability

density function of the travel time to compare the travel by season

and time slot. We propose a new method for estimating the time

weights of edges in temporal networks using probability density

functions for the travel time.

We made another contribution to the method used to set the

TDTSP to search for the shortest path. The weights of the TDTSP

were determined from the sets of Pareto-optimal paths used to

TABLE 6 Nodes i that double the time weightsw(vi, vj, τ),w(vj, vi, τ)(8j ∈
V,8τ ∈ T) and the shortest route.

i Route

v0 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

v1 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

v2 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

v3 v0 → v6 → v3 → v1 → v2 → v5 → v4 → v0

v4 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

v5 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

v6 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

TABLE 5 Multiplier for time spent at each node and shortest route.

Multiplier
for spent time

Route

0 v0 → v4 → v5 → v1 → v2 → v3 → v6 → v0

0.05 v0 → v4 → v5 → v1 → v2 → v3 → v6 → v0

0.1 v0 → v6 → v4 → v5 → v2 → v1 → v3 → v0

0.15 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

0.2 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

0.4 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

0.6 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

0.8 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0

1.0 v0 → v4 → v5 → v2 → v1 → v3 → v6 → v0
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create the temporal network. To apply the ACO to the TDTSP,

we propose a new method for estimating the congestion level

from GPS data and calculating the transition probability using

the estimated congestion level. The congestion measured from

GPS was used to calculate the transition probability of the ACO

method used to solve the TDTSP.

As a case study, we conducted a human mobility analysis in

Kyoto City. In this case study, the validity of the proposed

method was verified. We also evaluated the impact of the time

the travelers spent at each node and the differences in congestion

at each edge on the optimal route search.

With the recent development of mobile information devices,

GPS data can be obtained more quickly; therefore, we can extend

our method to other cities. The following are possible future

extensions: 1) the formulation and post-implementation

evaluation of transportation plans, 2) application to vehicle

routing problems, and 3) extension to the TDTSP with time

frames. Owing to the complexity of urban transportation, it is

challenging to understand transportation planning; however, a

temporal GPS network can clarify transportation planning issues.

The method for finding the shortest path problem can be extended

to vehicle routing problems. In addition, we set the congestion level

in the calculation when applying the ACO method, which can be

used to set a time frame such that if the congestion level exceeds a

certain height, travel to that point will be restricted. Furthermore,

there is a growing demand to avoid crowds as a countermeasure to

future outbreaks of infectious diseases, and a system based on our

methods can be expected to be expanded to address such issues.
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