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On the basis of the numerical manifold method, this work introduces the concept of stress
intensity factor at the crack tip in fracture mechanics and proposes the utilisation of artificial
joint technology to ensure the accuracy of joint geometric dimensions in the element
generation of the numerical manifold method. The contour integral method is used to solve
the stress intensity factor at the joint tip, and the failure criterion and direction of crack
propagation at the joint tip are determined. Element reconstruction and crack tracking are
implemented in crack propagation, and a simulation programme of the entire process of
deformation, failure, propagation and coalescence of jointed rock masses is developed.
The rationality of the proposed method is verified by performing the typical uniaxial
compression test and direct shear test.
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INTRODUCTION

As a product of long-term geological tectonic movements, rock masses contain various
discontinuous structural planes, such as faults, joints, bedding and fractures [1–5]. As these
structural planes intersect with one another, specific rock mass structures are formed. The
complexity of a rock mass structure determines its failure mechanism and engineering
mechanical properties, such as strength and deformation. Many engineering cases show that the
deformation, failure and instability of rock masses are usually caused by the deformation, failure,
propagation and even coalescence of their internal structural planes [6–9]. Therefore, the study of the
evolution law of the deformation, failure, propagation and coalescence of structural planes in jointed
rock masses offers great scientific significance and application value.

With the rapid development of computer technology, numerical simulation methods have been
effectively applied to study engineering mechanical properties of jointed rock masses with multiple
fractures. As a result of the different calculation and analysis media, numerical simulations are
conducted using methods based on continuous media (FEM, BEM, and FDM), discrete media (DDA
and DEM) and discontinuous media (NMM) [5,10,11].

Numerical simulation methods based on discontinuous media (NMM) [10,11] integrate the
advantages of DDA and FEM methods and combine the contact calculation of discontinuous mass
and stress–strain analysis in mass by using two meshes (physical and mathematical meshes). The use
of two meshes separates the integral region from the calculation region, which can overcome the
sharp increase of calculation caused by element adjustment in crack propagation. Such method is
suitable for the simulation analysis of discontinuous media, such as jointed rock masses [12–16].
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Based on the numerical manifold method, a simulation
method for the failure process of jointed rock mass is
proposed in this paper. Outstanding advantages of the method
used in this paper are as follows: 1) The element generation
method of numerical manifold method is improved by using
virtual joint technology, and the calculation accuracy is improved.
2) The basic concept of fracture mechanics is introduced, the joint
failure criterion and crack tracking technology are proposed, and
the whole process of deformation and failure of jointed rock mass
is simulated. 3) The improvement of numerical manifold method
makes it more suitable for the simulation of jointed rock mass.

SIMULATION OF DEFORMATION FAILURE
PROCESS OF JOINTED ROCK MASSES
BASED ON THE NUMERICAL MANIFOLD
METHOD

Artificial Joint Technique for Element
Generation Based on the Numerical
Manifold Method
The mesh generation mode and mass search algorithm in the
numerical manifold method are similar to those in DDA. To
ensure the determinacy of the topological relationship in the
search process, the algorithm cuts off a part of the joint that does
not coalesce the mathematical element (triangle) to change the
geometric length of the joint. Cutting is an efficient and practical
method for models based on discrete media, but it is obviously
inappropriate for jointed rock masses whose stress and
deformation characteristics at the joint tips should be
considered. As described in this section, artificial joint
technology is used herein to ensure the accuracy of geometric
dimensions when generating physical elements. The steps are
summarised as follows: 1) When searching for a two-dimensional
mass, generate a new matrix and retain the line segment that has
been cut. 2) After generating the physical element, establish the
correlation between the line segment that has been cut and the
physical element. 3) For the physical element containing the line
segment that has been cut, perform artificial joint processing and
then record all artificial joints. Thereafter, simulate the
continuous boundary by assigning large intensity parameters
to the artificial joints in the calculation process. 4) Input the
artificial joint information, original geometric dimensions and
boundaries of the mathematical elements to regenerate the
physical and mathematical elements.

The processing mode of artificial joints is as follows: 1) If only
one line segment has been cut in the physical element, then
extend such line segments until it intersects with the physical
element. The extended line segment is an artificial joint. 2) If two
line segments have been cut in the physical element, then connect
the two endpoints of the two segments in the element to form a
line segment, which serves as the artificial joint. 3) If three line
segments have been cut in the physical element, then connect the
three endpoints of the three segments in the element to form
three line segments. Out of the three line segments, two that do

not intersect the line segments having been cut are selected as the
artificial joints. 4) If the physical element contains more than four
line segments that have been cut, then connect the endpoints in
the element to form a group of line segments, and delete the line
segments intersecting the line segments that have been cut.
According to the principles of including all internal endpoints
and non-intersecting line segments, identify all possible line
segment combinations and select the combination with the
least number of line segments as the artificial joint. The
example in Figure 1 shows that the geometric dimension
error without virtual joint technology can reach 43%, and the
geometric dimension error with virtual joint technology proposed
in this paper is 0%.

Use of Contour Integral Method to Solve the
Stress Intensity Factor at the Joint Tip
The calculation of the stress intensity factor is the key technique
in the simulation of the failure process of jointed rock masses.
This study uses the contour integral method to solve the stress
intensity factor at the joint tip and defines a contour away from
the crack tip and around the crack tip in a counter-clockwise
direction. An auxiliary stress field and a displacement field are
constructed, and the stress intensity factors KI and KII are
calculated on the basis of the contour integral method and
[17,18] reciprocal theorem of work. The contour equation is
shown in Eq. 1, and the contour is shown in Figure 2.

Γ � Γ1 + Γ2 + Γ− + Γ+ (1)

[17,18] reciprocal theorem of work under the premise that the
volume force applied to the elasticity of an isotropic body is
ignored is shown in Eq. 2.

∮
Γ
(u1it2i − u2it1i)ds � 0 (2)

In the above equation, u1i and t1i are the displacement and force
of the integral point under equilibrium condition, respectively;
and u2i and t2i are the displacement and force of the auxiliary field
at the integral point. Let T � u1it2i − u2it1i. As Γ− and Γ+ are free
crack surfaces, Eq. 2 can be simplified as Eq. 3.

∮
Γ1

Tds +∮
Γ2

Tds � 0 (3)

If the auxiliary displacement field is applicable to the stress
field, then the stress intensity factorsKI andKII can be calculated
by using Eq. 3. If the stress and displacement far away from the
crack tip are known, then this method can be used to calculate the
stress intensity factor at the crack tip. Therefore, this method is
applicable to cracks with any geometry, and it achieves high
calculation efficiency and accuracy. It is often used to calculate the
stress intensity factor in crack propagation simulation.

As mentioned previously, the auxiliary stress field and
displacement field of a contour integral are the main factors
affecting the intensity factor. On the basis of the two functions of
the complex variables proposed by [18], the current work
constructs an auxiliary stress field and a displacement field at
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the crack tip [18]. used φ(z) and ψ(z) functions to solve plane
problems. The stress and displacement components presented by
the functions of complex variables are shown in Eq. 4.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σxx + σyy � 2[φ′(z) + φ′(z)]

σxx − iτxy � φ′(z) + φ′(z) − [zφ″(z) + ψ′(z)]
2G(u + iv) � kφ(z) − zφ′(z) − ψ(z)

(4)

G is the shear modulus, and k can be calculated using Eq. 5.

⎧⎪⎪⎨⎪⎪⎩
k � 3 − μ

1 + μ
, Plane stress

k � 3 − 4μ, Plane strain

(5)

For semi-infinite plane cracks, the functions of complex
variables φ(z) and ψ(z) can be written as Eq. 6:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ(z) � 2�
z

√ ∑∞
i�1
(n + 1

2
)�E(n)z(n)

ψ(z) � 2�
z

√ ∑∞
i�1
(n + 1

2
)[E(n) − (n − 1

2
)�E(n)]z(n)

(6)

E(n) and �E(n) are undetermined complex coefficients. Let n � 1
and KI − iKII � 2

���
2π

√
lim
x→0

�
z

√
φ′(z). Eq. 6 and Eq. 5 are

substituted into Eq. 4 to calculate the stress and displacement
field at the crack tip of the plane elastomer.

In the same way, let n � 0 andCI − iCII � 2
���
2π

√
lim
x→0

��
z3

√
φ′(z).

Eq. 6 and Eq. 5 are substituted into Eq. 4 to derive the auxiliary
stress field and the displacement field of the contour integral, as
written in Eq. 7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2xx � 1����
2πr3

√ [(cos3θ
2
− 3
2
sinθsin

5θ
2
)CI +(−2sin3θ

2
− 3
2
sinθcos

5θ
2
)CII]

σ2yy � 1����
2πr3

√ [(cos3θ
2
+ 3
2
sinθsin

5θ
2
)CI + 3

2
sinθcos

5θ
2
CII]

τ2xy � 1����
2πr3

√ [3
2
sinθcos

5θ
2
CI +(cos3θ2 − 3

2
sinθsin

5θ
2
)CII]

u� 1

2G
����
2πr3

√ {[(1−k)cosθ
2
+ sinθsin3θ

2
]CI +[(1+k)sinθ2+ sinθcos3θ2 ]CII}

v� 1

2G
����
2πr3

√ {[(1+k)sinθ
2
− sinθsin3θ

2
]CI +[(k−1)cosθ2+ sinθsin3θ2 ]CII}

(7)

TheEq. 8 between the contour Γ2 near the crack tip and the stress
intensity factor can be obtained through several derivation processes.

FIGURE 1 | Artificial joint technique. (A) Processing mode of artificial joints. (B) Before and after using the artificial joint technique.

FIGURE 2 | Contour integral method.
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−∮
Γ2

Tds � k + 1
2G

(KICI +KIICII) (8)

From Eq. 8, the far-field contour at the crack tip can be written
as the linear expression Eq. 9 of CI and CI.

∮
Γ2

Tds � (mICI +mIICII) (9)

mI and mII can be calculated by integration. Eq. 8 and Eq. 9 are
substituted into Eq. 3 to calculate the intensity factorsKI andKII.

Determination of Failure Criterion and
Failure Direction
The stress intensity factor at the joint tip is calculated using the
contour integral method. The failure criterion and direction of
crack propagation at the joint tip can be determined according to
the principle of maximum circumferential stress. The auxiliary
displacement field and stress field constructed by the contour
integral method are only applicable to a single crack without
considering the interaction of the stress field at the multi-crack tip.
Therefore, this study determines the failure criterion of a rock mass
and joint tip to simulate the failure process of jointed rock masses.

The failure criterion and direction of a rock mass are
determined according to the Mohr–Coulomb criterion with
tensile strength. The Mohr–Coulomb criterion with tensile
strength comprises three parameters: cohesion (c), internal

friction angle (φ) and tensile strength (σt). The σn and σ1
planes of the Mohr–Coulomb criterion with tensile strength
are shown in Figure 3.

Herein, σ3c is defined as the critical value transforming the
rockmass failure from tensile failure to compression shear failure,
and σ3c is calculated using Eq. 10.

σ3c � 2c tan(π
4
+ φ

2
) + σt tan

2(π
4
+ φ

2
) (10)

According to the Mohr–Coulomb criterion, if σ3 ≥ σ3c, then
the rock mass failure is caused by tensile force, the failure
criterion is Eq. 11 and the failure mode is along the direction
of the vertical tensile stress.

σ1 ≥ σt (11)

If σ3 < σ3c, then the rock mass failure is caused by shear force,
the failure criterion is Eq. 12, and the included angle between the
direction of the failure mode and the maximum principal stress
is ±(π4 + φ

2).

s3£ − 2c tan(p
4
+ j

2
) + s1 tan

2(p
4
+ j

2
) (12)

Crack Tracking and Mathematical Element
Reconstruction
Relative to other numerical calculation methods, the numerical
manifold method uses two elements, namely, mathematical and

FIGURE 3 | σn and σ1 planes of Mohr–Coulomb criterion with tensile strength. (A) σn plane. (B) σ1−σ3 plane.
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physical elements, which are very simple to reconstruct in crack
propagation.

The steps of reconstructing mathematical and physical
elements in crack propagation are as follows:

(1) If the crack failure is caused by propagation, then propagate
one physical element in each step. The physical element
transforms into two physical elements after failure. The

artificial joint technology used in this work retains some
joints that have been cut to ensure the geometric accuracy of
the joints in the simulation process. In the crack propagation
simulation, simulate the physical element failure with and
without an artificial joint.

If the physical element contains an artificial joint and the
propagation crack is the same as the artificial crack, then

FIGURE 4 | Physical element failure containing artificial joint. (A) Propagation crack and artificial crack are on the same edge of the mathematical element. (B)
Propagation crack and artificial crack are on the different edges of the mathematical element.

FIGURE 5 | Typical failure of physical element. (A) Physical element coincides with the mathematical element. (B) Physical element is a part of the mathematical
element.
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transform the artificial joint into a propagation joint. If the
propagation crack and artificial crack are on the same edge of
the mathematical element, then change the coordinates of the
artificial joint endpoints, transform the artificial joint into a
propagation joint, and calculate the stress and node
displacement of the physical elements related to the
mathematical element according to the new coordinates
(Figure 4). In any other case, consider that the physical
element does not contain any artificial cracks.

If the physical element does not contain any artificial
crack, then change the geometric properties of the
original physical element, and increase those of the new
physical element. Typical element failure is shown in
Figure 5.

(2) Determine the mathematical element J corresponding to the
physical element, and establish the mathematical covers v1,
v2, and v3 related to the physical element on the basis of
mathematical element J.

(3) Perform the joint connectivity judgement for the physical
elements in v1, v2, and v3. If a connected joint exists, then
increase one mathematical cover.

This work should point out that in the process of single joint
propagation failure, if the joint failure starts from the
mathematical element boundary, then only the connectivity

FIGURE 6 | Typical connectivity judgement of mathematical elements.
(A) Increase of one mathematical cover for single joint propagation. (B)
Increase of two mathematical covers for single joint propagation. (C) Increase
of three mathematical covers for multi-joint propagation failure.

FIGURE 7 | Typical failure mode of uniaxial compression. (A) Sample
model. (B) Typical failure processes if β < 90°. (C) Typical failure process if β
approximates to 90° with small value. (D) Typical failure process if β > 90°.
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judgement for the two mathematical covers corresponding to the
mathematical element boundary is performed. If the joint
failure starts from the vertex of the mathematical element,
then only the connectivity judgement for one mathematical
cover corresponding to the vertex is performed. As for multi-

joint failure, as a result of the coalescence between joints,
connectivity judgement is performed for three mathematical
covers (Figure 6). Therefore, even in the case of multi-joint
propagation, crack propagation only results in an increase in
three mathematical covers at most.

TABLE 1 | Basic information of calculation example for verification.

Geometric dimension Parameter of deformation strength

Rock mass Structural plane

Length
2d (mm)

Width
d (mm)

Length of joint
a (mm)

Inclination angle of
joint α (°)

Elastic modulus
E (GPa)

Poisson’s
ratio μ

Internal friction
angle φ (°)

Cohesive force
c (MPa)

200 100 28.2 45 10 0.2 30.8 0.56

FIGURE 8 | The failure process of numerical specimenwith inclination angle β is 45°. (A) step 1, (B) step 93, (C) step 105, (D) step 110, (E) step 115, and (F) step 134.

FIGURE 9 | Comparison between final failure mode and typical failure mode. (A) β � 45°, (B) β � 90°, and (C) β � 120°.
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(4) For the newly generated physical element, recalculate the stress
and displacement. Given the conservation of mass, all
geometric and physical–mechanical information in the
newly generated mathematical cover is the same as that in
the initial cover. According to the principle of coalescence,
correlate the physical element and the mathematical element
near the crack tip with the mathematical cover, and then input
the newly generated physical element and mathematical cover
into the calculation model.

VERIFICATION OF FAILURE SIMULATION
PROGRAMME OF JOINTED ROCK MASS

Verification of Uniaxial Compression Test
The uniaxial compression test is the most frequently used method to
study the failure process of jointed rock masses [5,12,13,19–22], and it
has generated numerous results. Although the occurrence and
mechanism of joint failure and coalescence have been broadly
disputed, the distribution mode of typical structural planes is
the same as the failure mode in the previously described results.
Therefore, this section verifies the rationality of the programme based
on the numerical model of a typical structural plane distribution.

[19] summarised the joint failure modes with different values
of β in the models depicted in Figure 7A. Themodes are shown in
Figures 7B–D.

The basic parameters of the geometric dimensions of the
calculation example for verification are shown in Table 1.
Through the simulation analysis of the three models with rock
bridge inclination angles β of 45°, 90°, and 120°, the fracture
toughness of rock mass KIc � 0.65MPa ·m0.5 is obtained.

Figure 8 shows the failure process of numerical specimen with
inclination angle β is 45°. Figure 9 presents the comparison of the

calculation results and the typical failure forms of [19] given
inclination angles of 45°, 90°, or 120°. The verification results show
that the failure process simulation programme for jointed rock
masses developed in this work can effectively simulate the typical
failure modes of jointed rock masses in uniaxial
compression tests.

Verification of Direct Shear Test
Figure 10 shows the comparison of failure modes based on
different structural plane distribution modes under a normal
stress of 1.0 MPa. The comparison of the stress–strain process
curves is shown in Figure 11, and the comparison of the
comprehensive shear strength and test results is shown in
Table 2. The results reveal the following:

(1) The same failure mode of jointed rock masses is obtained
from the numerical simulation test. The proposed method
can effectively simulate the failure process and final failure
mode of the jointed rock mass.

(2) Two differences are identified between the stress–strain curve
recorded by the numerical simulation programme and the
actual results. First, because the numerical sample material is a
completely linear elastic material, the stress–strain curve
directly enters the linear elastic stage rather than the early
compaction stage. Second, because the numerical simulation
programme does not define the crack growth rate, the stress
intensity factor and fracture toughness are compared to judge
whether the joint propagates. After each crack propagation, the
failure of a physical element occurs. As a result of different
failure speeds, the corresponding curves are different.

(3) The comprehensive shear strength of a rockmass obtained by
the numerical simulation programme is in good agreement
with the test results, and the error does not exceed 5%.

FIGURE 10 | Comparison between results of numerical simulation test and failure results of indoor direct shear test. (A) Type I, (B) Type II, (C) Type III, and (D)
Type IV.
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(4) At present, the crack growth rate is determined on the basis of
the propagation length of the joint and the characteristics of
the object without considering the spatial distribution of the
joint. Each failure runs through a physical element. Due to
the different failure speed, there is a certain difference between
the stress-strain curve obtained from the numerical test and
the measured stress-strain curve (Figure 11). Therefore, the
instantaneous brittle failure of a rock mass determined by the
spatial distribution of structural planes is not simulated herein
and will be explored in future work.

(5) Nevertheless, for practical engineering applications and
engineering mechanical properties of jointed rock masses,
the current simulation programme for the failure process of
jointed rock masses can effectively simulate the failure process
and final failure mode of jointed rock masses and obtain
rational peak values and residual shear strength values,
which meet the requirements of engineering applications.

CONCLUSION

(1) This work introduces a virtual joint technology and improves
the algorithm of the numerical manifold element generation
of jointed rock masses so that the distribution lengths of
joints do not change due to mass search. These achievements
improve the calculation accuracy of the numerical manifold
method.

(2) According to the concept of stress intensity factor in
fracture mechanics, this study uses the contour integral
method to calculate the stress intensity factor at the crack
tip and solves the problems of reconstruction and stress
transmission of mathematical and physical elements in
the failure process of jointed rock masses. It also
develops a simulation programme for the whole process
of deformation, failure and propagation of jointed rock
masses.

TABLE 2 | Comparison between comprehensive shear strength of numerical simulation test and test results.

Normal stress (MPa)

0.5 1.0 1.5 2.0 2.5

(a) Test result 1.85 2.37 2.53 2.94 3.25
Numerical simulation result 1.82 2.36 2.49 2.92 3.21

(b) Test result 1.91 2.38 2.75 3.07 3.39
Numerical simulation result 1.86 2.35 2.71 2.99 3.30

(c) Test result 1.91 2.38 2.75 3.07 3.39
Numerical simulation result 1.88 2.36 2.75 3.06 3.34

(d) Test result 2.49 2.9 3.21 3.64 3.99
Numerical simulation result 2.46 2.85 3.23 3.57 3.90

FIGURE 11 | Comparison of stress–strain process curves. (A) Type I, (B) Type II, (C) Type III, and (D) Type IV.
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(3) This work compares the patterns, stress–strain response
curves and comprehensive shear strengths in uniaxial and
direct shear tests. The results show that the simulation
programme for the failure process of jointed rock masses
can effectively simulate the failure process and final failure
form of jointed rock masses and obtain rational peak values
and residual shear strength values, which meet the
requirements of engineering applications.
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