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Influence maximization is a hot research topic in the social computing field and has gained
tremendous studies motivated by its wild application scenarios. As the structures of social
networks change over time, how to seek seed node sets from dynamic networks has
attracted some attention. However, all of the existing studies were based on network
topology structure data which have the limitations of high dimensionality and low efficiency.
Aiming at this drawback, we first convert each node in the network to a low-dimensional
vector representation by network representation learning and then solve the problem of
dynamic influence maximization in the low-dimensional latent space. Comprehensive
experiments on NetHEPT, Twitter, UCI, and Wikipedia datasets show that our method
can achieve influence diffusion performance similar to state-of-the-art approaches in much
less time.
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1 INTRODUCTION

With the development of online social websites, information diffusion over social networks has
become a new and important channel for network users to receive information. How to optimize and
control the spread of information is an important problem in the field of social computing, and
influence maximization is used to solve the above problem. As all kinds of information (e.g.,
advertisement, rumor, and political opinion) propagate in the network, therefore, the studies of
influence maximization have been widely applied in viral marketing, rumor control, political
campaign, and so on.

The influence maximization problem originated from “viral marketing” and “word-of-mouth
effect.” In 2001, Domingos and Richardson [1, 2] first introduced the initial concept and evaluation
index of the influence maximization problem. Later, Kempe et al. [3] first proposed the discrete
optimization method to solve the influence maximization problem. However, the greedy algorithm
with approximate accuracy guarantee proposed by them takes too much time. Leskovec et al. [4]
reduced time consumption by optimizing the sub-model of the function, and the CELF they
proposed was nearly 700 times faster than the traditional greedy algorithm. After that, researchers
proposed other greedy algorithms [5–8]. In addition, subsequent researchers also proposed heuristic
algorithms to improve operating efficiency. Chen et al. [9] developed a degree discount heuristic
algorithm (DegreeDiscountIC), which has the same performance as the greedy algorithm but greatly
reduces the computation time. Chen proposed the LDAG heuristic algorithm [10] based on the
directed acyclic graph and MIA based on the tree structure [11]. Goyal et al. [12] proposed
SIMPATH, which obtains the path of the node by backtracking and then uses the shortest path of the
neighbor node to propagate the influence. Tang et al. [13] proposed TIM, which is an approximate
linear solution based on reverse random sampling. Wang et al. [14] proposed CNCG considering an
overlapping community structure [15, 16] and node coverage gain mechanism.
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The social networks supporting information diffusion are not
static but are temporal dynamic. Considering spread dynamics
and structure dynamics together, exploring influence
maximization in dynamic networks is an interesting and
valuable problem. Zhuang et al. [17] updated the observed
network by periodically detecting nodes in the real network
and then selected seed nodes in the observed network as the
approximate solution of the real network. Tong et al. [18]
extended the static independent cascade model to the dynamic
independent cascade (DIC) model and proposed two algorithms:
A-greedy based on the greedy strategy and H-greedy based on the
heuristic. Bao et al. [19] proposed the RSB algorithm based on
multi-arm tiger machine optimization, which is suitable for
dynamic non-stationary social networks. Wang [20] proposed
an incremental algorithm based on the linear threshold model
(DIM), which identifies top-K users in dynamic social networks
based on information from the previous network. Liu et al. [21]
proposed IncInf based on the independent cascade model and
updated the seed set according to the topological changes of
network evolution, which significantly reduces the running time
of the algorithm. Chen et al. [22] extended the problem of
dynamic network influence maximization and proposed the
upper bound interchange (UBI) greedy algorithm to solve the
problem of influence node tracking.

Although influence maximization in dynamic social networks
has attracted some attention, all of the existing studies were
constructed on network topology structure data which suffer
from high dimensionality and low efficiency. Network
representation learning aims to convert each node in the
network to a low-dimensional latent representation, which has
been widely applied in the tasks of visualization, clustering,
classification, and link prediction. The network low-
dimensional vector representation not only preserves structural
feature relationships between nodes but also effectively alleviates
the problem of network data sparsity. Based on the above
discussions, leveraging network representation learning
methods to help solve influence maximization in dynamic
networks is a meaningful attempt.

In this paper, we develop dynamic influence maximization
based on network representation learning, referred to as
DIMNRL. First, we leverage network representation learning to
obtain the low-dimensional vector representation of each node
under different time steps and then construct the influence
calculation method of node sets in the low-dimensional latent
space. Next, aiming at the dynamic property of social networks,
we propose an incremental node seed selection method to obtain
the node set with maximum influence at different times.
Comprehensive experimental results on NetHEPT, Twitter,
UCI, and Wikipedia datasets demonstrate that compared with
the state-of-the-art approaches, our method can yield similar
performance in terms of influence spread but run much faster.

The rest of this paper is organized as follows: In Section 2, we
introduce the definition of the problem of maximizing the
influence of dynamic social networks and the design of the
DIMNRL method in detail. Section 3 shows the results and
analysis of our experiments. Finally, in Section 4, we put
forward conclusions and discussions.

2 MATERIALS AND METHODS

2.1 Problem Definition
We first define a dynamic network as G � (G0, G1, . . . , Gt), where
Gt = (Vt, Et, Wt) is the network snapshot of the dynamic social
network at time t. We assume that the network snapshot G0 at t =
0 is the initial network. △Gt = (△Vt, △Et, △Wt) is the change of
network topology structure of Gt at time t, so the network
topology at time t + 1 can be obtained by Gt+1 = Gt ∪ △Gt.
Based on the above definitions, the details of the problem we try
to solve are as follows.

Influence maximization in the dynamic network. Given the
topology structure Gt of a network and the network topology
change△Gt at time t, the aim is to seek a seed set St+1 with k nodes
in Gt+1 at time t + 1 such that the expected diffusion influence
σ(St+1) reaches the maximum value. For ease of description, this
problem is also referred to as dynamic influence maximization.

2.2 Framework of DIMNRL
In this section, we develop dynamic influence maximization
based on network representation learning, referred to as
DIMNRL. The main idea of DIMNRL is to update the seed
nodes by combining the information provided by the structure
change of the dynamic network with seed nodes selected from the
network at the previous time, so as to greatly reduce the time to
obtain the seed node set with maximum influence at the current
time. The DIMNRL is designed in the low-dimensional latent
space gained by network representation learning, which is helpful
to reduce the computational complexity and improve the
computational efficiency.

Figure 1 presents the framework of our proposed DIMNRL,
which is divided into three stages: dynamic network
representation learning, initial seed set calculation, and seed
set incremental update. The first stage is to get the low-
dimensional vector representation of the dynamic network.
The second stage is to obtain the initial seed set with
maximum influence from the initial network. The last stage
aims to incrementally update seed nodes to gain the seed sets
of the networks at all times.

2.2.1 Dynamic Network Representation Learning
The DIMNRL is to seek seed node sets from dynamic
networks in the low-dimensional space. Therefore, we first
need a network representation learning method to obtain
low-dimensional vector representations of network
snapshots at different time steps. Network representation
learning is able to map large-scale and high-latitude networks
to the low-dimensional space according to the relevant
optimization objectives and use the vector representation
of low-dimensional space to represent nodes, so as to
preserve the topological structure and attribute
characteristics of the original network as much as possible.

In this paper, we adopt the DynamicTriad [23] method which
is suitable for dynamic social networks. DynamicTriad learns the
embedding vector of each node at different time steps by
quantifying the probability of an open triad evolving into a
closed triad and proposes a semi-supervised learning
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algorithm for effective parameter estimation to optimize the
model parameters. This algorithm can embed the time-
varying characteristics of the network into the vector
representation of nodes while maintaining the network
structure properties.

2.2.2 Initial Seed Set Calculation
Keikha et al. [24] proposed the DeepIM method to solve the
influence maximization problem in the static network using
network representation learning. The overall idea of DeepIM
is using the network representation learning algorithm to
generate the vectors of nodes and then calculating the
similarity of chords between nodes to select r nodes with
the highest similarity as the correlation vector of each node in
the network. Next, the nodes are sorted according to the
number of occurrences of nodes in the correlation vectors of
all nodes in the network. Finally, the top k nodes are selected
as the seed sets for the network. Here, we attempt to improve
the DeepIM algorithm from two aspects so that it can be
applied to dynamic networks.

First, researchers have found that the influence of nodes
decreases with the increase of paths in the propagation
process, and the influence propagation range of nodes in the

network can usually reach the range of third-order neighbors [25]
or second-order neighbors [26]. However, DeepIM calculates the
similarity between one node and all other nodes, and this
calculation method is time-consuming and unnecessary.
Aiming at this drawback, we choose a pruning strategy to
limit the computation of correlation vectors for each node
from the whole network to the second-order neighborhood.
This pruning strategy can improve the computational
efficiency of the overall solution and also ensure that r nodes
most similar to the target node are achievable.

Second, DeepIM selects seed nodes from social networks
according to the number of nodes appearing in the correlation
vectors of all nodes, and this may cause overlapping influence in
the propagation process due to the situation that the k seed nodes
have many common neighbors. Therefore, it is necessary to
introduce a covering mechanism to disperse seed nodes. Here,
we propose a threshold rule to overcome the above limitation.We
adopt the FIDD algorithm [27] to calculate the degree of common
neighbors of two nodes in the network, and its formula is as
follows:

CN i, j( ) � |N i( ) ∩ N j( )|
|N i( ) ∪ N j( )|, (1)

FIGURE 1 | Overall framework of DIMNRL. (A) Getting the low-dimensional vector representation of the dynamic network, (B) obtaining the initial seed set with
maximum influence from the initial network, and (C) incrementally updating seed nodes to gain the seed sets of the networks at all times.
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where CN(i, j) denotes the common neighbor degree of nodes i
and j in the network and N(i) andN(j) denote the node sets in the
secondary neighbors of nodes i and j, respectively. To reduce
the influence overlap of seed set nodes during the
propagation process, we set a threshold α to disperse the
seed set nodes. If the CN values between the new selected
node and the existing seed nodes are greater than the
threshold α, this node will be ignored. Otherwise, if all CN
values between the new selected node and the seed nodes are
smaller than the threshold, this node will be added to the seed
node set.

The specific algorithm is shown in Algorithm 1. In line 1,
we obtain the second-order neighborhoods of each node.
Lines 2–3 initialize the node’s correlation vector and seed
node set. In lines 4–8, we obtain the correlation vector of the
node. Lines 5–7 calculate the cosine similarity between the
node and all the nodes in its secondary neighborhood by Eq
2. utu and utv represent the vector representations of
nodes u and v in the network at time t. The correlation
vector of each node and the minimum cosine similarity will
be stored:

cosine ut
u, u

t
v( ) � ut

u · ut
v

|ut
u‖ut

v|
� ∑d

i�1u
t
uu

t
v��������∑d

i�1 ut
u( )2√ ��������∑d

i�1 ut
v( )2√ . (2)

In lines 9–13, after obtaining the correlation vectors of all
nodes, we count the number of times each node appears in the
correlation vector. In lines 14–20, we select our initial seed node
set from the initial network according to our threshold
mechanism.

Algorithm 1. Initial seed set selection.

2.2.3 Seed Set Incremental Update
When the network topology structure evolves slightly, the seed
node set with maximum influence in this network also will not
change violently. Therefore, based on network snapshots Gt at
current time, seed set St of Gt, and network topology change△Gt

at time t, designing an incremental algorithm to obtain St+1 for
network snapshots Gt+1 quickly and accurately should be
possible.

The evolution behaviors of social networks can be classified into six
categories: inserting or deleting nodes, creating or deleting edges, and
increasing or reducing edges’ weights. Here, we denote insertNodes,
deleteNodes, addEdges, removeEdges, increaseWeight, and
reduceWeight as the above six evolution behaviors. When the
topology of the network changes by adding edges or nodes, some
nodes may propagate influence using added new edges or nodes.
When the network topology changes by reducing edges or deleting
nodes, the influence propagation of some nodes may be interrupted.
In the network low-dimensional representation, the information of
edge change and edge weight change is retained in the vector
representations of nodes. Therefore, our incremental algorithm
mainly considers the impact of node change behaviors
(i.e., insertNodes and deleteNodes) on seed node selection.

Algorithm 2 presents the details of updating seed nodes. Lines
1–2 initialize variables such as the correlation vector of the node
model. In line 3, the change of the second-order neighborhood of
each node in the network Gt+1 at time t + 1 is obtained and
divided into three categories: nodes existing inGt, new nodes, and
deleted nodes. In lines 4–12, the correlation vectors of the
network nodes at the previous moment are updated. For each
added node, we calculate the cosine similarities between this node
and its second-order neighborhoods and compare them with
min_cosine. When the cosine similarity is greater than
min_cosine, the node is added to the correlation vector.
Otherwise, it is deleted. Lines 13–15 are to obtain the
correlation vector of the new added node. This calculation
process is the same as that of obtaining the initial seed set.
Lines 16–18 are for the deleted nodes, and we directly delete
the relevant vector of these nodes. Line 20 calculates the number
of nodes in the correlation vector. In lines 21–27, we finally get the
seed node set at time t + 1 according to the threshold mechanism.

Algorithm 2. Seed set incremental update.
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3 RESULTS

3.1 Datasets and Baselines
We select four real social network datasets (NetHEPT, Twitter, UCI,
and Wikipedia) to validate our method. Supplementary Table S1
summarizes the details of the four datasets. As these four datasets do
not provide the information of edge weights, here we adopt the
uniformlymodel [28] to generate edge weights. Specifically, the weight
of each edge is assigned to be 0.1 in the experiments.

• NetHEPT: It is a citation network of “High Energy
Physics-Theory” from arXiv [29]. The dataset
contains all the papers from January 1992 to April
2003. The edge between two nodes represents one
paper citing another paper. We take the citation
networks of 1992 and 1993 as the initial networks,
and the network snapshot interval is 1 year. We use
all the data from 1992 to 1998.

• Twitter: These data are extracted from Twitter, which
records forwarded tweets between users from September

2010 to November 2010 [30]. Each edge indicates that one
user has forwarded tweets from another. We set 10 days as
the network snapshot interval.

• UCI: These data come from a Facebook-like online community
at the University of California, Irvine, which records the data
from April to October 2004 [31]. Each edge indicates that two
users have communicated at least one piece of information. The
network snapshot is set to be 1month.

• Wikipedia: These data are from Wikipedia, which records
historical data on all Wikipedia administrator elections and
votes from 2004 to 2008 [32]. We record network snapshots
every 1 year.

We adopt LDAG [10] and DeepIM [24] as the baseline
methods and compare them with our DIMNRL solution in
terms of influence diffusion range and running time. LDAG is
a static network influence maximization algorithm based on the
directed cyclic graph. The threshold parameter θ of LDAG in the
experiment is set to 1/320, which is consistent with that in the
original paper. DeepIM is an influence maximization algorithm

FIGURE 2 | Results of our experiments. (A) Influence coverage of different algorithms on four datasets under the IC model, (B) influence coverage of different
algorithms on four datasets under the LT model, and (C) running time of three algorithms on four social network datasets.
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based on deep learning. The correlation vector size r of DeepIM is
set to 50 in the experiment.

To compare different methods under unified standards, we
run the simulations using the independent cascade (IC) model
and linear threshold (LT) model to obtain the influence of these
seed node sets selected by LDAG, DeepIM, and DIMNRL. The
propagation probability of the IC model and LT model is set to
0.1. All our experiments were carried out on the laptop of Inter(R)
Core(TM) i7-10750H CPU @ 2.60Ghz and 16 GB RAM.

3.2 Effectiveness Evaluation
Figure 2A shows the influence spread ranges achieved by three
methods on four datasets at different time steps, under the IC
model. Each subfigure is corresponding to the result of a dataset,
where red, blue, and brown curves represent DIMNRL, DeepIM,
and LDAG methods, respectively. The x-axis represents the time
step, and the y-axis represents the influence spread ranges of seed
nodes selected by different methods. Similarly, Figure 2B shows
the influence spread ranges achieved by three methods on four
datasets at different time steps, under the LT model.

It can be seen from Figures 2A,B that, in UCI and Wikipedia
datasets, LDAG has the worst performance compared with the
other two methods (DIMNRL, DeepIM). On NetHEPT and
Twitter datasets, LDAG has a bit of advantage over other
methods in starting a few time steps and then achieves similar
performance. DIMNRL and DeepIM achieve similar performance
on different datasets at different time steps; DIMNRL improves
DeepIM from the aspect of similar node selection, and the above
experimental results validate the rationality of our improvement
that only focuses on the second-order neighborhood.

3.3 Efficiency Evaluation
Figure 2C presents the running time of different methods for
selecting 50 seed nodes from four datasets. Red, blue, and brown
columns represent running time consumed by DIMNRL,
DeepIM, and LDAG, respectively. It can be seen from
Figure 2C that the running time of our DIMNRL method in
each network snapshot is much shorter than that of the other two
baseline methods. The LDAG method takes the most time, and
the running time is especially longer in the Twitter dataset. The
DeepIM algorithm finds seed nodes by traversing all nodes of the
entire network, and the running time is still very terrible in a
large-scale network with a large number of nodes. On NetHEPT
and Twitter datasets, the running time of the DeepIM method is
2–3 orders of magnitude higher than our solution on each
network snapshot. The above results fully demonstrate the
high efficiency of our DIMNRL method.

In Figure 2C, we observe that the time consumption of the
DIMNRL method at different times is not monotonous on the
UCI dataset. The time consumption of DIMNRL in time step 2 is
3.64 s, while the time consumption in time steps 3 and 4 is 3.47
and 3.5 s, respectively. This is because our incremental seed
selection method is closely related to the severity of network
evolution. When the topology of the network snapshot changes
greatly, the update algorithm takes a long time. When the
topology of the network snapshot changes slightly, the
running time of the update algorithm is short.

Based on the results shown in Figure 2, our DIMNRLmethod
can achieve a similar or better influence performance than
baseline methods, but the running time is much less. This
means that the DIMNRL has the potential to effectively solve
the influence maximization problem in large-scale dynamic social
networks.

4 CONCLUSION

How to find seed node sets from temporal dynamic networks is
an important extension direction in the research of influence
maximization. In this paper, we combine network representation
learning and influence maximization together and try to solve the
influence maximization problem in dynamic networks via
network low-dimensional vector representations. Extensive
experiments on NetHEPT, Twitter, UCI, and Wikipedia
datasets show that our method is able to achieve influence
spread performance similar to existing methods but run much
faster. These results fully illustrate the necessity and effectiveness
of using network representation learning to maximize influence
propagation over dynamic networks.

Network representation learning represents nodes as low-
dimensional dense vectors and retains all information in the
network as much as possible. It is possible to use network
representation learning to obtain special information in social
networks. Recently, network representation learning has made
progress in signed networks [33], location-based networks [34],
and hypernetworks [35]. Our solution in the low-dimensional
latent space is not limited to dynamic influence maximization but
applicable to polarity influence maximization, location-related
influence maximization, and influence maximization in
hypernetworks.

In addition to structural dynamics considered in this paper,
relationship polarity, user preference, and geographic location
also affect the effect of information/influence diffusion. How to
integrate these factors into influence maximization research at the
same time as much as possible is our next research direction. In
today’s society, traditional media still play an important role in
information dissemination. Information diffusion driven by
traditional media and information spread over social networks
are not isolated. How to leverage both traditional and online
media together to maximize information propagation will be an
interesting problem.
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