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A great deal of interest has grown in both academia and industry toward flexible
multiferroics in the recent years. The coupling of ferromagnetic properties with
ferroelectric properties in multiferroic materials opens up many opportunities in
applications such as magnetoelectric random access memories, magnetic field
sensors, and energy harvesters. Multiferroic materials on a flexible platform bring an
exciting opportunity for the next generation of consumer electronics owing to their unique
characteristics of wearability, portability, and weight reduction. However, the fabrication of
flexible multiferroic devices is still a great challenge due to various technical difficulties,
including the requirement of high growth temperature of the oxide-based multiferroic
materials, their lattice mismatch with the flexible substrates, and the brittleness of the
functional layers. In this review article, we will discuss different methods of fabricating
flexible or even freestanding oxide films to achieve flexible electronics. This article will
address the benefits and challenges of each synthesis method in terms of interlayer
interactions and growth parameters. Furthermore, the article will include an account of the
possible bending limits of different flexible substrates without degrading the properties of
the functional layer. Finally, we will address the challenges, opportunities, and future
research directions in flexible multiferroics.
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INTRODUCTION

Ferroic materials are defined by the presence of an order parameter (such as, magnetic, electric, or
elastic). Depending on the order parameter, a ferroic material is named ferroelectric (polarization),
ferromagnetic (magnetization), ferroelastic (deformation by applied stress), and multiferroic
(coexistence of more than one order parameter). It is considered that Hans Schmid first
introduced the term “multiferroic” in 1994 [1]. Although the research area of multiferroic is
rather recent, multiferroic materials and the possibility of the intrinsic magnetoelectric behavior of
solid crystals have been first theoretically predicted by Pierre Curie in 1894 based on symmetry
considerations, and the termmagnetoelectric coupling was first coined by Debye in 1926 [2]. In 1959,
for the first time, Dzyaloshinskii investigated a magnetoelectric effect in Cr2O3 [3]. For multiferroic
materials, the applications of a magnetic or electric field allowing tuning or modifying the electric or
magnetic properties, respectively, are considered as magnetoelectric (ME) coupling.

The increasing interest in multiferroics is due to the increased demands toward the development
of new multifunctional materials and electronic devices for advanced applications. In recent years,
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numerous materials with diversified structures have been
investigated for their multiferroic properties. Also, the ferroic
properties of the multiferroic materials prepared in bulk, thin
film, composites, heterostructures, or different nanostructures
have been reported in the literature. Among different types of
materials known for their multiferroic properties, metal oxides
with perovskite structure have been widely investigated. For
example, magnetic and ferroelectric orderings have been
reported in perovskite-type (1-x)Pb(Fe2/3W1/3)O3-xPb(Mg1/
2W1/2)O3 in early investigations [4–6]. Later, several Pb-based
and Bi-based cation ordered and disordered perovskite oxides
showing room temperature multiferroic properties have been
reported [7–9]. Bi-based perovskite oxides have drawn significant
research attention owing to their strong multiferroic behavior.
Among the perovskite-type Bi compounds investigated so far,
BiFeO3 (BFO) is a strong room-temperature multiferroic material
which in the bulk form possesses antiferromagnetic (Neel
temperature TN ∼ 643 K) and ferroelectric properties with a
strong remnant polarization of ∼100 μC/cm2 [10, 11] and
Curie temperature (TC) ∼1,103 K [12]. Besides BFO, several
other multiferroic materials, such as BiMnO3, BiCoO3, and
BiCrO3, have been reported in the literature [13–16].

Besides the direct coupling of the ferroic orders in bulk
multiferroics, elastic strain–mediated magnetoelectric coupling
in thin film heterostructures of diverse ferroic materials has been
investigated [17]. The ME effect in multiferroic materials is
beneficial for designing novel devices such as spintronics
device (e.g., MRAM), magnetic field sensors, memory devices,
and energy harvestors [18–21]. Furthermore, the ME composites,
possessing piezoelectric and magnetostrictive phases, have been
investigated for energy harvesting applications, owing to their
synergistic effect for both types of energy, that is, mechanical and
magnetic. However, in case of thin film multiferroic
heterostructures, the functional properties suffer the clamping
effect imposed by the rigid substrates which attenuates the
coupling of the order parameters. In order to circumvent the
substrate clamping effect, the integration of multiferroic thin
films and heterostructures onto flexible substrates are being
widely explored [18, 22–24]. In particular, for device
application such as the flexible and lightweight energy
harvesters on thin flexible polymeric substrate, tiny motion
can be captured such as wind, heartbeats, water flows, and
respiration movements into electric signals, which can open
the door for self-powered flexible electronic devices [25].

Historically, research on designing flexible electronic materials
and their heterostructures involves various polymeric substrates,
for example, polyimide (PI), polyethylene terephthalate (PET),
and polydimethylsiloxane (PDMS), which offer suitable
mechanical characteristics for various device applications [26,
27]. However, fabrication of flexible thin films and
heterostructures of inorganic ferroic oxides on polymeric
flexible substrates involves several process challenges, such as
insufficient thermal stability of the substrates at the high growth
temperature, required for inorganic oxide layers, their lattice
mismatch, and the very fact that the inorganic oxide layers are
brittle in nature [28]. In order to circumvent the challenges,
various preparation strategies have been developed to combine

inorganic multiferroic oxides and the flexible polymeric
substrates. The techniques include chemical solution
deposition (CSD), transfer process, and laser lift-off (LLO) [22,
29]. Of late, mica has been explored as a viable choice for direct
growth of the inorganic functional layers. The van der Waals
nature of the bond between the functional oxide layers with mica
lifts the complications related to strain originating due to lattice
mismatch [28]. Mica, which belongs to the phyllosilicate family,
exhibits several key advantages, including chemical inertness,
mechanical flexibility, atomically smooth surface, high
transparency, and high thermal stability in ultrathin sheets.
Commonly, two types of mica substrates are used:
fluorophlogopite (F-mica) and muscovite (M-mica). M-mica
has a minimum bending radius of <0.3 mm, when the
thickness is <100 nm. F-mica possesses a bending radius of
<8 mm, when the thickness is approximately 10 µm [30].
Furthermore, muscovite and fluorophlogopite have good
thermal stability with a temperature up to 600°C and 1,000°C,
respectively, which can meet the requirement to grow the
functional thin film for most of the inorganic oxide materials
[31]. In addition, muscovite and fluorophlogopite single crystal
have a layered structure which is advantageous for mechanical
exfoliation [31]. Benefiting from the aforementioned features,
mica is one of the most potent alternative substrates to prepare
flexible inorganic oxide-based multiferroic thin films. van der
Waals epitaxy is a popular approach, in which the epitaxial layer
of functional oxides can be directly grown on the flexible
substrate. The advantages of direct growth with excellent
interface quality applying and enhancing the properties of
perovskite oxides in flexible memories, flexible sensors, and
flexible energy harvesting devices have become an emerging
research hot topic.

In this review, we discuss different transfer processes and
direct growth approaches that have been utilized for fabricating
flexible multiferroics and multiferroic properties on flexible
substrates. Finally, promising future development of flexible
multiferroics is introduced.

METHODS OF FABRICATING FLEXIBLE
MULTIFERROIC FILMS

To date, flexible multiferroic thin films had been prepared mainly
using the laser lift-off (LLO) technique, sacrificial layer–assisted
transfer process, and mechanical exfoliation. In such cases, thin
films of the chosen multiferroic materials had been deposited on
lattice-matched substrates using different growth techniques, for
example, sol-gel, pulsed laser deposition (PLD), and magnetron
sputtering, which was then lifted by using a laser beam to transfer
the multiferroic oxide layer on a flexible substrate [25, 32, 33]. Lee
et al. [33] had reported laser lift-off (LLO) of La-doped Pb(Zr, Ti)
O3 and PLZT thin film spin-coated on the sapphire substrate via
the sol-gel method which was then transferred to polymeric
receptor substrates using a pulsed laser beam. In their work, a
sheet of epoxy-based polymer had been laminated as a receptor
substrate on top of the functional films. Subsequently, LLO was
carried out using a XeCl pulsed laser beam (λ � 308 nm).
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Figure 1A schematically depicts the LLO process. LLO offers the
advantage of fabrication of various high-quality functional layers
on compatible substrates, which are transferred to any kind of
receiver substrates without incurring serious structural damage or
incorporation of impurities [25, 33, 34]. Moreover, LLO lifts the
requirement for any high-temperature heat treatment of the
receiver substrate.

Another approach that has been employed to prepare flexible
multiferroic thin films is the fabrication of the oxide-based
functional thin film on a rigid sacrificial substrate, followed by
transfer onto flexible substrates by etching the sacrificial layer
[35]. The key challenge of this approach is the successful and
undamaged separation of the functional thin films from the
parent substrates. In this strategy, a sacrificial layer is placed
between the functional film and the substrate that is selectively
removable by a chemical etchant retaining the properties of the
thin films. SiO2, MgO, La0.7Sr0.3MnO3 (LSMO), and Sr3Al2O6

(SAO) have been used as sacrificial layers [33, 36–39] for
deposition of multiferroic BFO and CoFe2O4 (CFO) thin films
on mechanically rigid substrates such as SrTiO3 (STO), LaAlO3

(LAO), NdGaO3, and TbScO3. Zhang et al. [29] prepared
freestanding CFO epitaxial thin films by the transfer process
using MgO as a sacrificial layer, where CFO epitaxial thin films
were grown on MgO-buffered (001) STO substrates by the PLD
technique and transferred onto flexible PI substrates. Several
steps have been involved in the transfer process. Polystyrene
(PS) was first spun on top of the as-grown functional film as a
carrier for handling CFO thin films in a subsequent process and
then baked at 100°C for 15 min to increase the adhesion between
CFO thin film and PS. Then the sacrificial layer was chemically
etched in 10% (NH4)2SO4 solution at a temperature of 80°C. The

MgO sacrificial layer was etched out completely, after almost 12 h
of chemical etching. Subsequently, the CFO films were kept on
the top of the STO substrate through van der Waals adhesion
force. After that, the entire specimen was immersed in
chloroform to remove the PS layer. Next, by using a water-
assisted peel-off technique, the CFO thin film was released onto
the surface of water. To mitigate wrinkles and cracks possibly
induced by chemical wetting, the CFO thin films remained on the
water surface for about a few hours for a slow release. Then the
floating film was lifted and transferred onto the flexible PI
substrate. Ji et al. [35] fabricated the freestanding BFO film
with atomic layer thickness by etching the water-soluble SAO
sacrificial layer. Freestanding BFO films were lifted by dissolving
the SAO sacrificial layer in deionized water with mechanical
support from PDMS tape or silicon-coated PET and then
transferred onto the desired substrates. Furthermore, Zhao
et al. [40] prepared freestanding Fe/BaTiO3 (BTO) multiferroic
heterostructures by using the SAO sacrificial layer. Pesquera et al.
[41] reported the fabrication of multiferroic LSMO/0.68Pb(Mg1/
3Nb2/3)O3–0.32PbTiO3 (PMN-PT) heterostructures by the
epitaxial transfer technique using SrRuO3 as a sacrificial layer.
In their work, an elastomer membrane of polydimethylsiloxane
(PDMS) was used to transfer a 45-nm-thick layer of LSMO from
its STO (001) growth substrate to platinized PMN-PT (011)pc,
after dissolving the intervening epitaxial layer of 30-nm-thick
SRO with NaIO4 (aq). The a || [100]pc and b || [010]pc axes of
LSMO that lay parallel to the film edges were approximately
aligned with the x || [100]pc and y || [011]pc axes of PMN-PT that
lay parallel to the edges of the slightly larger substrate. A
schematic diagram for the transfer process is shown in
Figure 1C. The advantage of this process is that prior to the

FIGURE 1 | Schematic diagrams of different strategies for high-quality oxide-based multiferroic thin film fabrication. (A) Laser lift-off process, (B) van der Waals
epitaxy, and (C) transfer printing. Reprinted with permission from Ref. [42]. Copyright 2007 American Chemical Society.
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transferring step, the materials can be doped, deposited, and
annealed at high temperature.

However, the aforementioned techniques are not compatible
for device fabrication owing to several disadvantages. For
example, in the LLO technique, the beam energy of the laser
should be lower than that of the band gap of the substrate material
and higher than that of the functional layer. These stringent
requirements have severely limited the growth of the multiferroic
epitaxial layers on specific substrates. These restrictions prevent
the opportunity to design and integrate new functional materials
for device applications. In addition, themultiferroic thin films can
also be damaged by the etchant used in the sacrificial
layer–assisted transfer process. To circumvent those problems,
direct growth techniques have been proved to be a viable route to
grow the multiferroic thin films directly on flexible substrates.

The solution-based process is a popular direct growth method
to fabricate multiferroic thin films on flexible polymeric
substrates due to their wide range of advantages such as large-
area deposition, easy control of composition, atmospheric
processing, and low equipment cost [22]. Among various
solution-based processes, chemical solution deposition (CSD)
has been widely employed to prepare crystalline functional
thin films. For the first time, Tomczyk et al. [22] fabricated
multiferroic spin-coated BFO thin films directly on the flexible
polyimide substrates at a temperature as low as 300°C by using the
CSD-based seeded photosensitive precursor method. In their
work, the proposed synthesis technique consisted of several
steps. First, photoactive sol was prepared. Second, the
prepared BFO seeds were incorporated into the photoactive
sol, which increased the number of nucleation sites in the
film, helping a further reduction of the crystallization
temperature. Third, the deposition of seeded photoactive sol
on the polyimide substrates and irradiation by a high-intensity
UV excimer lamp took place. Last, the irradiated layer was heat-
treated by rapid thermal processing. The CSD-based method can
be used for the potential integration of multiferroic BFO thin
films with flexible polymeric substrates and may have a wide
impact in terms of the extended use of functional oxide thin films
fabricated with a low thermal budget. However, many challenges
exist for CSD prepared BFO thin films such as unsaturated or
leaky P-E loops at room temperature [43] and small polarization
value or a large coercive field [22].

An improved direct growth technique for minimizing the
substrate constraint was demonstrated by several research
groups by fabricating multiferroic thin films on a flexible
mica substrate via van der Waals epitaxy [23, 44, 45]. As
mentioned earlier, mica is well suited to overcome the
problems associated with the polymeric substrates. van der
Waals (vdW) epitaxy is defined as the growth of a layered
material on another layered substrate (Figure 1B). In vdW
epitaxy, the substrate surface is free from any dangling bond
that allows the formation of interface between the surface and
the overgrown layer with less number of defects. Thus, vdW
heteroepitaxy on muscovite provides an excellent platform to
develop flexible devices based on oxide heteroepitaxy without
strain and substrate clamping. Sun et al. [46] fabricated Au/
BFO/SRO/BTO/F-mica heterostructures using the RF

magnetron sputtering technique. Amrillah et al. [45]
deposited self-assembled multiferroic BFO-CFO
heterojunction on a mica substrate via the PLD technique
where the substrate was heated to 650°C. A CFO interfacial
buffer layer was used and deposited prior to the deposition of
the BFO-CFO heterojunction on mica. This demonstrates that
the fabrication of multiferroic thin films can be achieved on
mica substrates without resorting to substrate-induced
epitaxial strain. The vdW epitaxy not requiring lattice
matching conditions does have the advantage of reducing
the possibility of structural defects created at the interface
to propagate across the film [44, 45]. In vdW epitaxy, the
epitaxial layer can be grown with a lattice mismatch of 60%
between the functional layer and the substrate [47]. Hence, as
an alternative strategy, the prospects of vdW epitaxy are quite
attractive toward the successful growth of multiferroic thin
films on a flexible platform.

MULTIFERROIC PROPERTIES ON
FLEXIBLE SUBSTRATES

In the process of development of flexible multiferroics, the
coupling between ferroic states and mechanical deformation
should be of concern, including magnetostrictive properties,
piezoelectric properties, ferroelectric properties, and
ferromagnetic properties. Tomczyk et al. [22] investigated the
multiferroic behavior of CSD-based BFO thin films on the flexible
polyimide substrate (bending radii, R ∼ 20 mm) which
demonstrated a remanent polarization of 2.8 µC/cm2 with a
coercive field of 380 kV/cm. In addition, the BFO films
exhibited a ferromagnetic response at room temperature. Liu
et al. [48] demonstrated promisingmagnetostriction properties of
the CoFe2O4 (CFO) epitaxial thin films deposited on muscovite
mica. The reported saturation magnetization (Ms) and
magnetostriction coefficient (△λ) of the flexible CFO thin film
is 120–150 emu/cm3 and −104 ppm, respectively. From the
results of this work, it was observed that the hysteresis loops
remained unaltered under different bending conditions.
Furthermore, Feng et al. [49] predicted that the
magnetoelectrical properties strongly improved in the case of
LSMO/BFO superlattice. Zhao et al. [40] demonstrated the
growth of multiferroic Fe/BaTiO3 (BTO) heterostructures by
using the PLD technique, followed by transfer of the Fe/BTO
functional layer on PDMS substrates. The flexible Fe/BTO/PDMS
heterostructures exhibited good ferroelectric and ferromagnetic
behavior with a bending radius of 5 mm. Sun et al. [46]
successfully fabricated high-quality flexible Au/BFO/SRO/BTO/
mica heterostructures using the magnetron sputtering technique.
SRO/BTO double buffer layers lower the lattice
mismatch–induced strain on BFO and enhance the quality of
the epitaxial heterostructures. The prepared BFO-based
heterostructures showed the largest polarization (Ps � 100 µC/
cm2, Pr ∼ 97 µC/cm2), and it was very stable after 104 bending
cycles under a 5-mm bending radius. This study demonstrated
the feasibility of fabricating high-quality BFO films on flexible
mica substrates with excellent ferroelectric properties. However,
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the magnetoelectric coupling strength of the prepared BFO thin
film heterostructure was not revealed.

The clamping effect induced by the rigid substrate has always
been a key factor to weaken the ME coupling. To overcome this
problem, Amrillah et al. [45] synthesized van der Waals epitaxy
self-assembled BFO-CFO bulk heterojunctions on M-mica. The
reason behind this approach was that the bulk heterojunction
interacts with the substrate via weak van der Waals forces
(Figure 2C); the interface was incoherent, and this greatly
mitigated the clamping effect. The ME coupling coefficient
(αME) of the BFO-CFO bulk heterojunctions was attainable up
to 74mV/ (cm.Oe). Furthermore, it was observed that the out-of-
plane (OOP) converse piezoelectric coefficient (d33) value of the
BFO-CFO bulk heterojunction on mica was 76.5 pmV−1, higher
than that on the rigid STO (111) substrate (50 pmV−1) grown
under similar conditions. This reported value is also higher than
d33 in (100)-, (110)-, and (111)-oriented BFO-CFO/STO
heterostructures (50, 40, and 30 pmV−1, respectively) [50]. The
reported results suggested that the improved piezoelectric response
of BFO pillars embedded in the CFO matrix derived from the
release of the substrate constraint. It is substantial to mention that
BFO-CFO heterostructure on a flexible mica substrate exhibited
superior magnetoelectric properties as compared to that on the

rigid substrate. Figure 2D shows the M-H loop under different
bending modes. The magnetic hysteresis loop remained the same
even after bending at a bending radius of 2 mm, indicating that the
ME coupling of this system is resilient against mechanical bending,
which is necessary for the development of the flexible ME
heterostructure thin films in flexible and wearable devices.

SUMMARY AND FUTURE PERSPECTIVES

Arriving at the conclusion of this brief review, it has been
observed that remarkable progress has been made in the last
few years of this emerging hot topic of research. A significant
progress has been achieved in terms of growth techniques and the
properties of multiferroic thin films on the flexible platforms. It is
believed that flexible multiferroic materials have a promising
future in various electronic device applications because of their
rich multifunctional properties and the research achievements
which have been gained by different research groups so far. By
achieving the flexibility of oxides multiferroic films, they can
show great potential in wearable devices. Currently, the main
strategies to the flexibility of high-quality functional oxide films
are LLO and transferring films to flexible substrates via etching

FIGURE 2 | (A) Schematic of deposition process for flexible CFO film monitored by RHEED in real time; (B) the magnetic hysteresis loops show that the flexible
CFO/mica exhibits solid magnetic properties regardless of bending. Reprinted with permission from Ref. [48]. Copyright 2017 American Chemical Society. (C) Crystal
structure of the interface region between the CFO−BFO composite and mica substrate; (D) the M−H loops of BFO−CFO under bending. Reprinted with permission from
Ref. [45]. Copyright 2017 American Chemical Society.
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the sacrificial layer. Nevertheless, as it has been discussed in this
article, there are some limitations and problems in the fabrication
of stable and high-quality flexible multiferroic films through
transfer processes. Recently, van der Waals epitaxy has been
proven to be an alternative route to fabricate the high-quality
flexible multiferroic films. Still, there is plenty of space left to be
improved and investigated for the flexible multiferroic research
domain. The development of multiferroic materials, methods,
and properties and recent emergence of flexible devices motivate
research communities to look forward to the application of
multiferroic-based flexible devices.
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