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We examine the bistable transmission non-reciprocity in a four-mode optomechanical
system, where a mechanical oscillator interacts with one of three coupled optical cavities
so as to generate an asymmetric optomechanical non-linearity. Two transmission
coefficients in opposite directions are found to exhibit non-reciprocal bistable
behaviors due to this asymmetric optomechanical non-linearity as the impedance-
matching condition is broken for a not too weak input field. Such a bistable
transmission non-reciprocity can be well manipulated to exhibit reversible higher
isolation ratios in tunable wider ranges of the input field power or one cavity mode
detuning by modulating relevant parameters like optical coupling strengths,
optomechanical coupling strengths, and mechanical frequencies. This optomechanical
system provides a flexible platform for realizing transmission non-reciprocity of weal light
signals and may be extended to optical networks with more coupled cavities.

Keywords: transmission non-reciprocity, bistable non-linearity, cavity optomechanics, impedance-matching
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1 INTRODUCTION

Cavity optomechanics, focusing on enhanced radiation pressure interactions between light fields and
mechanical motions, has attracted extensive experimental and theoretical interests owing to its wide
applications in processing quantum information, measuring weak signals, and developing new
devices [1–9]. Various optomechanical systems have been proposed and fabricated to realize non-
trivial tasks and interesting phenomena, such as entanglement generation between cavity and
mechanical modes [10–15], ground-state cooling of mechanical resonators [16–20],
optomechanically induced transparency (OMIT) and absorption (OMIA) [21–26], Bell non-
locality verification [27], parity-time (PT) symmetry-breaking chaos [28], and tumor structural
imaging [29]. We note in particular that optomechanical systems can provide an effective avenue for
implementing non-reciprocal devices, like isolators and circulators, required in constructing all-
optical communication networks [30–34].

Non-reciprocal devices promise the transmission of signals in one direction while blocking those
propagating in the opposite direction and can be utilized to avoid unwanted interference of signals
and protect optical sources and systems from noises [35–42]. Breaking reciprocity or time reversal
symmetry is typically accomplished with magneto-optical effects [43–45] and has resulted in the
emergence of new physics such as topologically protected one-way photonic edge modes [46] and
non-reciprocal behaviors in giant atom systems [47, 48]. Unfortunately, magneto-optical effects are
not present in standard optoelectronic materials including most metals and semiconductors andmay
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result in crosstalk and other problems hampering on-chip
implementations. This is why non-magnetic approaches for
achieving optical non-reciprocity have been extensively studied
with significant advances, for example, in chiral atomic systems
[49–51] and optomechanical systems [30–34]. The latter
includes, for instance, a three-mode optomechanical system
with additional gain in one cavity [31] and a two-cavity
optomechanical system with a blue-detuned driving [32].

Coupled micro-cavities are essential elements for constructing
quantum information networks in that they are scalable via mode
swapping or fiber coupling, compatible with mechanical
oscillators and other elements, and easy to be controlled by
driving fields. With this consideration, here we extend
previous works [30–34] to seek more flexible manipulations
on optical non-reciprocity by investigating a four-mode
optomechanical system with three optical cavities and one
mechanical oscillator. This system is found to exhibit an
asymmetric optomechanical non-linearity, which then result in
staggered bistable behaviors of two opposite-direction
transmission coefficients, under the broken impedance-
matching condition. Numerical results show in particular that
quite a few parameters can be modulated on demand to
manipulate, in different ways, the upper and lower stable
branches of both transmission coefficients. This allows us to
tune and widen non-reciprocal ranges in terms of the input power
or a cavity detuning on the one hand, while improve isolation
ratio and reverse isolation direction with respect to transmission
coefficients on the other hand.

2 MODEL AND EQUATIONS

We consider a cavity optomechanical system consisting of three
optical modes described by annihilation operators a1, a2, and a3
and a mechanical mode described by position operator q and
momentum operator p, as shown in Figure 1. These optical and
mechanical modes exhibit frequencies ω1, ω2, ω3, and ωm,
respectively. The 2nd optical mode is coupled to the 1st
optical mode with strength J12, while to the 3rd optical mode
with strength J23, in a linear way controlled via the in-between
waveguide or fiber. The mechanical mode is coupled only to the
1st optical mode with single-photon optomechanical coupling
strength g. A driving field of frequency ωd is applied to excite the

1st optical mode with annihilation operator a1,in or the 3rd optical
mode with annihilation operator a3,in. With these considerations,
we can write down the following Hamiltonian (Z � 1):

H � ω1a
†
1a1 + ω2a

†
2a2 + ω3a

†
3a3 +

1
2
ωm p2 + q2( )

+ga†1a1q + J12 a†1a2 + a†2a1( ) + J23 a†2a3 + a†3a2( )
+i ���

γ1,e
√

a†1a1,ine
−iωdt − a1a

†
1,ine

iωdt( )
+i ���

γ3,e
√

a†3a3,ine
−iωdt − a3a

†
3,ine

iωdt( ),
(1)

where γj,e has been taken as the coupling constant to the driving
field, that is, the external decay rate, of the jth optical mode. It is
worth noting that the jth optical mode also exhibits an intrinsic
decay rate γj,i so that its total decay rate turns out to be γj � γj,i +
γj,e. Then we can define ηj � γj,e/γj as an effective coupling ratio
with ηj � 0 denoting a vanishing coupling, while ηj � 1 denoting
the maximal coupling. To be more specific, our optomechanical
system may be implemented either with a vibrational membrane
coupled to one of three Fabry-P�erot cavities, or with an
optomechanical crystal coupled to one of three photonic
crystal cavities [52].

In the rotating frame of the driving frequency ωd, it is viable to
attain from the Hamiltonian in Eq. 1 the following quantum
Langevin equations (QLEs):

zta1 � − γ1/2 + iΔ1( )a1 − igqa1 − iJ12a2
+ ���

γ1,e
√

a1,in + ���
γ1,i

√
a1,vac,

zta2 � − γ2/2 + iΔ2( )a2 − iJ12a1 − iJ23a3
+ ���

γ2,i
√

a2,vac,
zta3 � − γ3/2 + iΔ3( )a3 − iJ23a2

+ ���
γ3,e

√
a3,in + ���

γ3,i
√

a3,vac,
ztq � ωmp,
ztp � −ωmq − ga†1a1 − γmp + ξ,

(2)

where Δj � ωj − ωd is defined as the detuning of the jth optical
mode to the driving field, while γm refers to the decay rate of the
mechanical mode. In addition, we have used a1,vac, a2,vac, a3,vac,
and ξ to denote the input quantum noise operators with zero
mean values 〈a1,vac〉 � 0, 〈a2,vac〉 � 0, 〈a3,vac〉 � 0, and 〈ξ〉
� 0 [54].

Each operator of the optical and mechanical modes can be
split into a classical mean value and a quantum fluctuation as
usual. That means, we can set aj � αj + δaj, aj,in � αj,in + δaj,in,
q � �q + δq, and p � �p + δp with the ansatz αj � 〈aj〉, αj,in �
〈aj,in〉, �q � 〈q〉, and �p � 〈p〉. In the limit of a much stronger
optical driving than the optomechanical coupling, that is,���
γj,e

√ |αj,in|≫ γj ≫g, the classical mean values and the
fluctuation operators can be treated separately. Then we can
determine the classical mean values, in the steady state
(ztαi � zt �p � zt�q � 0), via the following equations:

0 � − γ1/2 + iΔ1( )α1 − ig�qα1 − iJ12α2 + ���
γ1,e

√
α1,in,

0 � − γ2/2 + iΔ2( )α2 − iJ12α1 − iJ23α3,
0 � − γ3/2 + iΔ3( )α3 − iJ23α2 + ���

γ3,e
√

α3,in,
0 � �p,
0 � −ωm�q − g|α1|2,

(3)

where the mean field approximation 〈qα1〉 ≈ 〈q〉〈α1〉 has been
taken into account. It is not difficult to see that the first (α1) and

FIGURE 1 | (Color online) Schematic of an optomechanical system
consisting of three cavities described by optical modes a1, a2, and a3 as well
as a membrane described by position q and momentum p. This system could
be driven by an input field a1,in and exhibit an output field a3,out, or driven
by an input field a3,in and exhibit an output field a1,out. Here, g denotes the
optomechanical coupling strength, while Jlk represents the coupling strength
between optical modes al and ak.
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third (α3) optical modes are not reciprocal because the mean
position �q of the mechanical mode is just coupled to the mean
amplitude α1 of the first optical mode via −ig�qα1 with
�q � −g|α1|2/ωm. That means, the aforementioned equations do
not remain unchanged if we exchange subscripts “1” and “3.”
Therefore, a transmission non-reciprocity is expected to occur no
matter the driving field comes from either one direction (α1,in ≠ 0
or α3,in ≠ 0) or both directions (α1,in ≠ 0 and α3,in ≠ 0). With these
classical mean values in hand, we can attain a set of linearized
QLEs for the fluctuation operators in the matrix form

zf

zt
� Af + ζ , (4)

by introducing two column vectors

f � δa1, δa
†
1, δa2, δa

†
2, δa3, δa

†
3, δq, δp( )T,

ζ � δA1,in, δA
†
1,in, δA2,in, δA

†
2,in, δA3,in, δA

†
3,in, 0, ξ( )T (5)

and a coefficient matrix

A �

− γ1
2
+ iΔ1′( ) 0 −iJ12 0 0 0 −igα1 0

0 − γ1
2
− iΔ1′( ) 0 iJ12 0 0 igαp1 0

−iJ12 0 − γ2
2
+ iΔ2( ) 0 −iJ23 0 0 0

0 iJ12 0 − γ2
2
− iΔ2( ) 0 iJ23 0 0

0 0 −iJ23 0 − γ3
2
+ iΔ3( ) 0 0 0

0 0 0 iJ23 0 − γ3
2
− iΔ3( ) 0 0

0 0 0 0 0 0 0 ωm

−gαp1 −gα1 0 0 0 0 −ωm −γm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)

where we have further defined δA1,in � ���
γ1,e

√
δa1,in + ���

γ1,i
√

a1,vac,
δA2,in � ���

γ2,i
√

a2,vac, δA3,in � ���
γ3,e

√
δa3,in + ���

γ3,i
√

a3,vac, and
Δ1′ � Δ1 + g�q. Our optomechanical system can work in the
stable regime only if all the eigenvalues of matrix A are
negative in their real parts. This problem is difficult or
impossible to be solved analytically but can be by numerically
examined via the Routh–Hurwitz criterion [53] as adopted later.

In the following, we consider two specific cases where the
driving field of amplitude sin �

��������
pin/(Zωd)

√
and power pin is input

just from the 1st optical mode with α1,in � sin and α3,in � 0 (I), or
just from the 3rd optical mode with α1,in � 0 and α3,in � sin (II). In
case (I), it is easy to attain from Eq. 3 that

α3 � −J12J23α1

γ2/2 + iΔ2( ) γ3/2 + iΔ3( ) + J223
,

α1 �
−J12J23α3 + γ2/2 + iΔ2( ) ���

γ1,e
√

sin

γ2/2 + iΔ2( ) γ1/2 + iΔ1 − iU|α1|2( ) + J212
,

(7)

with U � g2/ωm characterizing the non-linear optomechanical
interaction. Considering the input–output relation α3,out ����
γ3,e

√
α3 [55, 56], we finally attain

Γ/2 + i�Δ( )α3,out + iU31|α3,out|2α3,out � εeff. (8)

In this equation, we have introduced the effective damping
rate Γ, detuning �Δ, non-linear interaction strength U31, and
driving amplitude εeff by setting

Γ � A γ2γ3/4 − Δ2Δ3 + J223( ) + B γ2Δ3 + γ3Δ2( )
| γ2/2 + iΔ2( ) γ3/2 + iΔ3( ) + J223|2

,

�Δ � B γ2γ3/4 − Δ2Δ3 + J223( ) − A γ2Δ3 + γ3Δ2( )/4
| γ2/2 + iΔ2( ) γ3/2 + iΔ3( ) + J223|2

,

εeff � −J12J23 ������
γ1,eγ3,e

√
sin

γ2/2 + iΔ2( ) γ3/2 + iΔ3( ) + J223
,

U31 � −U| γ2/2 + iΔ2( ) γ3/2 + iΔ3( ) + J223|2
J212J

2
23γ3,e

,

(9)

with newly defined coefficients

A � γ3 γ1γ2/4 − Δ1Δ2( ) − Δ3 Δ1γ2 + Δ2γ1( )
+J223γ1 + J212γ3,

B � γ3 Δ1γ2 + Δ2γ1( )/4 + Δ3 γ1γ2/4 − Δ1Δ2( )
+J223Δ1 + J212Δ3.

(10)

In case (II), we attain via a similar procedure.

α1 � −J12J23α3

γ1/2 + iΔ1 − iU|α1|2( ) γ2/2 + iΔ2( ) + J212
,

α3 �
−J12J23α1 + γ2/2 + iΔ2( ) ���

γ3,e
√

sin

γ2/2 + iΔ2( ) γ3/2 + iΔ3( ) + J223
,

(11)

which, when substituting into the input–output relation
α1,out � ���

γ1,e
√

α1, finally yields

Γ/2 + i�Δ( )α1,out + iU13|α1,out|2α1,out � εeff, (12)

with a new effective non-linear interaction strength U13 � − U/
γ1,e, clearly different from U31.

For convenience, we now translate Eqs 8, 12 into a unified
form in terms of Xi � |αi,out|

2

Γ2/4 + �Δ2( )Xi + 2�ΔUeffX
2
i + U2

effX
3
i � |εeff|2, (13)

with Ueff � U13 for X1 � |α1,out|
2, while Ueff � U31 for X3 � |α3,out|

2.
This non-linear equation indicates that Xi can take three real
values, corresponding to the bistability of output against input,
under appropriate conditions. One way for determining the
bistable region is to take a derivative of Eq. 13 with respect to
Xi, yielding

Γ2/4 + �Δ2( ) + 4�ΔUeffXi + 3U2
effX

2
i � 0, (14)

whose two positive roots

X±
i � −4�Δ ∓

��������
4�Δ2 − 3Γ2

√
6Ueff

> 0, (15)

restricted by �Δ< − �
3

√
Γ/2 referring to two turning points of the

bistable region. That means, the solution of Eq. 15 takes three
branches in the bistable region ofX−

i ≤Xi ≤X+
i . The intermediate

branch is known to be definitely unstable because it corresponds
to the maximum (not minimum) point in an effective potential,
while the upper and lower branches are usually stable, for
example, in a non-linear Kerr medium [57, 58]. In our
optomechanical system, the upper branch may also be
unstable as the mechanical mode exhibits a negative effective
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damping rate owing to a heating effect in the blue-detuned or
strong-driving regime, which will be numerically examined via
the Routh–Hurwitz criterion [53].

The expected non-linear bistability is straightforward to be
examined by two transmission coefficients:

T31 � |α3,out/α1,in|2,
T13 � |α1,out/α3,in|2, (16)

referring, respectively, to a transport from the 1st optical mode to
the 3rd optical mode and that from the 3rd optical mode to the 1st
optical mode. Considering that U31 and U13 have different
expressions, we know from Eqs 8, 12 that a3,out ≠ a1,out in
general and therefore T31 ≠ T13 for light signals of amplitudes
a1,in � a2,in � sin input from the opposite sides of our
optomechanical system. The efficiency of such a non-
reciprocal transport can be quantified by defining

Itr � 10 log T31/T13( ), (17)

as the isolation ratio. We should note however that it is also
possible to have U31 � U13 in the case of

γ1,e �
J212J

2
23γ3,e

| γ2/2 + iΔ2( ) γ3/2 + iΔ3( ) + J223|2
, (18)

referred to as the impedance-matching condition, fromwhich it is
viable to get a critical coupling strength

Jc23 �
�����������������������������
γ3,eJ

2
12 − 2γ1,e γ2γ3/4 − Δ2Δ3( ) ± ��

C
√

2γ1,e

√
, (19)

with C � γ23,eJ
4
12 − γ1,eγ3,eJ

2
12(γ2γ3 − 4Δ2Δ3) − γ21,e(γ2Δ3 − Δ2γ3)

independent of input power pin. It is clear that in the case of
J23 ≠ Jc23, the impedance-matching condition will be broken, and
we could have unequal (optomechanical) non-linear interaction
strengths U31 ≠ U13. This would result in the optical transmission
non-reciprocity characterized by T31 ≠ T13 and thus Itran ≠ 0.

3 RESULTS AND DISCUSSION

In this section, we examine the effects of relevant tunable
parameters on the non-reciprocal bistable transmission of light
signals input from the opposite sides of our optomechanical
system via numerical calculations. Most parameters are chosen
based on two recent works and accessible in up-to-date
experiments [31, 44], among which γ1/2π � 1.0 GHz, γ2/2π �
0.5 GHz, γ3/2π � 4.5 GHz, η1 � η2 � η3 � 0.9, ωd/2π � 300 THz,
and γm/2π � 6.0 MHz are fixed in the following discussions.
Numerical results will be shown in two cases where transmission
coefficients T31 and T13 are plotted against input power pin and
detuning Δ1, respectively, as they are much easier to modulate in
regard of real applications. The main difficulty relevant to an
experimental realization of our proposal lies in that the accurate
preparation and arrangement of three (micro)coupled cavities of
identical optical modes while different decay rates. A (micro)
mechanical oscillator of proper resonant frequency and

optomechanical coupling strength may also be hard to be
integrated with one (micro)optical cavity.

3.1 Non-Reciprocal Transmission Against
Input Power
In Figure 2, we plot transmission coefficients T31 and T13 as a
function of input power pin for different optical coupling
strengths J23. Figure 2A shows that transmission non-
reciprocity (i.e., T13 ≠ T31 or Itran ≠ 0) cannot be attained as
the impedance-matching condition is well satisfied with
J23/2π � Jc23/2π ≃ 1.725 GHz, though our optomechanical
system works in the bistable regime. Increasing or decreasing
J23 to deviate from the critical value Jc23, we can see from Figures
2B–D that transmission non-reciprocity occurs with different
isolation ratios for different input powers. We have, in particular,
that Itr ≈ − 4.5 dB for pin � 50 mW in the case of J23/2π � 2.0 GHz,
Itr ≈ 8.0 dB for pin � 36 mW in the case of J23/2π � 1.4 GHz, and Itr
≈ 10.2 dB for pin � 25 mW in the case of J23/2π � 1.0 GHz. These
results indicate that it is viable to reverse the transmission non-
reciprocity from Itr < 0 to Itr > 0 (Itr > 0 to Itr < 0) as J23 is
decreased (increased) to cross the critical value Jc23, and we can
attain higher isolation ratios in wider bistable regions by
modulating J23 to be more deviating from the critical value
Jc23. Taking Figure 2C as an example, it is also important to
note that we should choose to work in the region between turning
points P2 and P4 as pin is increased from a small value, while
between P1 and P3 as pin is decreased from a large value. This
promises for attaining a more efficient transmission non-
reciprocity corresponding to a larger |Itr| because it can be
evaluated with the upper branch of T31 and the lower branch
of T13. Otherwise, T31 and T13 will both work in the lower or

FIGURE 2 | (Color online) Transmission coefficients T31 (red squares)
and T13 (blue circles) against input power pin with (A) J23/2π � 1.725 GHz; (B)
J23/2π � 2.0 GHz; (C) J23/2π � 1.4 GHz; (D) J23/2π � 1.0 GHz. Solid and
dashed parts of each curve refer to stable and unstable regions,
respectively. Other parameters are Δ1/2π � Δ2/2π � 4.5 GHz, Δ3/2π �
1.5 GHz, g/2π � 0.9 MHz, ωm/2π � 10 GHz, and J12/2π � 3.0 GHz, except
those at the beginning of Section 3.
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upper branch to result in well suppressed transmission non-
reciprocity of smaller or vanishing |Itr|.

Comparing Eqs 8, 12, it is easy to see that the transmission non-
reciprocity will be attained as long as we have U13 ≠ U31, which
requires not only a broken impedance-matching condition but also
U � g2/ωm ≠ 0. Thus, it is essential to examine in Figure 3 different
effects of optomechanical coupling strength g and mechanical
frequency ωm on transmission coefficients T31 and T13 plotted
against input power pin. Figures 3A,B show that as g is enhanced
by one order, pin required for observing the transmission non-
reciprocity (in the bistable region where T13 and T31 work in the
lower and upper branches, respectively) is reduced by two orders
without changing the maximal isolation ratio Itr ≈ 10.2 dB. That

means the observed transmission non-reciprocity exhibits an inverse
dependence on input power pin and optomechanical coupling
strength g. Figures 3C,D further show that the non-reciprocal
region in terms of pin is not so sensitive to ωm though this region
can be enlarged in the case of a largerωm. It ismore important to note
that the upper branches ofT31 andT13may not be always stable and a
larger ωm is helpful to reduce the unstable regions. These findings tell
us how to choose g and ωm for attaining a wide enough non-
reciprocal region corresponding to low enough input powers.

Considering that the driving field and relevant optical modes are
easy to be modulated in frequency, we plot in Figure 4 transmission
coefficients T31 and T13 as a function of input power pin for different
detuningsΔ1 andΔ3.We can see fromFigures 4A,B that the isolation
ratio may be evidently improved in a wider non-reciprocal region by
choosing a slightly larger Δ1 to well suppress the lower branches of
T31 and T13, while leaving the upper branches unchanged yet in
magnitude. To bemore specific, we have Itr ≈ 6.1 dB for pin � 14mW
withΔ1/2π� 3.5 GHz, while Itr≈ 13.1 dB for pin� 35mWwithΔ1/2π
� 5.5 GHz. Figures 4C,D show instead that a significant increase of
Δ3, though can result in a wider non-reciprocal region, will not
change the isolation ratio too much as the upper and lower branches
are suppressed to the roughly same extent. We also note from
Figure 4B that the upper branch of T31 starts to become unstable
at pin ≳ 140mW for Δ1 � 5.5 GHz. It is thus clear that detunings Δ1

and Δ3 play different roles in manipulating the transmission non-
reciprocity and can be jointly modulated for observing an ideal
transmission non-reciprocity with larger isolation ratios and well
suppressed lower branches for moderate input powers.

3.2 Non-Reciprocal Transmission Against
Detuning
We first plot in Figure 5 transmission coefficients T31 and T13 as a
function of detuning Δ1 for different input powers pin. As the

FIGURE 3 | (Color online) Transmission coefficients T31 (red squares)
and T13 (blue circles) against input power pinwith (A) g/2π � 0.9 MHz; (B) g/2π
� 9.0 MHz; (C) ωm/2π � 4.5 GHz; (D) ωm/2π � 6.5 GHz. Solid and dashed
parts of each curve refer to stable and unstable regions, respectively.
Other parameters are the same as in Figure 2, except J23/2π � 1.0 GHz.

FIGURE 4 | (Color online) Transmission coefficients T31 (red squares)
and T13 (blue circles) against input power pinwith (A) Δ1/2π � 3.5 GHz; (B) Δ1/
2π � 5.5 GHz; (C) Δ3/2π � 0.1 GHz; (D) Δ3/2π � 6.0 GHz. Solid and dashed
parts of each curve refer to stable and unstable regions, respectively.
Other parameters are the same as in Figure 2, except J23/2π � 1.0 GHz.

FIGURE 5 | (Color online) Transmission coefficients T31 (red squares)
and T13 (blue circles) against detuning Δ1 with (A) pin � 0.1 mW; (B) pin �
20 mW; (C) pin � 40 mW; (D) pin � 50 mW. Solid and dashed parts of each
curve refer to stable and unstable regions, respectively. Other
parameters are Δ2/2π � 4.5 GHz, Δ3/2π � 1.5 GHz, g/2π � 0.9 MHz, ωm/2π �
10 GHz, J12/2π � 3.0 GHz, and J23 � 1.0 GHz, except those at the beginning
of Section 3.
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input power is very low (i.e., pin � 0.1 mW), Figure 5A shows that
T31 and T13 overlap well with a symmetric peak centered at Δ1 ≈
(J12 + J23)/2 � 2 GHz, therefore leading to a vanishing
transmission non-reciprocity. This can be attributed to the fact
that both Eqs 8, 12 reduce to (Γ/2 + i�Δ)αj,out ≈ εeff when
Ujj′|αj,out|

2 with j + j′ � 4 is much smaller than �Δ. As the
input power increases to be large enough, we find from
Figures 5B–D that T31 and T13 start to exhibit different
bistable behaviors and thus become distinguishable on the side
of Δ1 > (J12 + J23)/2 because U13 and U31 always take negative
values. That means the deviation of a transmission peak from its
original position may serve as a good estimation on the strength
of non-linear optomechanical interaction. To be more specific,
the input power pin has less influence on T13 than T31 so that the
transmission non-reciprocity occurs and becomes more and
more evident as pin increases. It is also noted that a larger
input power always results in a wider bistable region with a
higher isolation ratio at the right turning point of T31: Itr ≈ 8.5 dB
at Δ1/γ1 � 4.0 for pin � 20 mW; Itr ≈ 14.3 dB at Δ1/γ1 � 6.0 for pin �
40 mW; Itr ≈ 16.2 dB at Δ1/γ1 � 7.0 for pin � 50 mW.

Then we examine different effects of optical coupling
strengths J12 and J23 by plotting in Figure 6 transmission
coefficients T31 and T13 against detuning Δ1. Figures 6A,B
show that a slight increase in J12 will result in an evidently
identical rising of T31 and T13 but leaving their peaks roughly
unchanged in position. The main difference lies in that the
upper branch of T31 in Figure 6A exhibits a wider stable region
than that in Figure 6B, indicating that a larger J12 helps to
suppress quantum fluctuations arising from the non-linear
optomechanical interaction. On the other hand, Figures
6C,D show that a slight increase in J23 can also result in an
evidently identical rising of T31 and T13, but their peaks become
evidently closer to each other, leading to a narrowing of the

non-reciprocal bistable region as well as a reduction in the
isolation ratio. These findings tell that a moderate J23 and a
larger J12 are appropriate for attaining non-reciprocal bistable
regions of wide enough stable upper branches and large enough
isolation ratios.

Finally, we examine different effects of mechanical frequency
ωm and optomechanical coupling strength g by plotting in
Figure 7 transmission coefficients T31 and T13 against
detuning Δ1. Comparing Figures 7A,B, we can see that both
T31 and T13 remain unchanged in their peak values but clearly
become more inclined toward Δ1 > 0 so as to yield wider
bistable regions, with the increase in g. This then results in a
wider non-reciprocal transmission region considering that T31

is much more sensitive to g and thus exhibits a much wider
bistable region than T13. Figures 7C,D show however that an
increase in ωm is helpful to reduce the unstable region of T31 in
its upper branch but meanwhile also results in a reduction of
the bistable regions for both T31 and T13. These findings tell that
one should choose a lower ωm and a higher g to enhance the
non-linear optomechanical interaction required for attaining
wider non-reciprocal transmission regions of high isolation
ratios.

In figures, the bistable transmission non-reciprocity occurs as
the two curves for T31 and T13 do not overlap in each plot. It is
thus appropriate to roughly determine a non-reciprocal
bandwidth as the absolute difference of two values of pin or Δ1

corresponding, respectively, to the peak of T31 and that of T13.
This non-reciprocal bandwidth is a few or tens ofmW in Figures
2–4, while several times of γ1 in Figures 5–7, depending on
relevant parameters like J12, J23, g, and ωm. Note also that a
dynamic reciprocity, referring to the fact that a (weak) backward
noise, can also be transmitted with little loss in the presence of a
(strong) forward signal of high transmission, typically exists in
the non-reciprocal systems based on optical non-linearities [59].

FIGURE 6 | (Color online) Transmission coefficients T31 (red squares)
and T13 (blue circles) against detuningΔ1 with (A) J12/2π � 1.0 GHz; (B) J12/2π
� 1.3 GHz; (C) J23/2π � 1.0 GHz; (D) J23/2π � 1.3 GHz. Solid and dashed
parts of each curve refer to stable and unstable regions, respectively.
Other parameters are the same as in Figure 5, except pin � 20 mW.

FIGURE 7 | (Color online) Transmission coefficients T31 (red squares)
and T13 (blue circles) against detuning Δ1 with (A) g/2π � 0.9 MHz; (B) g/2π �
1.6 MHz; (C) ωm/2π � 4.5 GHz; (D) ωm/2π � 6.5 GHz. Solid and dashed parts
of each curve refer to stable and unstable regions, respectively. Other
parameters are the same as in Figure 5, except pin � 20 mW.
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Accordingly, one limitation of our optomechanical system may
be that it cannot break the dynamic reciprocity because the
transmission non-reciprocity arises from a bistable non-
linearity. This is clear by looking at Figures 2–4 where we
have T31 ≠ T13 only when input power pin is not too small.

4 CONCLUSION

In summary, we have studied a four-mode optomechanical system
for attaining the transmission non-reciprocity, in the presence of
an optomechanically induced non-linearity, with respect to a
driving field input from the left or right side. As the
impedance-matching condition is broken, we find that
transmission coefficients T31 and T13, plotted against input
power pin or cavity detuning Δ1, may exhibit staggered bistable
behaviors and therefore can work in the upper and lower branches,
respectively. The isolation ratio of such a non-reciprocal
transmission is viable to switch between Itr > 0 and Itr < 0 and
can be improved in magnitude by modulating optical coupling
strengths J12,23 and detunings Δ1,3 to suppress the lower branches
or enhance the upper branches. It is also viable to broaden the non-
reciprocal bistable region in terms of pin (Δ1) by modulating
optomechanical coupling strength g and mechanical frequency
ωm in addition to J12,23 and Δ1,3 (pin). But we should note that an
increasing part of the upper branch may become unstable as the
non-reciprocal region becomes wider, which restricts the tunable
ranges of relevant parameters. Our results well extend the previous
works on realizing non-reciprocal transmission in optomechanical
systems and are instructive for designing non-reciprocal devices in
optical networks based on coupled cavities.
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