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Recent years have witnessed increasing interest of applying network science
methodologies to analyze brain activity data. Owing to the noninvasiveness, low cost
and high sampling rate, electroencephalogram (EEG) recordings have been widely used as
a proxy for probing the internal states of human brains. Previous correlation-based
functional networks (CFN) mainly focused on the covariance or coherence between
readings from electrodes attached to different regions, largely overlooking local
temporal properties of these electrical activities. Here, we propose a method to
construct multilayer-aggregation functional network (MAFN) which is able to capture
both temporal and topological characteristics from EEG data. We extract features from
these MAFNs and incorporate them into each of 12 classification algorithms, aiming to
detect mental fatigue and two brain diseases, schizophrenia and epilepsy. The results
demonstrate that MAFNs consistently outperform CFN and dynamic version of CFN. In
comparison to functional networks based on weighted phase lag index (wPLI), MAFNs
also achieve higher or comparable accuracy in most classifiers. Moreover, the nodal
features of MAFNs allow us to identify the important positions of EEG electrodes for
different brain states or diseases. These findings together offer not only a framework for
classifying normal and abnormal brain activities but also a general method for constructing
more informative functional networks from multiple time series data.
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1 INTRODUCTION

Human brain is one of the most delicate and complex systems, responsible for maintaining the
internal regulation of human body and perception, and responding to external stimuli. To
understand the working mechanism of brain function and to detect brain states and diseases,
such as mental fatigue [1], epilepsy [2], sleep disorders [3], schizophrenia [4], depression [5] and
Alzheimer’s disease (AD) [6], several noninvasive technologies have been invented and widely used,
such as functional magnetic resonance imaging (fMRI) [7], electroencephalogram (EEG) [8],
computed tomography (CT) [9], and so on. Constructing functional networks from the brain
activities recorded with these technologies has attracted more and more attentions [10–12]. In
functional networks, nodes represent brain regions or voxels and edges are supposed to capture the
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functional interactions between different nodes. Increasing
evidence showed that functional networks change with
cognitive activities, emotion, and the development of brain
diseases and so on [13, 14]. Hence, functional networks can be
applied to reveal different brain states or to detect brain illnesses
whose neuropathology are not yet clear. For example, previous
studies have found that, among others, the modules of the brain’s
functional network become more isolated, and the connections
within the modules become stronger when people age [15].
Functional networks of patients with schizophrenia, compared
with healthy people, and exhibit abnormalities in multiple global
indicators (global clustering coefficient, small-world-ness,
etc.) [16].

Among the technologies mentioned above, EEG has the
advantages of high time resolution, and convenient data
collection and low cost. Hence, extracting information from
EEG recordings has been a very active field which aims to
understand intentions and emotions [17, 18], to diagnose
neuropsychiatric disorders (mental illness and brain diseases)
[5, 19, 20], and to develop new brain-computer interface (BCI)
technologies [21–23]. In these applications EEG based functional
networks have also been widely used. For example Ref. 24,
constructed functional networks of fatigued brains via source
localization of cortical activities in 26 predefined regions of
interest, and found that the characteristic path length
increased, offering support for the presence of a reshaped
global topology in cortical connectivity networks under fatigue
state Ref. 25; explored the emotion associated functional
networks among different subjects and extracted three
topological properties from these networks as classification
features. Their results showed that there are indeed common
connectivity patterns associated with different emotions, and also
demonstrated that topological features have considerable
advantages over conventional power spectral density Ref. 26;
constructed functional networks from EEG readings in resting
state and memory task state, and found that healthy people under
memory task state showed small-world characteristics in different
frequency bands Ref. 27; studied cortical functional networks of
subjects after sport-related mild traumatic brain injury (MTBI)
and found that MTBI induces an increase in short-distance
connectivity and a decrease in long-distance connectivity.

However, previously established EEG-based functional
networks mainly focused on the correlation or coherence
between different channels, i.e., building the connections
between the electrical activity of different brain regions [28,
29]. Such constructions can enable network science
methodologies to probe the interactions between regions, but
largely overlook intrinsic local temporal properties of EEG
signals. The fact prompts us to explore an important and
interesting question: How to map the readings of multiple
EEG channels into a functional network that can capture both
topological and temporal characteristics of these signals? Here, to
address this need, we propose an approach to construct MAFNs
from multiple time series. We first build an undirected network
from each time series by utilizing the idea originally from the
network science field [30, 31]. Such networks can reveal the
temporal regularities in each signal. We then aggregate these

networks into a weighted one based on the topological similarity
of different layers, which thus can also capture the connections
between different channels. To demonstrate the effectiveness of
our approach, we incorporate MAFNs with various supervised
and unsupervised classifiers and apply them to identify three
typical neuropsychiatric disorders including mental fatigue,
schizophrenia and epilepsy.

To demonstrate the effectiveness of our approach, we
incorporate MAFNs into 12 supervised and unsupervised
classifiers and apply them in three typical tasks, identifying
mental fatigue, diagnosing schizophrenia, and detecting
epilepsy. The results show that in comparison to correlation-
based functional networks (CFNs) and dynamic (sliding window)
version of CFNs (DCFNs), MAFNs exhibit significantly higher
accuracy. In addition, as the scalp-level network is affected by the
volume conduction problem (each channel receives information
from many brain sources), functional networks based on
weighted phase lag index (wPLI) [32] are also constructed for
comparison. MAFNs also achieve comparable performance, with
higher accuracy in 9 out of 12 classifiers.

The main contributions of the present work can be
summarized as follows.

(i) We establish a multilayer-aggregation approach for
constructing functional networks from multiple time
series, which is able to capture both temporal and
topological characteristics of these signals;

(ii) We incorporate the constructed functional networks into 12
classifiers and apply them in three typical EEG applications,
systematically demonstrating the effectiveness of our
approach;

(iii) The higher accuracy of MAFN in extracting temporal and
topological characteristics and identifying fatigue,
schizophrenia, and epilepsy from EEG data allow it to be
a potential method for understanding neural circuits
associated with behaviors and diagnosing the
neuropsychiatric disorders using EEG recordings.

The rest of the paper is structured as follows. Section 2
describes the construction approach of MAFN and the
classification framework based on such networks. Section 3
shows the comparison results between traditional methods
(CFN, DCFN, and wPLI) and MAFN in three EEG datasets
(fatigue, schizophrenia, and epilepsy). Discussion and
Conclusion are given in Section 4.

2 METHODS

This section includes three parts: construction of multilayer-
aggregation functional networks (MAFNs) feature extraction
and selection from MAFNs and MAFN-based classification
framework.

2.1 Construction of MAFNs
The effectiveness of functional networks in distinguishing brain
states is heavily dependent on construction methods, i.e., the
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more informative the more applicable. However, how to
reconstruct a scalp-level network or source connectivity
network able to represent the intrinsic connections between
regions from coarse-grained and usually noisy readings is a
nontrivial problem. According to the time series recordings,
researchers have proposed several functional connectivity
indexes to construct functional networks. Correlation-based
functional networks (CFNs) and dynamic (sliding-window)
version of CFN (DCFNs), as well as weighted phase lag index
(wPLI) succeeded in a wide range of applications, given the fact
that human brain is indeed composed of a few billion of
interconnected neurons. A weighted matrix is obtained
according to different functional connectivity indexes, and
then binarized to obtain an unweighted and undirected
network that represents the relationship between different
regions. At a coarse-grained level, the human cerebral cortex
can be roughly divided into several different regions, which are
actually dependent on each other, and function cooperatively
[33]. The dependence between regions is so strong that it can be
captured by nice correlations of the activities between regions. In
addition, brain activities also show temporal patterns, which
means that one region is activated following the other. Thus,
it is expected that construction of functional networks with better
informativeness should take into account not only topological but
also temporal properties. To satisfy this need, we propose a two-
phase approach to create the MAFNs from EEG readings.

Furthermore, according to different calculation indexes of each
stage, three kinds of are constructed, based on dynamic time
warping [34] (MAFN-dtw), symbolic mutual information [35,
36] (MAFN-smi), and hub depressed index [37] (MAFN-HDI)
respectively.

First, to reveal temporal regularities an idea from network
science (see [30, 31]) is adopted for building a network from a
single time series. As illustrated in Figure 1, we use a sliding
window to split all EEG time series (Figure 1B) into m sub-
sequences (Figure 1C), and then identify from these m sub-
sequences the representative sub-sequences (RSs) through the
idea similar to clustering: 1) Calculate the similarity
(measured by dynamic time warping (DTW) [34] or
symbolic mutual information (SMI) [35, 36]) between each
pair of sub-sequences, and for each sub-sequence we select its
k most similar (other) sub-sequences; 2) In the mk selected
sub-sequences, some are repeated. Hence we pick the top k
ones who occur most frequently. 3) In these k sub-sequences,
we identified n sub-sequences that are most dissimilar to each
other. Therefore, the cardinality of the final set of RSs equals
n. In this work we set n � 40. Through the procedure, the RSs
we identified are most dissimilar to each other, yet are most
similar to other original sub-sequences. That is, the RSs can
indeed considered as motifs occurring in EEG time series
(Figure 1D). Finally, we convert each single time series into a
symbol sequences by replacing each original sub-sequence

FIGURE 1 | Construction of an individual network layer for each channel. (A) EEG channel locations and its recorded time series. (B) Segmentation process of time
series. (C) Candidate set of sub-sequences. (D) The representative sub-sequences (RSs) set. (E) The process of replacement. (F) The individual network (layer) for one
channel.
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with its most similar RS (Figure 1E), which can be further
transformed to a network (Figure 1F). Each node represents a
RS, and two nodes are connected by a link if the two RSs in the
original time series are temporally proximal to each other.
Therefore, through the above procedure each channel is
represented by a network (or called layer hereafter).

Second, as illustrated in Figure 2, the individual layers of all
channels are merged into an MAFN by aggregation. Such an
aggregation process captures the dependence between different
channels (layers). Here we use Jaccard coefficient or Hub
Depressed Index (HDI) [37]) to calculate the local structural
similarity of node i between any pair of layers X and Y. For a node
i, let ki(X) represents the degree of i in layer X and Γi(X)
represents the neighbor node set of node i in layer X. Jaccard
coefficient and HDI between two layers are defined as

μiXY � Γi X( ) ∩ Γi Y( )| |
Γi X( ) ∪ Γi Y( )| | (1)

and

μiXY � Γi X( ) ∩ Γi Y( )| |
max ki X( ), ki Y( ){ } (2)

respectively. Then the global similarity between layer X and layer
Y is quantified by

SimXY � 1
n
∑
n

i�1
μiXY (3)

where n is the number of nodes (i.e., RSs).
So far, through the two steps above we obtain a weighted

network of these layers (Figure 2B), where the weight of a link
represents the similarity of two corresponding layers. We expect
that the similarity indicates the strength of dependence between
the two channels. Finally, we binarize the weighted network to a
(0, 1)-matrix (Figure 2C) that corresponds to a MAFN shown in
Figure 2D. Because the threshold of binarization affects the
number of links and also the topological properties of the
MAFN, as discussed in the next subsection we extract the
features of networks with different levels of sparsity, from 12
to 34% with step size 2%, and input all these features into each
classifier in our numerical experiments.

2.2 Feature Extraction From MAFNs
Network science offers several important metrics to
mathematically characterize the topology of networks [38–42].

FIGURE 2 | Aggregation of the layers of all channels. (A) The individual layers ofN channels and (B) an aggregated weighted network of these layers. (C) The binary
matrix for the MAFN in (D).
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The changes of these metrics can be used as indicators to
distinguish brain functional networks for different brain states
from various perspectives [43, 44]. The metrics roughly fall into
two categories—global and local. Global metrics capture the
connection patterns among nodes as a whole. For example,
the average path length reveals the dispersion of network
structure hence is related to information transmission
efficiency; Modularity quantifies the extent to which a network
can be divided into several densely connected communities. Local
metrics capture the surrounding connection patterns of a specific
node or link. For example, nodal degree is simply the number of a
node’s neighbors; Nodal clustering coefficient describes the
connnectedness among a node’s neighbors; Nodal betweenness
is useful for determining whether a specific link is a bottleneck for
network diffusion. In order to reflect the diversity of functional
network properties, here we employ 10 global and 5 local metrics,
as listed in Table 1.

It is worth noting that the values of these metrics depend on
the threshold used to binarize either the functional network has
been proposed or aggregated (weighted) networks in the second
phase of MAFN construction. Hence, we consider the metrics for
a wide range of network sparsity that is defined as the fraction of
existing links out of all possible links between nodes. Specifically,
for eachmetric xwe also calculate the area under the curve (AUC)
[16, 45] that represents the metric value as a function of network
sparsity, i.e.,

xAUC � ∑
q−1

i�1
x Si( ) + x Si−1( )[ ] p△S/2, (4)

where [S1, Sq] is the range of sparsity and △S is the interval for
discretizing the range.

In classification algorithms described in the next subsection,
we use all features for the metrics listed in Table 1. In fact, we
constructed functional networks with sparsity levels from 12 to
34% and calculated the network attributes of all these networks,
i.e., for each metric x all its features {x (S1 � 12%), x (S2 � 14%),
. . ., x (Sn � 34%), xAUC} are inputted into the classifier. Hence, the
number of total features is the sum of the local and the global

feature numbers. For instance, in the task of mental fatigue
identification where each subject has 62 EEG channels, the
total number of features is (62 × 5 + 10) × 13 � 4160.
Similarly, the total number of features for schizophrenia and
epilepsy data are 4,095 and 1,690 respectively. In order to perform
fair comparisons, the total number of features obtained from
correlation-based functional networks is equal to those above
respectively.

In addition, to increase the interpretability of the results and to
screen out the sensitive indicators of the network, we conduct a
difference analysis on the indicators of the functional network by
using supervised algorithms. Samples are given labels, and one
can obtain the statistically significant difference of each network
metric and the most differentiated binarization threshold through
inter-group statistics between healthy and abnormal samples. To
do so, we first use the Z-score method to standardize the metrics
and count the normalized mean value of each metric x under all
sparsity of one network to obtain the statistically significant
difference of each network metric. Then we perform t-tests of
the metrics at different network sparsity levels and calculate the
corresponding p-values, followed by choosing the sparsity which
results in the most statistically significant metrics (significance
level is set to p < 0.05) [46]. Such a way is able to point out the
sensitive indicators, as shown in Section 3, for understanding the
possible mechanisms underlying the brain illness. It is
noteworthy that such calculations is only for interpreting the
results, and in all comparison experiments we do not
intentionally choose metrics or sparsity levels.

2.3 Classification Framework Based on
MAFNs
After the MAFNs constructed from experimental EEG data and
the features extracted from MAFNs, we put these features
encoding both topological and temporal properties into
classifiers. In order to extensively compare the capability of
MAFNs to that of other methods, in the present study we
employ 6 supervised classifiers, including support vector
machine with radial basis kernel function (SVM-RBF), with
sigmoid kernel function (SVM-SIG), and with polynomial
kernel function (SVM-POL), multi-layer Perceptron (MLP),
decision tree C4.5 and dense graph propagation (DGP) [47],
as well as 6 unsupervised classifiers, including invariant
information clustering (IIC) [48], one class support vector
machine (OC-SVM) [49], support vector data description
(SVDD) [50], k-means, hierarchical clustering divisive analysis
(DIANA), density-based spatial clustering of applications with
noise (DBSCAN). To assess the performance of MAFNs in these
classifiers we use accuracy defined as (TP + TN)/(TP + TN + FN +
FP) where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

In supervised classifiers, the data samples were divided into
training, validation and test sets with proportions of 50, 20, and
30%, respectively. For each classifier, all features of the functional
networks constructed from the training set are used to train the
model, and then 5-fold cross-validation is used to validate the
model, obtaining the best model parameters. Next, we test the

TABLE 1 | Features of functional networks.

Feature type Feature name Symbols

Global Global clustering coefficient C
Average path length L
Small-world-ness σ

Modularity Q
Global efficiency Eg
Rich-club-ness Rcl

Average degree 〈k〉
Link density ρ

Assortativity r
Average Nodal efficiency 〈E〉

Local Node degree ki
Nodal efficiency Ei
Nodal Betweenness Bi

Closeness centrality Cci

Nodal clustering coefficient Ci
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model and got the classification accuracy in the test dataset
(i.e., the remaining 30% of the original data). Finally, we
repeat the above two steps 50 times by randomly splitting the
samples into training, validation and test sets, and eventually
obtain the arithmetic mean of these classification accuracies
as ACC.

In contrast, unsupervised classifiers cluster the samples to
different groups according to some criteria and do not have a
training process. Take the k-means as an example. First, we
construct networks with sparsity levels of from 12 to 34% and
calculate the values of all the features of each network
respectively. Then we input the features of each network
sparsity into the k-means classifier. The k-means is repeated
for several times, and the smallest sum of squared errors (SSE) is
the final clustering result. A prediction label is assigned to each
sample. Finally, we use classification accuracy to measure the
clustering results (the comparison between the assigned labels
and the real labels of each sample was concluded by clustering).
Note that we calculate the classification results of functional
networks with different levels of sparsity, whose mean value
was set as ACC.

3 APPLICATIONS

In this section, we incorporate MAFNs with classification
algorithms and apply to three typical scenarios, demonstrating
the advantages and effectiveness of MAFNs compared with the
previous 3 methods. Moreover, we also show how to identify the
important electrodes and their locations for detecting mental
fatigue and schizophrenia.

3.1 Application in Mental Fatigue
Identification
Mental fatigue can cause difficulty in concentration and negative
emotions, which further reduce work efficiency, and even lead to
various accidents. Hence, identifying mental fatigue has attracted
considerable attention in the past decade. Here, we analyze a
dataset from 26 subjects with mental fatigue [21, 24]. Each subject
underwent a 20-min psychomotor vigilance test (PVT), a high-
signal-load way based on reaction time for evaluating the ability
to sustain attention and be alert to salient signals. To study the
effect of increased mental fatigue with working hours, the first
and last 5-min intervals were set as the least, and most fatigued
states, respectively. High-density continuous EEG recordings
were acquired from 62 Ag/AgCl scalp electrodes according to
the International 10–20 system (ASA-Lab, ANT B.V., and
Netherlands). The typical electrode positions are illustrated in
Figure 1A. Signals containing artifacts due to eye movements or
significant muscle activity during the recordings were removed
offline via an independent component analysis approach. The
final EEG signals were baseline adjusted and further digitally
band pass filtered in the range 0.5–40 Hz (fifth order
Butterworth). The artifact-free epochs of 500 ms duration EEG
segments (from 0 to 500 ms post-stimulus) were selected and
grouped for further analysis. Rhythmic patterns of activity in the

(8–10 Hz) range could be an appropriate physiological signal for
revealing the topological differences of cortical connectivity in
fatigue state as low alpha waves have specifically been implicated
with decreasing alertness. Here, we apply a graph theoretical
approach to analyze such changes in the lower alpha (8–10 Hz)
band of EEG data.

We construct three types of MAFNs (MAFNs-dtw, MAFNs-
smi, and MAFNs-HDI), using the method described in Section
2.1, for the first and last 5-min intervals respectively for each
subject. To perform comparisons, for each subject we also
construct three other corresponding types of functional
networks (CFNs, DCFNs, and wPLIs) simply by calculating
the correlations between all pairs of EEG time series and then
binarizing the correlation matrix into an undirected unweighted
functional network. We examine different values of binarizing
threshold (12–34%) to obtain functional networks with different
levels of sparsity. To distinguish the least andmost fatigued states,
we extract the features from the metrics listed in Table 1 of all
these sparse networks (i.e., each subject has 4160 features), and
then input these features into the classifiers described in Section
2.3. As exhibited in Figure 3, the MAFNs are more effective than
the corresponding CFN and DCFN in all 6 supervised and 6
unsupervised classifiers. Moreover, we observe that MAFN +
SVM-SIG obtains the highest accuracy in supervised learning and
wPLI + IIC outperforms other unsupervised algorithms.
Meanwhile, while wPLIs are more effective than correlation-
based functional networks, our MAFNs still achieve higher or
comparable accuracy in 9 out of 12 classifiers.

To increase the interpretability of the results we also want to
reveal the sensitive indicators of the network, i.e., to examine the
topological properties in each layer network for the least andmost
fatigued brain states. As shown in Figure 4A, we take F3 for
example which is attached to the frontal lobes of the cerebral
cortex. This region plays vital roles in memory, attention,
motivation, and also has the capacity to organize and plan
daily tasks. For all subjects, we count the normalized mean
value of each global metric Y under all sparsity of the F3
network. We find that there are indeed significant structural
differences between the F3 network layer of least and most
fatigued states. Specifically, compared with the least fatigued
subjects, the values of C, 〈k〉, ρ, and 〈E〉 are decreased in
most fatigued networks, while the values of the other 6 global
metrics are increased. Such decreases and increases are all
statistically significant (t-test, p-value < 0.05). To understand
the impact of network sparsity on classification framework
performance, we examine the statistical significance of network
metrics listed in Table 1 for different levels of sparsity. As shown
in Figure 4B, we find that sparsity indeed remarkably affects the
expressiveness of functional networks. The inter-group
comparison results reveal that there exists an optimal sparsity
level, i.e., an optimal binarizing threshold, for binarizing the
aggregated weighted network. Here, for distinguishing the least
and most fatigued subjects, the optimal sparsity is 26% at which
the differences of global metrics between the two groups are all
statistically significant (the gray area in Figure 4B).

Moreover, the features extracted from local metrics are
important for recognizing the contribution of each node in
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MAFN, i.e., identifying the most relevant electrode positions
for a specific task. To do so, we calculate the accuracy of the
proposed classification framework by using the local metrics
of only one node and descending sort the nodes according to
these ACC values. And then put the ranking labels (1–62) as
the x-axis. As shown in Figure 5A, we take the results of SVM-
RBF algorithm as an example, and obtain the accuracy rate for
each channel by using different network construction
methods respectively. The green line is the results of
MAFN-dtw + SVM-RBF, and the top1 node (electrode) is
F3 which is attached to the frontal lobes of the cerebral cortex.
Then we pick up the top 10 channels with the highest
accuracies of the methods and the results are shown in
Figure 5C. The process is repeated for other 5 types of
network construction method. We pick up the top 10
channels with the highest accuracies of 6 methods

respectively and find that the most important electrodes for
fatigue detection are mainly located in the frontal and the
central areas with the left electrodes more relevant than the
right ones. So, it is shown that although there are differences
between the results calculated from 6 network construction
methods (i.e., there are differences between the top 10 highest
classification accuracy channels of different methods), all 6
methods can clearly distinguish the importance of each node
of the network.

3.2 Application in Schizophrenia Diagnosis
Schizophrenia is a serious and chronic mental disorder with typical
positive symptoms such as delusions, hallucinations and negative
symptoms such as depressedmood, which affects about 1% of people
across the globe. One possible explanation for some of the symptoms
of schizophrenia is that one or more problems with the corollary

FIGURE 3 | Comparison between different methods of brain functional network construction in detecting mental fatigue with 6 supervised classifiers and 6
unsupervised classifiers. Comparison in (A) supervised and (B) unsupervised classifiers.
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discharge process in the nervous system make it difficult for patients
to distinguish between internally and externally generated stimuli.
Schizophrenia has made a big burden for patients and their family

which prompt us to find a quick and goodway for diagnosis and even
early warn of the emergence of schizophrenia. In the present studywe
use the dataset, which is already pre-processed, from patients with

FIGURE 4 | Statistically significant difference of metrics between fatigued and healthy groups. (A) Inter-group differences of global metrics in the individual layer of
F3 channel. (B) Statistical significance of the inter-group difference of global metrics as a function of network sparsity.

FIGURE 5 | Important channels and their locations for detecting fatigue status (A,C) and schizophrenia (B,D). The colored points in (C,D) represent the
corresponding positions.
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schizophrenia, and healthy controls in [51]. All subjects participate in
a simple button-pressing task in which subjects either 1) pressed a
button to immediately generated a tone, 2) passively listened to the
same tone, or 3) pressed a button without generating a tone to study
the corollary discharge in people with schizophrenia, and comparison
controls. And 61 channel EEG data were collected from 32 healthy
subjects and 49 patients with schizophrenia.

As described in Section 2, we construct 6 types of functional
networks for each subject and incorporate them into the 12
classifiers. The results are shown in Table 2. It is obvious that
the accuracy of classifiers involving MAFNs are consistently
higher than those involving CFNs and DCFNs, demonstrating
the advantage of MAFNs. The highest accuracy achieved by using
MAFNs is 92.4% (MAFN-dtw + SVM-POL). Since the wPLI
method can avoid the volume conductor effect, wPLIs are more
effective than the corresponding 5 other methods in 2 supervised
(SVM-SIG and MLP) classifiers, but MAFNs perform better in
other 10 classifiers.

Furthermore, similar to the approach discussed in Section 3.1,
we also reveal the optimal sparsity and the accuracy achieved by

using the features of individual channels. The results show that
when the sparsity is 30%, the global attribute of schizophrenia
networks has the largest difference between groups. Finally, as
exhibited in Figure 5D, we find that the most relevant electrodes
for schizophrenia diagnosis are localized in the frontal and
occipital regions.

3.3 Application in Epilepsy Detection
The third task we take to demonstrate the effectiveness of MAFNs is
detecting epilepsy. The dataset contains intracranial EEG recordings
obtained from patients with temporal lobe epilepsy undergoing
evaluation for epilepsic surgery [52]. The 1-s EEG clips labeled
“Ictal” for seizure data segments, or “Interictal” for non-seizure data
segments. In the present work, 100 “Ictal” and 100 “Interictal”
fragments of one subject were selected as experimental data. The
24 intracranial EEG recordings are from depth electrodes implanted
along the anterior-posterior axis of the hippocampus, and from
subdural electrode grids in various locations.

The results of classifiers involving MAFNs or other
functional networks are displayed in Table 3. The highest

TABLE 2 | Comparison results of MAFNs and other methods for schizophrenia diagnosis.

Networks DGP SVM-RBF SVM-SIG SVM-POL MLP C4.5

Supervised MAFN-dtw 87.6 89.6 90.2 92.4 89.5 81.8
MAFN-smi 86.8 87.9 89.7 90.9 88.2 81.6
MAFN-HDI 86.5 89.6 90.2 92.4 87.6 82.4
wPLI 87.5 89.6 91.2 91.2 91.2 82.1
CFN 85.3 86.9 83.2 82.2 85.4 76.0
DCFN 86.1 87.2 87.4 89.5 86.7 79.9

Networks IIC OC-SVM SVDD K-means DIANA DBSCAN

Unsupervised MAFN-dtw 81.7 76.5 70.3 73.9 74.6 72.5
MAFN-smi 80.7 73.3 70.3 72.6 73.5 72.3
MAFN-HDI 80.6 75.5 70.3 73.6 74.6 72.3
wPLI 80.6 75.7 70.3 73.9 73.8 72.3
CFN 72.1 70.8 69.2 70.2 71.4 69.1
DCFN 78.7 72.5 69.5 71.9 72.6 71.6

The best-performing methods were highlighted (bold).

TABLE 3 | Comparison results of MAFNs and other functional methods for epilepsy detection.

Networks DGP SVM-RBF SVM-SIG SVM-POL MLP C4.5

Supervised MAFN-dtw 92.8 94.6 95.4 92.6 92.3 84.4
MAFN-smi 89.6 90.9 92.7 92.9 93.2 83.2
MAFN-HDI 92.8 93.4 93.4 93.2 89.3 80.6
wPLI 92.5 93.3 93.3 94.1 89.2 79.9
CFN 83.4 85.6 84.3 80.4 85.9 74.3
DCFN 85.7 89.2 90.5 88.7 88.7 78.3

Networks IIC OC-SVM SVDD K-means DIANA DBSCAN

Unsupervised MAFN-dtw 73.3 77.5 73.7 72.8 70.3 71.7
MAFN-smi 73.7 75.4 74.3 74.6 72.3 74.6
MAFN-HDI 74.6 77.5 73.3 72.9 73.6 72.3
wPLI 73.6 76.3 72.3 72.9 72.8 72.6
CFN 72.4 70.4 69.7 70.1 69.4 71.3
DCFN 72.8 74.5 72.2 72.3 70.7 72.0

The best-performing methods were highlighted (bold).
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accuracy achieved by using MAFNs is 95.4% (MAFN-dtw +
SVM-SIG). Importantly, these results indicate again that,
MAFNs systematically outperform CFNs and DCFNs.
Except in SVM-POL and IIC classifiers, MAFNs perform
better than or comparably to wPLIs. Furthermore, we also
find the optimal sparsity and the accuracy by using the
features of individual channels. The results show that when
the sparsity is 32%, the global attribute of epilepsy networks
has the largest difference between groups.

4 DISCUSSION AND CONCLUSION

4.1 Discussion
Generally speaking, there are two types of brain networks,
structural, and functional [44, 53]. The former represents
chemical or electrical synapses between neurons, or fibers
connecting brain regions or voxels. In these networks the
connections are physical, meaning that they do not
significantly change in a short time interval. In contrast, the
later describes the functional interactions between neurons or
regions. Such interactions can be captured by correlation/
coherence or causation of activities of brain region pairs. Due
to the temporal nature of brain activity, functional connectivity
usually changes over time and exhibits different structural
properties in different brain states. Hence, construction
approach showing temporal and topological characteristics of
brain activity is not only crucial for distinguishing brain states but
also helpful for unveiling the systematic mechanism underlying
brain functions or dysfunctions.

In this work we demonstrate the advantages of MAFN in
identifying three abnormal brain states, it can also be applied to
understand our healthy or diseased brain, such as detecting driving-
induced fatigue, Alzheimer’s disease, depression, and different
emotions, etc. In addition, although we focus on MAFNs
constructed from EEG recordings, our approach is also applicable
to construct functional networks from other types of experimental
data, and such as fMRI and fNIRS. Importantly, while scalp-level
EEG data are used here, it would be interesting to extend the MAFN
method to source-level connectivity [54]. Unfortunately, source
reconstruction requires additional experiment data that all the
three datasets in the present study lack. Moreover, directed
networks (i.e., effective connectivity represents the direct or
indirect causal influences of one region on another) can be more
informative than undirected ones because link directionality might
reveal information flow between different brain regions [55].
Therefore, exploring source-level and directed MAFNs is worth
future pursuit.

5 CONCLUSION

In summary, we proposed a two-phase approach for constructing
scalp-level functional networks from multiple time series by
multilayer-aggregation, and incorporated such networks into a
classification framework for identifying brain states and diseases
based on EEG recordings. We tested the effectiveness and
robustness of the approach in three data sets (fatigue,
schizophrenia, and epilepsy) and the results showed that the
approach is consistently more advantageous than correlation-
based functional networks and also achieves comparable or
higher accuracy than phase lag index based networks in most
classifiers. With this approach we also revealed the important
electrode positions for detecting mental fatigue and diagnosing
schizophrenia.
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