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Over the last decades, the discontinuous Galerkin (DG) method has

demonstrated its excellence in accurate, higher-order numerical simulations

for a wide range of applications in aerodynamics simulations. However, the

development of practical, computationally accurate flow solvers for industrial

applications is still in the focus of active research, and applicable boundary

conditions and fluxes are also very important parts. Based on curvilinear DG

method, we have developed a flow solver that can be used for solving the three-

dimensional subsonic, transonic and hypersonic inviscid flows on unstructured

meshes. The development covers the geometrical transformation from the real

curved element to the rectilinear reference element with the hierarchical basis

functions and their gradient operation in reference coordinates up to full third

order. The implementation of solid wall boundary conditions is derived by the

contravariant velocities, and an enhanced algorithms of Harten-Lax-van Leer

with contact (HLLC) flux based on curved element is suggested. These new

techniques do not require a complex geometric boundary information and are

easy to implement. The simulation of subsonic, transonic and hypersonic flows

shows that the linear treatment can limit the accuracy at high order and

demonstrates how the boundary treatment involving curved element

overcomes this restriction. In addition, such a flow solver is stable on a

reasonably coarse meshes and finer ones, and has good robustness for

three-dimensional flows with various geometries and velocities. For

engineering practice, a reasonable accuracy can be obtained at reasonably

coarse unstructured meshes.
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1 Introduction

Computational Fluid Dynamics (CFD) has become a very

important and useful design tool in aerodynamics [1, 2]. The

theoretical basis of CFD includes fluid mechanics, numerical

analysis, computer technology and other fields. Based on the

various calculation method [3–8], the approximate solution of

the fluid governing equation is obtained by using the powerful

computing capability of computer. In the past decades, due to the

increasing demand for complex fluid flow simulations, great

effort has been done by the CFD community in order to

increase the accuracy and reduce the calculation costs [9–15].

It is now well understood that numerical errors play a key role in

the accuracy of CFD results [10, 12]. In recent years, there has

been an increasing interest in the application of high-order

discretization methods with curved meshes, which can reduce

the numerical errors to aerodynamic flows [16]. Curved meshes

are commonly employed to provide a satisfactory representation

of the domain boundary with only a moderate number of mesh

elements, so that the polynomial degree can be increased while

keeping the global number of degrees of freedom (DOFs). The

role that curved meshes play in obtaining accurate solutions

when combined with high-order numerical discretization

methods has been demonstrated, such as [16–20]. Therefore,

numerical discretization methods with curved meshes

supporting arbitrary approximation orders have received an

increasing amount of attention.

Initially developed for advection problems, the discontinuous

Galerkin (DG) method has recently been applied in the field of

CFD with great success [21–24]. The DG method combine two

advantageous features commonly associated with finite element

and finite volume methods [25]. As in classical finite element

methods, accuracy is obtained by means of high-order

polynomial approximation within an element rather than by

wide stencils as in the case of finite volume methods.

Conservation is, similarly to finite volume methods, enforced

through the use of a flux at element boundaries, where a Riemann

problem is solved [17]. Furthermore, the discretization lends

itself to local mesh adaptation and efficient parallelization on

modern distributed memory computer architectures. The

implementation of efficient DG method on curved meshes is

an open field of research and crucial for developing accurate

numerical schemes. In the framework of the steady-state

compressible inviscid flow, the necessity of a higher-order

treatment of curved wall boundaries was put in evidence by

Bassy and Rebay, and is now generally accepted [26, 27]. The

curved meshes method via an isoparametric parametric

approximation to curve boundary is rather convenient to use

for DG schemes [22, 26]. A low-storage curvilinear DG method

was proposed and analyzed in [28], where the geometric factors

were included in both solution and test function spaces with a

provable convergence under a mild condition on the mesh.

Recent works by Chan et al. [29, 30] rely on reference frame

polynomial spaces introducing weight-adjusted L2-inner

products in order to recover high-order accuracy. In [20], a

simple boundary treatment, which can be implemented as a

modified DG scheme defined on triangles adjacent to boundary,

was proposed. Even though integration along the curve is still

necessary, integrals over any curved element are avoided.

Blended isogeometric DG method formulated on elements

that exactly preserve the CAD geometry have also been

recently proposed in [31].

However, three-dimensional flows with curved meshes are

rarely studied and the way to impose solid wall boundary

conditions in curved meshes is not mentioned. Proper boundary

treatment is critical in CFD. Its importance is obvious because it is

the boundary conditions that determine the flow characteristics once

the governing equations are given, at least for steady flow problems

[32]. Even though the boundary conditions via a correct

representation of the normal to the geometry is rather

convenient to use for DG schemes [17, 27], the acquisition of

normal is not very easy and needs to provide geometric

information, which is not provided by the general mesh

generator, especially when the boundary geometry is three-

dimensional. Therefore, it is difficult to extend this curved

meshes method to engineering applications. A highly adaptable

numerical flux format is needed in aerodynamic simulations to

accommodate a wide variety of flow velocities, including subsonic

flow, transonic flow, supersonic flow and hypersonic flow, and so

on. However, the implementation of numerical fluxes generally

depends on Lax-Friedrichs scheme and Roe flux in the curved

meshes. Although there are references to other (Godunov flux)

format numerical fluxes, but display expression is not given. The

Harten-Lax-van Leer with contact (HLLC) has gathered interest

because of their accuracy, mathematical simplicity, inherent entropy

satisfying property, positivity, lack of demand for knowledge of

complete eigenstructure of flux Jacobians, ability to satisfactorily

handle shocks and expansion fans and their easy extensibility to

various hyperbolic systems of governing equations [33–35]. The

HLLC scheme is one of the simplest known Riemann solver that can

resolve both linearly degenerate and genuinely nonlinear wavefields

accurately. Therefore, it is very significant for researchers to find a

display expression for HLLC flux on curved meshes.

In recent years, open source solvers have also become very

popular. Such as famous open source libraries libMesh [36] and

deal.II [37]are both excellent, which have brought inspiration

and convenience to many researchers. However, Local Lax-

Friedrichs (LLF) flux was used in deal.II [37, 38]. LLF has a

larger numerical viscosity, which is not as applicable as HLLC in

practical engineering such as supersonic and transonic. In [39],

Qiu also point out that the HLLC fluxes might be good choices as

fluxes for the RKDG method when all factors such as the cost of

CPU time, numerical errors and resolution of discontinuities in

the solution are considered. The libMesh is more of a software

framework than a complete solver. In practical problems,

libMesh has almost no complete functional modules that can
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be directly applied, and researchers need to do secondary

development according to the specific problems. Therefore,

the development of three-dimensional solver of aerodynamics

simulation is very meaningful work.

In the present work, for aerodynamics simulation, a

simulation tool based on curvilinear DG method will be

provided to include both three-dimensional solid walls

boundary conditions on curved meshes and HLLC flux on

curved meshes. First, we present the relevant closed form

expressions for a widely used set of hierarchical basis

functions up to full high order for a reference element, as well

as the necessary expressions for the Jacobian for a high order

polynomial geometrical transformation. Given these results,

implementation is then straightforward. The derived

expressions are used to implement the curved meshes, which

are then applied to integration along curved element and curved

face for complex geometries. Second, we present the

implementation process of HLLC flux in the curved element.

Third, the implementation of solid wall boundary conditions

depends on contravariant velocities which include the Jacobian

of the transformation function of the map from each curved

element to a rectilinear reference element. Based on the above

three points, we have developed a simulation tool that can be

used for solving the three-dimensional subsonic, transonic and

hypersonic inviscid flows. Academic problem of subsonic flow

past a sphere is used to show how the linear treatment of wall

boundaries limits the accuracy, and demonstrate how the

boundary treatment involving curved element overcomes this

restriction. The results suggest that such a scheme is stable on a

reasonably coarse meshes and finer ones. Engineering problems

of transonic flow past an ONERAM6 wing, hypersonic flow past

a blunt cone, and hypersonic flow past a HB-2 ballistic model are

used to demonstrate the ability of this method for engineering

practice. Numerical tests suggest that the curvilinear DG method

has great robustness for three-dimensional inviscid flows with

various geometries and velocities on unstructured meshes.

The paper is organized as follows: we first discuss the main

idea of curvilinear DGmethod in Section 2 for three-dimensional

inviscid flows. We present an implementation process of HLLC

flux with curved element in Section 3. As a demonstration, we

discuss the boundary treatment in Section 4. Numerical tests are

shown in Section 5. Section 6 consists of concluding remarks.

2 Discontinuous Galerkin
discretization

2.1 Three-dimensional compressible Euler
equations

The governing equations for the three-dimensional inviscid

flow can be written as follows:

zu
zt

+ ∇ · F(u) � 0, (1)

which is defined on a boundary domainΩ with appropriate well-

posed boundary data prescribed on zΩ. The conservation

variables u and the Cartesian components f(u), g(u), and

h(u) of the flux function F(u) are given by

u �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
ρu
ρv
ρw
ρe

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, f(u) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρu
ρuu + p
ρuv
ρuw
ρhu

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, g(u) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρv
ρvu

ρvv + p
ρvw
ρhv

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

h(u) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρw
ρwu
ρwv

ρww + p
ρhw

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (2)

As is customary, ρ is the density of the fluid, u, v, and w are

components of the velocity vector �v, p is the pressure, and e is the

total internal energy per unit mass. The total enthalpy per unit

mass is defined as h � e + p/ρ. We assume that the fluid is perfect

gas satisfying the equation of state

p � (γ − 1)ρ(e − ����� �v�����2/2), (3)

where γ indicates the ratio between the specific heats of the fluid,

which is set to 1.4 for the numerical experiments.

2.2 Discretization

The governing equation Eq. 1 is discretized using a DG finite

element formulation which originally proposed in reference [40].

Here we provide a brief synopsis of the numerical scheme. For

numerical discretization, we divide the problem domain Ω into a

collection of non-overlapping elements

Ω � ∪
Nh

h�1
Ωh. (4)

Then, approximate solution uh is introduced on element Ωh

and we construct a Galerkin problem by multiplying Eq. 1 with a

test function υh, integrating over the domain Ωh, and using an

integration by parts to obtain

∫
Ωh

υh
zuh

zt
dV + ∫

zΩh

υhF(uh) · �ndS − ∫
Ωh

∇υh · F(uh)dV � 0,

(5)
where �n is the outward unit normal vector to the boundary zΩh.

The solution uh is approximated by the combination ofNm shape

functions,

uh �∑Nm

i�1
Ui(t)ϕm

i (x, y, z), (6)
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where ϕmi (x, y, z) is the shape function of the polynomial of

degree m and Nm � (m + 1)(m + 2)/2. Then the Eq. 5 becomes

the following system of Nm equations

∑Nm

i�1

zUi

zt
∫

Ωh

ϕm
i ϕ

m
j dV +∫

zΩh

ϕm
j F(uh)· �ndS −∫

Ωh

∇ϕm
j ·F(uh)dV�0,

1≤ j≤Nm.

(7)
Due to the discontinuous nature of the numerical solution, the

normal flux Fn � F(uh) · �n is not defined on zΩh. The usual

strategy is to define it in terms of a numerical flux Fn(uh,uk)
that depends on the solution uh on zΩh and uk on the neighboring

element zΩk sharing the portion of the boundary zΩhk common to

both elements. In our experiments, we use the HLLC flux which is

necessary to consider the property of curved element discussed in

Section 3. In Eq. 7, the method of calculating the integral of the

volume and surface will be introduced in the following sections.

By assembling all the elemental contributions together,

the system of ordinary differential equations which govern

the evolution in time of the discrete solution can be

written as

M
dU
dt

� R(U), (8)

whereM denotes the mass matrix and R(U) denotes the residual
vector. The above system of ordinary differential equations is

discretized in time by a three-stage TVD Runge-Kutta

method [40].

U(1) � Un + ΔtM−1R(Un)
U(2) � 3

4
Un + 1

4
[U(1) + ΔtM−1R(U(1))]

Un+1 � 1
3
Un + 2

3
[U(2) + ΔtM−1R(U(2))]

. (9)

2.3 Geometric mapping of curved element

In order to improve the representation of curved wall

boundaries, elements with second-order shape can be used in

the vicinity of the geometry. The geometric transformation of the

real curved element in (x, y, z) space to a rectilinear reference

element in (ξ, η, ζ) space, shown in Figure 1, is defined (via the

Jacobian) in terms of second order Lagrangian interpolation

functions. Figure 1B is a standard reference element and the

lengths of the tetrahedron edges along the ξ, η and ζ axes are

unitary. Hence, it is apparent to define three of simplex

coordinates λ2 � ξ, λ3 � η, λ4 � ζ on this tetrahedron [41, 42],

and the last is then λ1 � 1 − ξ − η − ζ . The second order

Lagrangian interpolation functions are constructed by λ1, λ2,

λ3, λ4 and identical to those used as nodal basis functions in finite

elements. For the ten node tetrahedron, these transformation

functions are defined by

L1(ξ, η, ζ) � 2(λ1 − 1)λ1 � [2(1 − ξ − η − ζ)(1 − ξ − η − ζ)]
L2(ξ, η, ζ) � 2(λ2 − 1)λ2 � (2ξ − 1)ξ
L3(ξ, η, ζ) � 2(λ3 − 1)λ3 � (2η − 1)η
L4(ξ, η, ζ) � 2(λ4 − 1)λ4 � (2ζ − 1)ζ
L5(ξ, η, ζ) � 4λ1λ2 � 4(1 − ξ − η − ζ)ξ
L6(ξ, η, ζ) � 4λ1λ3 � 4(1 − ξ − η − ζ)η
L7(ξ, η, ζ) � 4λ1λ4 � 4(1 − ξ − η − ζ)ζ
L8(ξ, η, ζ) � 4λ2λ3 � 4ξη
L9(ξ, η, ζ) � 4λ2λ4 � 4ξζ
L10(ξ, η, ζ) � 4λ3λ4 � 4ηζ . (10)

The transformation from reference to real coordinates is then

accomplished by

x �∑10
i�1
Li(ξ, η, ζ)xi

y �∑10
i�1
Li(ξ, η, ζ)yi

z �∑10
i�1
Li(ξ, η, ζ)zi

, (11)

where (xi, yi, zi) are the nodal coordinates in real space.

In order to define and manipulate vector quantities within a

curved element, the unitary base vectors (co-variant) are

introduced

�g1 �
zx

zξ
�ex + zy

zξ
�ey + zz

zξ
�ez

�g2 �
zx

zη
�ex + zy

zη
�ey + zz

zη
�ez

�g3 �
zx

zζ
�ex + zy

zζ
�ey + zz

zζ
�ez

, (12)

and the reciprocal base vectors are

�g1 � ∇ξ, �g2 � ∇η, �g3 � ∇ζ . (13)

Then, a vector can be represented by both its covariant

components and the reciprocal base vectors

�B � ( �B · �g1) �g1 + ( �B · �g2) �g2 + ( �B · �g3) �g3. (14)

Differentiation in the reference coordinate system is

connected to that in the real coordinate system as follows

[22, 41]:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z

zξ

z

zη

z

zζ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zx

zξ

zy

zξ

zz

zξ

zx

zη

zy

zη

zz

zη

zx

zζ

zy

zζ

zz

zζ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z

zx

z

zy

z

zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� [J]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z

zx

z

zy

z

zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

where [J] is the Jacobian of the transformation function and the

inverse of the Jacobian can be written as
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[J]−1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zξ

zx

zη

zx

zζ

zx

zξ

zy

zη

zy

zζ

zy

zξ

zz

zη

zz

zζ

zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

Then, Eq. 14 can be written as

⎡⎢⎢⎢⎢⎢⎣Bx

By

Bz

⎤⎥⎥⎥⎥⎥⎦ � [J]−1⎡⎢⎢⎢⎢⎢⎣ Bξ

Bη

Bζ

⎤⎥⎥⎥⎥⎥⎦, (17)

where Bξ , Bη, and Bζ are the covariant components in the

reference cell. Finally, the function Eqs 10, 11 are

differentiated to obtain the Jacobian, which is shown in Table 1.

Although the expression is given, it is worth pointing out that

the Jacobian is position-dependent within the element, and must be

computed at each quadrature point when computing the integral of

the volume and surface in the next subsection. It should be noted

that the second order polynomial geometric transformation used

here does not exactly model curved. More accurate geometrical

modeling can be obtained by either increasing the order of the

polynomial mapping or using tetrahedral rational Bezier volumes as

shown in [43]. Although there are still some geometrical

approximation errors, the fit is far better than that achieved

using rectilinear elements.

2.4 Gradient operation of basis functions
in reference coordinates

The basis functions and their gradient operation are derived

for the parent element in terms of simplex coordinates. The

actual set of basis functions used is the hierarchical type [44]. The

hierarchical basis functions mean that the low order basis

functions are maintained as a subset of the next higher-order

basis functions. In order to derive the gradient on the reference

element, the following associations are again made:

λ1 � 1 − ξ − η − ζ
λ2 � ξ
λ3 � η
λ4 � ζ . (18)

In the reference coordinates, ∇ξ, the reciprocal base vector, is

simply �eξ , and similarly ∇η � �eη and ∇ζ � �eζ . The hierarchical

basis functions and their gradient operation complete to full third

order are presented in Table 2.

FIGURE 1
Curved element of global coordinates and rectilinear reference element of local coordinates, (A) is curved element, (B) is rectilinear reference
element.

TABLE 1 Functions required for the Jacobian: second order curved
element.

i ›Li
›ξ

›Li
›η

›Li
›ζ

1 1 − 4(1 − ξ − η − ζ) 1 − 4(1 − ξ − η − ζ) 1 − 4(1 − ξ − η − ζ)
2 4ξ − 1 0 0

3 0 4η − 1 0

4 0 0 4ζ − 1

5 4(1 − 2ξ − η − ζ) −4ξ −4ξ
6 −4η 4(1 − ξ − 2η − ζ) −4η
7 −4ζ −4ζ 4(1 − ξ − η − 2ζ)
8 4η 4ξ 0

9 4ζ 0 4ξ

10 0 4ζ 4η
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2.5 Computation of integral of the volume
and surface

The above subsections discussed geometric mapping of

curved element. The real curved element (in the global

(x, y, z) coordinate system) is mapped to a rectilinear parent

element (in the local (ξ, η, ζ)) coordinate system. Therefore, the

integral of the volume and surface is changed, which should take

into account the factors of the curved element.

In Eq. 8, the mass matrix elements are computed as

Mij � ∫
Ω′
ϕm
i ϕ

m
j |det[J]|dξdηdζ , (19)

and the residual vector elements are separated into the following

two parts

Rj � R1
j + R2

j , (20)

R1
j � ∫

Ω
∇ϕm

j · F(ul)dV, (21)

R2
j � −∫

zΩ
ϕm
j Fn(ul,ur)dS, (22)

where l indicates the element, and r indicates the neighboring

element. In the reference coordinate system, considering Eqs 17,

21 becomes

R1
j � ∫

Ω′
([J]−1∇ϕm

j ) · F(ul)|det[J]|dξdηdζ . (23)

TABLE 2 Hierarchical basis functions and their gradient operation in reference coordinates.

Basis functions Nodes Function form ξ-component of
gradient

η-component of
gradient

ζ-component of
gradient

Nodes functions

1 1 1 − ξ − η − ζ −1 −1 −1

2 2 ξ 1 0 0

3 3 η 0 1 0

4 4 ζ 0 0 1

Second order edges functions

5 1; 2 (1 − ξ − η − ζ)ξ 1 − 2ξ − η − ζ −ξ −ξ
6 1; 3 (1 − ξ − η − ζ)η −η 1 − ξ − 2η − ζ −η
7 1; 4 (1 − ξ − η − ζ)ζ −ζ −ζ 1 − ξ − η − 2ζ

8 2; 3 ξη η ξ 0

9 2; 4 ξζ ζ 0 ξ

10 3; 4 ηζ 0 ζ η

Third order edges functions

11 1; 2; 2 (1 − ξ − η − ζ)ξξ 2ξ(1 − 1.5ξ − η − ζ) −ξξ −ξξ
12 1; 3; 3 (1 − ξ − η − ζ)ηη −ηη 2η(1 − ξ − 1.5η − ζ) −ηη
13 1; 4; 4 (1 − ξ − η − ζ)ζζ −ζζ −ζζ 2ζ(1 − ξ − η − 1.5ζ)
14 2; 3; 3 ξηη ηη 2ξη 0

15 2; 4; 4 ξζζ ζζ 0 2ξζ

16 3; 4; 4 ηζζ 0 ζζ 2ηζ

Faces functions

17 2; 3; 4 ξηζ ηζ ξζ ξη

18 1; 3; 4 (1 − ξ − η − ζ)ηζ −ηζ (1 − ξ − 2η − ζ)ζ (1 − ξ − η − 2ζ)η
19 1; 2; 4 (1 − ξ − η − ζ)ξζ (1 − 2ξ − η − ζ)ζ −ξζ (1 − ξ − η − 2ζ)ξ
20 1; 2; 3 (1 − ξ − η − ζ)ξη (1 − 2ξ − η − ζ)η (1 − ξ − 2η − ζ)ξ −ξη
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In Eq. 22, Fn(ul,ur) is a HLLC schemes numerical flux which

will be discussed in the next section. Considering Eq. 17, the

calculation of R2
j has the following four situations.

In the case where SL > 0, the Eq. 22 becomes

R2
j � −∫

zΩ′
ϕm
j F(ul) ·⎛⎜⎝[J]−1S ⎡⎢⎢⎢⎢⎢⎣ nξnη

nζ

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎠|det[J]S|dξdη, (24)

in the case where SL ≤ 0< SM, the Eq. 22 becomes

R2
j � −∫

zΩ′
ϕm
j F(ul) ·⎛⎜⎝[J]−1S ⎡⎢⎢⎢⎢⎢⎣ nξnη

nζ

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎠|det[J]S|dξdη
− ∫

zΩ′
ϕm
j SL(Up

l − Ul)|det[J]S|dξdη, (25)

in the case where SM ≤ 0≤ SR, the Eq. 22 becomes

R2
j � −∫

zΩ′
ϕm
j F(ur) ·⎛⎜⎝[J]−1S ⎡⎢⎢⎢⎢⎢⎣ nξnη

nζ

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎠|det[J]S|dξdη
− ∫

zΩ′
ϕm
j SR(Up

r − Ur)|det[J]S|dξdη, (26)

and in the case where SR < 0, the Eq. 22 becomes

R2
j � −∫

zΩ′
ϕm
j F(ur) ·⎛⎜⎝[J]−1S ⎡⎢⎢⎢⎢⎢⎣ nξnη

nζ

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎠|det[J]S|dξdη, (27)

where [J]S is the Jacobian matrix of face, the superscript ()′
indicates the parameter in the reference element, SL(U*

l − Ul)
and SR(U*

r − Ur) expressions will be discussed in the next

section.

The integral of the volume and surface cannot be evaluated

analytically and must be computed numerically using quadrature

techniques [45]. The use of high order quadrature rules results in

increased computational cost when using curvilinear as opposed

to rectilinear elements. Therefore, it is advisable that curved

elements only be used along the curved boundaries of the

domain.

3 The implementation process of
Harten-Lax-van Leer with contact
flux in curved element

Amongst various approximate Riemann solvers that exist

in the literature, the HLLC schemes have gained popularity

because of their simplicity and accuracy. In this work, we

intend to closely study the numerical schemes of HLLC flux

in curved element. The original Harten-Lax-van Leer (HLL)

scheme was devised by Harten, Lax and van Leer [46]. It

assumes a wave structure consisting of two waves that

separates three constant states. Although quite accurate in

resolution of nonlinear waves, a major drawback of the HLL

scheme is its inability to exactly resolve the contact and shear

waves. The loss of accuracy on these waves occurs because of

the assumption of constant average state between the two

wave structure [34]. The inability of HLL solver to resolve

contact and shear waves was mitigated through the

development of the HLLC Riemann solver (C for Contact)

by Toro et al. [47]. This improvement was achieved by

considering two averaged intermediate states, separated by

adding a contact wave with speed SM to the pre-existing two

wave HLL structure.

The two-state approximate Riemann solution is defined

as [46]

UHLLC �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ul if SL > 0
Up

l if SL ≤ 0< SM
Up

r if SM ≤ 0≤ SR
Ur if SR < 0

, (28)

The corresponding interface flux, denoted

Fn(ul,ur) � FHLLC, is defined as

FHLLC �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Fl if SL > 0
Fp
l if SL ≤ 0< SM

Fp
r if SM ≤ 0≤ SR
Fr if SR < 0

, (29)

where Fl � F(ul) · �n, Fr � F(ur) · �n; SL and SR are numerical

approximations to the speeds of the left most and right most

running characteristics that emerge as the solution of the

Riemann problem at an interface.

In the rectilinear reference element, through Eq. 17, the unit

normal vector �n is represented as

nx � ξxnξ + ηxnη + ζxnζ
ny � ξynξ + ηynη + ζynζ
nz � ξznξ + ηznη + ζznζ

, (30)

where nξ , nη and nζ are the component of the unit normal vector

of the interface in rectilinear reference element. Therefore, the

directed velocity, q � unx + vny + znz in real curved element, can

be rewritten as follow

Q � Unξ + Vnη +Wnζ , (31)

where U, V and W are contravariant velocities, which can be

defined as

U � ξxu + ξyv + ξzw
V � ηxu + ηyv + ηzw
W � ζxu + ζyv + ζzw

. (32)

The choice of wavespeeds are given as [33]

SL � min(Ql − cl(|∇ξ| + ∣∣∣∣∇η∣∣∣∣ + |∇ζ |)/3, ~Q − ~c(|∇ξ| + ∣∣∣∣∇η∣∣∣∣ + |∇ζ |)/3)
SR � max(Qr + cr(|∇ξ| + ∣∣∣∣∇η∣∣∣∣ + |∇ζ |)/3, ~Q + ~c(|∇ξ| + ∣∣∣∣∇η∣∣∣∣ + |∇ζ |)/3) , (33)

where |∇ξ| �
&&&&&&&&&&
ξ2x + ξ2y + ξ2z

√
, |∇η| �

&&&&&&&&&&
η2x + η2y + η2z
√

,

|∇ζ | �
&&&&&&&&&&
ζ2x + ζ2y + ζ2z

√
; Ql and Qr are the normal velocities

across an interface; cl and cr are the respective sonic speeds;
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superscript “~” indicates the standard Roe averaged quantities at
the interface [48]. Applying the Rankine-Hugoniot conditions
across the SL wave gives [33]

Fp
l � Fl + SL(Up

l − Ul). (34)

Similarly, the jump relations across the SR wave gives

Fp
r � Fr + SR(Up

r − Ur). (35)

For three-dimensional Euler equations with states Ul and Ur

separated by an interface with unit normal vector �n, Eq. 34

becomes [33]

SL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρpl
ρpl u

p
l

ρpl v
p
l

ρpl w
p
l

ρpl e
p
l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρpl Q
p
l

ρpl u
p
l Q

p
l + pp(ξxnξ + ηxnη + ζxnζ)

ρpl v
p
l Q

p
l + pp(ξynξ + ηynη + ζynζ)

ρpl w
p
l Q

p
l + pp(ξznξ + ηznη + ζznζ)(ρpl epl + pp)Qp

l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� SL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρl
ρlul

ρlvl
ρlwl

ρlel

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρlQl

ρlulQl + pl(ξxnξ + ηxnη + ζxnζ)
ρlvlQl + pl(ξynξ + ηynη + ζynζ)
ρlwlQl + pl(ξznξ + ηznη + ζznζ)(ρlel + pl)Ql

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (36)

Similarly, Eq. 35 becomes

SR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρpr
ρpru

p
r

ρprv
p
r

ρprw
p
r

ρpr e
p
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρprQ
p
r

ρpru
p
rQ

p
r + pp(ξxnξ + ηxnη + ζxnζ)

ρprv
p
rQ

p
r + pp(ξynξ + ηynη + ζynζ)

ρprw
p
rQ

p
r + pp(ξznξ + ηznη + ζznζ)(ρ*re*r + p*)Q*

r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� SR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρr
ρrur

ρrvr
ρrwr

ρrer

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρrQr

ρrurQr + pr(ξxnξ + ηxnη + ζxnζ)
ρrvrQr + pr(ξynξ + ηynη + ζynζ)
ρrwrQr + pr(ξznξ + ηznη + ζznζ)(ρrer + pr)Qr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (37)

To determine U*
l , U

*
r (and hence F*l , F

*
r), Batten et al. [33]

made the assumption that

SM � Qp
l � Qp

r � Qp, (38)

where Q* is the average directed velocity between the two acoustic

waves. Multiplying the second, third, and fourth equations of Eq. 36

by nx, ny and nz respectively, and summing minus multiplying the

second, third, and fourth equations of Eq. 37 by nx, ny and nz
respectively, and summing, a closed form expression for the contact

wavespeed, SM, can be written as

SM � ρrQr(SR − Qr) − ρlQl(SL − Ql) + Pl − Pr

ρr(SR − Qr) − ρl(SL − Ql) , (39)

where

Pl � pl[(ξxnξ + ηxnη + ζxnζ )2 + (ξynξ + ηynη + ζynζ )2 + (ξznξ + ηznη + ζznζ )2] � plN

Pr � pr[(ξxnξ + ηxnη + ζxnζ )2 + (ξynξ + ηynη + ζynζ )2 + (ξznξ + ηznη + ζznζ )2] � prN
. (40)

Once SM is obtained, Eq. 36 can be manipulated to find all

remaining components of U*
l . Using Eq. 38, the first equation in

Eq. 36 gives

ρpl � ρl
(SL − Ql)
(SL − SM). (41)

Multiplying the second, third, and fourth equations of Eq. 36

by nx, ny and nz respectively, and summing gives

SLρ
p
l SM − ρpl S

2
M − Pp � SLρlQl − ρlQ

2
l − Pl. (42)

Using Eq. 41 this simplifies to give

pp � ρl(Ql − SL)(Ql − SM)/N + pl. (43)

With ρpl and pp specified, (ρu)pl , (ρv)pl , (ρw)pl and (ρe)pl may be

obtained from Eq. 36 as

(ρu)pl � (SL − Ql)ρlul + (pp − pl)(ξxnξ + ηxnη + ζxnζ)
SL − SM

, (44)

(ρv)pl � (SL − Ql)ρlvl + (pp − pl)(ξynξ + ηynη + ζynζ)
SL − SM

, (45)

(ρw)pl � (SL − Ql)ρlwl + (pp − pl)(ξznξ + ηznη + ζznζ)
SL − SM

, (46)

(ρe)pl � (SL − Ql)ρlel − plQl + ppSM
SL − SM

. (47)

From Eqs 41–47, the flux vector F*l may be obtained directly

from Eq. 36. In the case where SM ≤ 0≤ SR, the equations for F*r
follow by simply changing the l or L subscripts to r and R,

respectively.

4 Boundary conditions with curved
element

4.1 Mesh generation

When exploiting the ability of higher-order discretization

methods to generate accurate approximations on coarse meshes,

a crucial point is to provide a proper representation of curved

wall boundaries [23]. Using a finer mesh to fit the boundary is a

common method. However, inserting additional elements close

to a boundary with the sole purpose of resolving the geometry

impedes the aims of higher-order methods.

A more adequate approach we pursue within the proposed

method is to represent the boundary by Simmetrix’ Modeling

Suite [49], which is able to cope with high-order meshes. We gain

detailed information on the geometry via additional point data

included in the mesh.

The curved mesh generation process is briefly illustrated by

an example in Figure 2. Firstly, solver read the model and mesh

parameters, then call the mesh generation module, and use a

certain method (such as Delaunay triangulation) to generate the
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first-order meshes, as shown in Figures 2A,D. According to

geometry information, second-order meshes are then

produced by projecting the mid-point of boundary edges on

the geometry, resulting in curved elements on the boundary, as

shown in Figures 2B and Figure 2E.

4.2 Boundary conditions

When the boundary face of an element belongs to zΩ, the

normal flux function Fn(ul, ur) must be consistent with the

boundary condition to be imposed on zΩ and will be denoted

by Fn(ul,ubc), where ul is the internal boundary state at the

current time level and ubc is chosen according to the conditions

that must be satisfied on the boundary. At inflow and outflow

boundaries, the state is computed by means of a local one-

dimensional characteristic analysis in a direction normal to

the boundary by imposing the available data and the Riemann

invariants associated to outgoing characteristics [26]. The most

popular way to impose boundary conditions at solid wall is the

reflection technique, where an extra row (rows) of ghost cells is

added behind the wall. All interior solution components are

FIGURE 2
Detail of mesh generation process of sphere. (A) is first-order meshes of sphere, (B) is second-order meshes of sphere. (C) is computational
domain meshes of sphere. (D) first-order meshes of HB-2, (E) second-order meshes of HB-2.
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reflected symmetrically to ghost states except for the normal

velocity which is negated [27].

The reflecting boundary conditions state that no flow

penetrates a solid wall, i.e., the normal velocity at the wall is

zero. Depending on the numerical scheme, a ghost state or cell is

created on the part of the numerical boundary zΩW

corresponding to the solid wall. With the DG methods, a

ghost state is created at every integration point on zΩW,

where all components of the ghost solution are set equal to

the corresponding interior values at the same point except for the

normal velocity, which is negated. Then, the interior and ghost

states are passed to a Riemann solver. Due to the symmetry of the

reflection, the solution of the Riemann problem at integration

point xk ∈zΩW satisfies [27]

�v(xk) · �n � 0, (48)

where �v is velocity vector, �n is the inward unit normal vector to

the boundary face of an element H belongs to zΩW which is

shown in Figure 3A. The geometric description of Eq. 48 is

shown in Figure 3C.

A general process for implementing boundary conditions

is shown below. A ghost state �vbc is created at each boundary

integration point xk. Via Figure 3C, by the addition of

vectors, the �vbc relative to the element H at the ghost state

is given by

�vbc � �vl − 2 �vn, (49)

where �vl is the interior state, and �vn is the normal velocity. The �vn
is defined as

�vn � ( �vl · �n) �n, (50)

while the density and pressure are copied exactly from the

interior values at the same point. We obtain the ghost state

vector as

ρbc � ρl
ubc � ul − 2(ulnx + vlny + wlnz)nx
vbc � vl − 2(ulnx + vlny + wlnz)ny
wbc � wl − 2(ulnx + vlny + wlnz)nz

pbc � pl

. (51)

Finally, the Riemann problem Fn(ul, ubc) is solved. From Eq.

51 we found that the ghost state vector at each integration point

of the boundary face of an elementH belongs to zΩW is the same.

This approach works well for straight-sided bodies. However,

results are inferior when a physical geometry is more complex [27].

Even more, the DG method is highly sensitive to the error due to

approximation of a curved geometry by a straight-sided element

meshes. This error may dominate the discretization error of the

scheme and lead to a wrong solution. We seek to impose boundary

conditions which would take this into consideration andmodel flow

more accurately. When considering the factors of the curved

element, we proceed as follow.

In Section 4.1, we know that the solid wall boundary region is

discretized by curved elements. When the boundary face of a

curved element ~H belongs to zΩW, the normalized inward unit

normal vector �n at each quadrature point is different which is

shown in Figure 3B. Therefore, the solid wall boundary

conditions, Eq. 51, cannot be directly applied. Even though

the boundary conditions via a correct representation of the

normal to the geometry is rather convenient to use for Eq. 51

[17, 27], the acquisition of normal is not very easy and needs to

provide geometric information. Here, we show a direct method

to implement solid wall boundary conditions which only requires

some variables of rectilinear reference element.

Using the variables of rectilinear reference element, the

normalized inward unit normal vector �n can be written as

nx � �ξxnξ + �ηxnη + �ζxnζ
ny � �ξynξ + �ηynη + �ζynζ
nz � �ξznξ + �ηznη + �ζznζ

, (52)

FIGURE 3
Solid wall boundary and geometric description of boundary conditions. (A) is rectilinear boundary element, (B) is curved boundary element, (C)
is geometric description of boundary conditions.
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where

�ξx � ξx/|∇ξ|, �ξy � ξy/|∇ξ|, �ξz � ξz/|∇ξ|
�ηx � ηx/∣∣∣∣∇η∣∣∣∣, �ηy � ηy/∣∣∣∣∇η∣∣∣∣, �ηz � ηz/∣∣∣∣∇η∣∣∣∣
�ζx � ζx/|∇ζ |, �ζy � ζy/|∇ζ |, �ζz � ζz/|∇ζ |

. (53)

Using Eqs 52, 50 becomes

( �vn)x � ( �Unξ + �Vnη + �Wnζ)(�ξxnξ + �ηxnη + �ζxnζ)
( �vn)y � ( �Unξ + �Vnη + �Wnζ)(�ξynξ + �ηynη + �ζynζ)
( �vn)z � ( �Unξ + �Vnη + �Wnζ)(�ξznξ + �ηznη + �ζznζ)

, (54)

FIGURE 4
(A)Mach distribution with P1Q1 element on 0.4, 0.2, 0.1 and 0.05 mesh size form left to right and from top to bottom. (B)Mach distribution with
P1Q2 element on 0.4, 0.2, 0.1 and 0.05 mesh size form left to right and from top to bottom. (C) Mach distribution with P2Q2 element on 0.4, 0.2,
0.1 and 0.05mesh size form left to right and from top to bottom. (D)Mach distributionwith P3Q2 element on 0.4, 0.2, 0.1 and 0.05mesh size form left
to right and from top to bottom.
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where

�U � �ξxul + �ξyvl + �ξzwl
�V � �ηxul + �ηyvl + �ηzwl

�W � �ζxul + �ζyvl + �ζzwl

. (55)

From Eq. 49 we obtain the ghost state vector as

ρbc � ρl
ubc � ul − 2( �Unξ + �Vnη + �Wnζ)(�ξxnξ + �ηxnη + �ζxnζ)
vbc � vl − 2( �Unξ + �Vnη + �Wnζ)(�ξynξ + �ηynη + �ζynζ)
wbc � wl − 2( �Unξ + �Vnη + �Wnζ)(�ξznξ + �ηznη + �ζznζ)

pbc � pl

. (56)

Since [J]−1 has a different value at each integration point, the

ghost state vector at each quadrature point of the boundary face

of an element ~H belongs to zΩW is different.

5 Numerical examples

In order to demonstrate the performance of the proposed

flow solver, we present several examples. All simulations were

carried out on a Windows 10 64-bit Intel Core E5-2697 2.3-GHz

and 256-GB RAM small workstation. For transonic flow and

supersonic flow, the HWENO limiter in reference [50] is applied

to the proposed flow solver. All computations were performed

until solution coefficients reached a steady state, defined as the

residual in reference [27].

5.1 Subsonic flow

We consider a subsonic flow at March number M∞ � 0.38

on four meshes having 10,670, 13,944, 271,327, 901,175 elements

(the average spherical surface mesh sizes are 0.4, 0.2, 0.1, 0.05,

defined as the ratio to the radius of the sphere). In order to check

the accuracy and the convergence properties of the flow solver we

have performed various computations using different

combinations of interpolation functions for the unknowns and

for the geometric mapping. Different elements are denoted by

TABLE 3 L2 errors in entropy and convergence rates for the sphere.

Mesh Element

P1Q1 P1Q2 P2Q2 P3Q2

εent r εent r εent r εent r

a 6.78E-2 — 2.13E-2 — 4.55E-3 — 1.08E-3 —

b 3.26E-2 1.06 7.01E-3 1.52 1.10E-3 2.05 2.28E-4 2.37

c 1.55E-2 1.08 2.22E-3 1.58 2.61E-4 2.08 4.73E-5 2.41

d 6.57E-3 1.23 6.61E-4 1.68 5.62E-5 2.22 9.31E-6 2.54

Note: The indices a, b, c and d indicate the average spherical surface mesh size 0.4, 0.2,

0.1 and 0.05, respectively.

FIGURE 5
(A) Pressure coefficient distribution around a circle of sphere surface with P1Q1 element. (B) Pressure coefficient distribution around a circle of
sphere surface with P1Q2 element. (C) Pressure coefficient distribution around a circle of sphere surface with P2Q2 element. (D) Pressure coefficient
distribution around a circle of sphere surfacewith P3Q2 element. (E) Total pressure loss coefficient distribution around a circle of sphere surfacewith
P1Q1 element. (F) Total pressure loss coefficient distribution around a circle of sphere surface with P1Q2 element. (G) Total pressure loss
coefficient distribution around a circle of sphere surface with P2Q2 element. (H) Total pressure loss coefficient distribution around a circle of sphere
surface with P3Q2 element.
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PkQm, where k indicates the order of the complete polynomials

used to approximate the unknowns and m indicates the order of

the complete polynomials used for the geometric mapping [26].

First, we solve the problem on the sequence of meshes with

P1Q1 element and plot Mach distribution in Figure 4A. These

solutions are very inaccurate, as put in evidence by the

nonphysical boundary which develops along the solid wall

and by the associated wake in the downstream region of the

sphere. Notice that the solution obtained on the finest mesh is

asymmetric and has a visible wake.

The picture changes completely when using P1Q2, P2Q2 and

P3Q2 elements, as reported in Figures 4B–D, which shows theMach

distribution computed on the four successively refined meshes. The

quality of the solution clearly improves as P and Q increases, which

FIGURE 6
(A) The computed pressure distribution on the surface of ONERAM6with P1Q1 element. (B) The computed pressure distribution on the surface
of ONERA M6 with P2Q2 element.

FIGURE 7
Comparison of the pressure coefficient distributions with experimental data for ONERA M6 wing at six span-wise locations. (A) η � 0.20. (B)
η � 0.44. (C) η � 0.65. (D) η � 0.80. (E) η � 0.90. (F) η � 0.95.
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is asymmetric in the upstream-downstream direction. The solution

corresponding to P3Q2 element on the coarsest mesh is similar to

one obtained on the finest mesh with P1Q1.

To quantify our findings, we measure L2 errors in entropy

εent defined as

εent � P

P∞
/( ρ

ρ∞
)γ

− 1, (57)

where P∞ and ρ∞ are pressure and density of the free stream,

respectively. Table 3 reports the entropy error and the order of

accuracy for the P1Q1, P1Q2, P2Q2 and P3Q2 computations. The

convergence rate r obtained by comparing the solutions of mesh

α and of mesh β is computed as

r � log((εent)α/(εent)β)
log(hα/hβ) , (58)

where h is the mesh size. These computations allow us to

appreciate the potentialities offered by second-order accurate

elements in the numerical solutions of the three-dimensional

Euler equations on unstructured mesh.

Further, we present two aerodynamic quantities: the pressure

coefficient Cp

Cp � P − P∞
0.5ρ∞‖ �v∞‖2, (59)

and the total pressure loss coefficient defined as a ratio of the total

pressure Pt

Pt � P(1 + γ − 1
2

M2)γ/(γ−1) (60)

at a point to the pressure of the free stream. The accuracy of the

method is also evidenced by two aerodynamic quantities. The

FIGURE 8
Computed flow distribution of (A) density with P1Q1 element, (B) density with P2Q2 element, (C) pressure with P1Q1 element and (D) pressure
with P2Q2 element for the blunt cone model.

Frontiers in Physics frontiersin.org14

Huang et al. 10.3389/fphy.2022.1000635

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1000635


distribution of the pressure coefficient around the surface for

four different meshes are shown in Figures 5A–D. The

distribution of the total pressure loss coefficient around the

surface for various meshes are shown in Figures 5E–H. We

specify that mesh one to four refer to the coarse mesh to the

fine mesh.

5.2 Transonic flow past ONERA M6 wing

A transonic flow over the ONERA M6 wing at a Mach

number of M∞ � 0.8395 and an attack angle of α � 3.06° is
considered in this example [51, 52]. This test case is chosen to

demonstrate that the proposed flow solver with curvilinear

DG method is able to enhance the accuracy of the underlying

(rectilinear) methods for solving transonic flow problems and

engineering problems. The mesh used in this computation

consists of 682,726 elements, 122,679 points. As with the first

example, P1Q1 indicates that the order of polynomials used to

approximate the unknowns is one, and the order of the

complete polynomials used for the geometric mapping is

one too. The definition of P2Q2 is similar. In other words,

P1Q1 is rectilinear element, and P2Q2 is curved element. The

computed pressure distribution obtained by the DG solution

on the wing surface are shown in Figure 6. In Figure 7

compares the pressure coefficient distributions at six span-

wise locations (Figures 7A–F) on the wing surface between the

numerical results and the experimental data. Under the same

number of meshes, the pressure coefficient calculated by the

curvilinear DG method is closer to the experimental value

than the rectilinear DG method.

5.3 Hypersonic flow past blunt cone

This test case is selected to demonstrate that the

proposed flow solver is able to solve hypersonic flow

problems. The computation are performed for a high

Mach number flow past the blunt cone model [53] using

curvilinear and rectilinear DG method. The free stream

Mach number, attack, pressure and temperature [53] for

the blunt cone model correspond to Ma � 7.99, α � 0°, p �
413Pa and T � 110.33K.

A three-dimensional axi-symmetric simulation is

considered with the left and right boundaries defined as

supersonic inflow and outflow boundaries respectively.

The wall is modeled as a slip surface. The mesh used in

this computation consists of 2,039,128 elements,

357,006 points. As with the previous definition, P1Q1 is

rectilinear element, and P2Q2 is curved element. The

FIGURE 9
Comparison of the normalized pressure coefficient distributions with experimental data on the surface of blunt cone model.
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computed density and pressure distribution near the

blunted cone for the blunt cone model with Ma � 7.99 is

shown in Figure 8. The strong bow shock upstream of the

body that is characteristic for this type of flow is well

captured from our computations. The predicted wall

pressure distribution non-dimensionalized with respect

to the computed free stream pressure P∞ is compared

with experimental data and shown in Figure 9. The

computed pressure profile is slightly below predicted for

a small region behind blunt cone, but in general the

predicted pressure distribution is in good agreement

with the experimental results. In Figure 9, we found that

the results obtained by the curvilinear DG method are

smoother, although the trends of wall pressure of

curvilinear and rectilinear DG method are consistent.

5.4 Hypersonic flow past HB-2 ballistic
model

Hypersonic flow past a HB-2 ballistic model is studied in

this subsection. We carry out simulations at the flow

conditions for which experimental setup details are

available in the literature [54]. The free stream Mach

number, attack, pressure and temperature [55, 56] for the

HB-2 ballistic mode are Ma � 7.5, α � 0°, p � 362.942Pa and

T � 138.9K.

A three-dimensional axi-symmetric simulation is

considered with the left and right boundaries defined as

supersonic inflow and outflow boundaries respectively.

The wall is modeled as a slip surface. The mesh used in

this computation consists of 1,489,139 elements,

FIGURE 10
Computed flow distribution of (A) density with P1Q1 element, (B) density with P2Q2 element, (C) pressure with P1Q1 element and (D) pressure
with P2Q2 element for the HB-2 ballistic model.
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259,493 points. As with the previous definition, P1Q1 is

rectilinear element, and P2Q2 is curved element. The

computed density on the full computational domain as

well as the pressure distribution near the blunted cone for

the HB-2 ballistic mode withMa � 7.5 is shown in Figure 10.

The strong bow shock upstream of the body as well as a

weaker shock over the cylinder–cone juncture that is

characteristic for this type of flow is well captured from

our computations. The predicted wall pressure distribution

non-dimensionalized with respect to the computed

stagnation point pressure P0 is compared with

experimental data and shown in Figure 11. The computed

pressure profile is slightly below predicted for a small region

over the cylinder, but in general the predicted pressure

distribution is in good agreement with the experimental

results.

6 Conclusion

A flow solver based on curvilinear DG method has been

presented for solving the three-dimensional subsonic,

transonic and hypersonic inviscid flows on curved meshes.

The method aims to present the relevant closed form

expressions for a widely used set of hierarchical basis

functions up to full high order for a reference element, as

well as the necessary expressions for the Jacobian for a high

order polynomial geometrical transformation. Given these

results, the implementation of solid walls boundary

conditions is very simple because it is based on the

contravariant velocities and does not require a complex

geometric boundary information. Based on covariant

vectors, an improved algorithm of HLLC flux for solving

the subsonic, transonic and hypersonic flows is suggested. A

number of numerical experiments for a variety of flow

conditions have been conducted to demonstrate the

superior performance of this flow solver (curvilinear) over

the underlying method (rectilinear). The solution of subsonic

flow past a sphere indicates that such a flow solver is stable on

a reasonably coarse mesh and finer ones, and can get accurate

results at reasonably coarse tetrahedral mesh. The solution of

transonic flow past an ONERA M6 wing, hypersonic flow past

a blunt cone and hypersonic flow past a HB-2 ballistic model

verify that our flow solver has engineering practice value. The

simulation of subsonic, transonic and hypersonic flows show

that the flow solver has great robustness for three-dimensional

fluids with various geometries and velocities. In future work,

the developed method will be applied to more complicated

geometries, and extended to viscosity flows with curve

boundary layer.

FIGURE 11
Comparison of the normalized pressure coefficient distributions with experimental data on the surface of HB-2 ballistic model.
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