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Digital holographic imaging can capture a volume of a particle field and reconstruct three-
dimensional (3D) information of the volume from a two-dimensional (2D) hologram.
However, it experiences a DC term, twin-images, defocus images of other particles
and noise induced by the optical system. We propose the use of a U-net model to
extract in-focus particles and encode the in-focus particles as squares at ground truth z.
Meanwhile, zero-order images, twin-images, defocused images of other particle and noise
induced by the optical system are filtered out. The central coordinate of the square
represents the lateral position of the particle, and the side length of the square represents
the particle diameter. The 2D raw-reconstructed images generated from the pre-
processed hologram by utilizing backward Fresnel propagation serve as the input of
the network. A dense block is designed and added to the encoder and decoder of the
traditional U-net model. Each layer takes the inputs from all previous layers and passes the
feature maps to all subsequent layers, thereby facilitating full characterization of the
particles. The results show that the proposed U-net model can extract overlapping
particles along the z-axis well, allowing the detection of dense particles. The use of
that squares characterize particles makes it more convenient to obtain particle parameters.
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INTRODUCTION

The particle fields comprise small objects, such as bubbles, biological cells, droplets. In recent years,
3D imaging has been widely used in particle detection (including shape, location, and motion) across
many scientific domains, such as materials [1], chemical engineering [2–4], biology [5–7], medical
sciences [8–10], and environmental science [11–13]. Digital holography (DH) encodes the 3D
information of objects into a 2D hologram using the interference of the reference wave and object
wave. Owning to only a single hologram can be reconstructed to restore the 3D information of the
objects, DH has emerged as a powerful tool for 3D imaging in recent years. A spherical wave was first
used as reference wave to observe particles distributed in water [14], the lateral position and size of
each particle were gained. Thereafter, a plane wave was used as a reference wave to observe the
bubbles in the air [15]. Conventional reconstruction methods have also been proposed. For example,
the minimum intensity was applied to detect the edges of the bubbles from raw-reconstructed
images. However, the minimum intensity method depends on the threshold setting to distinguish the
particles from the background. Background noise and overlapped particles have serious effects [16].
Various criteria (such as edge sharpness and intensity distribution) [15, 17, 18] were applied to
characterize the focus level of particles. However, these criteria are sensitive to the detailed
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characteristics and noise level in the holograms, limiting their
application in low-concentration particle fields with low
background and cross-interference noise. The deconvolution
method [19, 20] models the observed blur in 3D
reconstruction as the convolution of an object and a point
spread function (PSF). However, the PSF must be based on
the known diffraction formula or obtained through a
hologram of a point-like object in the experiment. The
compressive holography method [21–23] is an effective
reconstruction method to eliminate noise because of
the sparsity of the signal, but it is time-consuming and
requires complicated fine-tuning parameters to obtain optimal
results.

Recently, machine learning using deep neural networks
(DNNs) [24] has been applied to image analysis. First, the
application of deep learning in DH appeared in medical
examination [25–28, 34] as well as in the classification of
particles in holograms [29, 30]. DNNs were also applied to
acquire the depth information of particles [31, 32], and
autofocus is accomplished. Further studies have reported
impressive results using DNNs for phase recovery [25, 33],
phase aberration compensation [34, 35], hologram pixel super-
resolution [36, 37] and digital holographic reconstruction
[38–40]. Shimobaba et al. [41] first used a U-net model [42]
to realize the holographic reconstruction of multiple particles.
Shao et al. [43] proposed a U-net model to reconstruct hologram
with higher-concentration particles. However, the sizes of the
particles were not obtained. Li et al. [44] proposed using a short
U-net with average pooling to extract in-focus particles at ground
truth z and remove zero-order images, twin-images, and the
defocused images of other particles from raw-reconstructed
images; lateral position and the size of particles were obtained.
However, it is complicated to obtain parameters of particles that
are assumed to be circles [45]. Wu et al. [46] proposed the Dense-
U-net and obtained particle information directly from the
hologram and encoded them into a series of rectangles
because it is convenient to identify and calculate the length
and width of the rectangles. However, it is difficult to find
completely overlapped particles along the z-axis from one
single hologram. Inspired by the previous study, we found
that encoding in-focus particles into squares is more
conducive to the extraction of particle parameters.
Simultaneously, to distinguish the particles completely
overlapping along the z-axis, it will be better to train the
neural network by feeding raw-reconstructed images that are
generated from a hologram.

In this study, we propose the use of a U-net network to extract
in-focus particles from raw-reconstructed images and encode
them into a series of squares. The center coordinate of the square
represents the lateral position of the particle, and the side length
of the square represents the diameter of the particle. The rest of
the paper is organized as follows: hologram preparation, U-net
model, and characterization method are introduced in Principles.
In Simulation Results the simulation results are presented.
Experiment results are introduced in Experimental Results. The
discussion is presented in Evaluation and Discussions. Finally, the
conclusions are summarized in Conclusion.

PRINCIPLES

Holography and Fresnel Diffraction
Algorithm
Suppose there are n particles in the particle field in Figure 1A,
each particle pi has a different size and different distance zi away
from the camera. When a plane wave R(x, y) illuminates the
particle field, the Fresnel diffraction [47] of each particle on the
sensor plane is depicted in Eq. 1, and the object wave O(x, y),
which is the coherent superposition of the diffraction fields by all
the particles is shown in Eq. 2. The hologram is recorded on the
sensor plane, which is the interference of R(x, y) and O(x, y). This
process is depicted in Eq. 3.

Oi(x, y, zi) � F−1{exp(jkzi) × F{pi(ξ, η)} × exp

( − jπλzi(f2
x + f2

y))} (1)

O(x, y) � ∑
n

i�1
Oi(x, y, zi) (2)

I(x, y) � ∣∣∣∣O(x, y)
∣∣∣∣2 + ∣∣∣∣R(x, y)

∣∣∣∣2 + O(x, y)Rp(x, y)
+ Op(x, y)R(x, y)

� ∣∣∣∣O(x, y)
∣∣∣∣2 + 1 + O(x, y) + Op(x, y)

(3)

Ifinal(x, y) �
∣∣∣∣O(x, y)

∣∣∣∣2 + O(x, y) + Op(x, y)
� O(x, y) + nse

(4)

O′(x′, y′, zi) �
∣∣∣∣∣F−1{exp( − jkzi)F{Ifinal(x, y)} × exp(jπλzi

(f2
x + f2

y))}
∣∣∣∣∣ (5)

Here (ξ, η), (x, y), (x′, y′), and (fx, fy) represent the particle
(lateral) plane, sensor plane, reconstructed plane, and spatial
frequency domain, respectively. F{·} and F −1{·} denote Fourier
transform and inverse Fourier transform, respectively. I(x, y)
denotes the recorded hologram, andOp(x, y) denotes the complex
conjugate ofO(x, y). The plane wave is assumed to beR(x, y) � 1
in Eq. 3. Therefore, the pre-processed hologram is
Ifinal(x, y) � I(x, y) − 1, as shown in Figure 1B. Moreover
the pre-processed hologram is rewritten in Eq. 4, in which
nse � |O(x, y)|2 + Op(x, y). A raw-reconstructed image
O′(x′, y′, zi) shown in Figure 1C is obtained from the pre-
processed hologram using 42, depicted in Eq. 5, at a certain
ground truth zi. It comprises in-focus images, zero-order images,
conjugate images, and defocus images of other particles [44].
Noted that the original objects are generated using the Mie
scattering model [48].

Particle Characterization Method
Each particle in a particle field is characterized by (x, y, zi, Di),
where (x, y) represents the lateral position, zi denotes the
distance to the sensor plane, and Di is the diameter of the
particle. We propose the use of squares to represent particles.
The central coordinate of the square represents the central
coordinate of the particle, and the side length of the square is
equal to the diameter of the particle. In this study, raw-
reconstructed images with in-focus particles, as shown in
Figure 1C, serve as the input of the model. The areas
encompassed by the red solid line in Figure 1C are in-focus
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particles. Via the special characterization method, the in-focus
particles in Figure 1C are encoded into different squares, which is
shown in Figure 1E. The images with squares shown in Figure 1E
serve as the output of the model. And the U-net model is
described below.

U-Net Model
A U-net model can be regarded as a black box. When many
images are fed into it, the model learn the features of these images
and obtain the mapping function f, which is calculated
automatically through multi-layer network parameters, and is
expressed as Eq. 6.

Y � f(X, θ) (6)

Where X, Y denote the input and output of the network,
respectively, and f denotes the mapping function. θ denotes
the parameters of the model, and it is updated every epoch during
training.

The proposed model, which is shown in Figure 1D, includes
four down-samplings and four up-samplings. A dropout layer is
applied to prevent overfitting. To simplify the training process, a
residual neural network (ResNet) [49] is used to form a dense
block. Each dense block consists of two Conv_Blocks which
contains convolution, batch standardization, and activation
layer. The output of each dense block is connected to the
input of the dense block via a skip connection structure,
which combines the high signal-to-noise ratio and the low
signal-to-noise ratio features of the images for training in the

deeper stages of the network. In this section, the raw-
reconstructed images serve as the input of the U-net model.
The images shown in Figure 1E serve as output of the proposed
model, meanwhile, mean square error is applied as the loss
function of the model.

SIMULATION RESULTS

In the simulation section, we use the same Mie scattering model
[48] to obtain the original particles. 51 holograms with the size of
256 × 256 are generated. A hologram shown in Figure 2A
contains a volume 512 × 512 × 500 μm3. Thirteen transparent
particles with diameter of 20, 30, and 40 μm are randomly
distributed in this volume. The hologram is backward Fresnel
propagated to 5 different distances, including 5,138, 5,238, 5,338,
5,438, and 5,538 μm, respectively, to generate the raw-
reconstructed images. Finally, 255 raw-reconstructed images
corresponding to 51 holograms and 255 ground truth images
are used as the dataset to train the U-net models. Because the
particle field contains multiple transparent particles, we observe
that the raw-reconstructed volume shown in Figure 2B is full of
noise, including the zeros-order images, conjugate images, and
defocused images of the other particles. The U-net model
distinguishes in-focus particles from noisy images.

The hologram in Figure 2A is first used to test the model. The
raw-reconstructed volume comprised five raw-reconstructed
images is shown in Figure 2B. The corresponding predictions

FIGURE 1 | (A) In-line digital holographic experimental setup; (B) pre-processed hologram; (C) raw-reconstructed image at 5,238 μm; (D) the proposed U-net
model; (E) the predicted image of the U-net model corresponding to (C).
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are presented in Figure 2C. We observe that the in-focus
particles are extracted from the noisy images and encoded into
squares, and the noise is filtered out. Hence, we obtain the
coordinates and side lengths of the squares. The coordinates
and the diameters are acquired, and the predicted location of
particles are depicted in Figure 2E. The ground-truth distribution
of the particle field is shown in Figure 2D. Figure 2F is the
combination of ground truth and prediction; the coincidence
of the blue circles and red dots represents the correct prediction,
and the single blue circle represents the unpredicted particle.
Figure 2G also shows a pre-processed hologram comprised of
two overlapped particles along the z-axis, in which the spacing
between the two particles equals the theoretical axial resolution
of DH system (10 mm). The diameter of the particles equals
40 μm. The raw-reconstructed images of Figure 2G are depicted
in Figure 2H. Figure 2I is the corresponding prediction of
Figure 2H. We observe that the overlapped particles are

successfully extracted at ground truth z. The theoretical
axial resolution reaches 100 μm when a 10× microscope
objectives (MO) is used. 75 raw-reconstructed images
corresponding to 15 holograms with the same specifications
but different particle distributions are generated for testing.
The extraction rate of the particle field is 95.8%, and the
lateral positioning error was less than 2 μm. The error of
diameter is less than 4 μm. Simulation results show that the
U-net network is successful in extracting the information of in-
focus particles from the raw-reconstructed images at ground
truth z and encoding them into squares. Zero-order images,
twin-images, and defocused images of other particles are
filtered out simultaneously. When compared with [44], squares
are more conducive to extracting particle parameters than
circles. Compared with [46], this study can easily distinguish
particles with the same lateral position when the depth spacing is
greater than 100 μm.

FIGURE 2 | Simulation result; (A) a pre-processed hologram with multiple particles; (B) the reconstruction of (A) using BFP; (C) prediction of (B) by the U-net
model; (D) ground truth position of the particle field, the blue circles represent ground truth particles; (E) 3D predicted position of the particle field by extracting the
information in (C); (F) Combination of ground truth and prediction; (G) a pre-processed hologram with overlapped particles; (H) raw-reconstructed images of (G); (I)
prediction corresponding to (H).
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EXPERIMENTAL RESULTS

Figure 3 shows the experimental setup, in which the wavelength
of the laser is 632.8 nm, the size of the camera (charge-coupled
device, CCD) is 2456 by 2058, and its pixel pitch is 3.45 μm. A
hologram is generated by capturing a volume of 200 polystyrene
particles per ml distributed in milli-Q water (diameter
� 90 ∼ 110 μm).

In the experiment, the holograms have different features from
the holograms in simulation because they are composed of noise
induced by the optical system (especially the laser). Therefore, a

new model was trained using the dataset obtained in experiment.
We use polystyrene spheres distributed in milli-Q water shown in
Figure 3B to generate the first dataset (Supplementary Material),
60 holograms are obtained. And the second dataset containing 20
holograms is created using the method described below. The
particles are deposited between every two adjacent slides in
three slides, as shown in Figure 4D. The z-axis position of each
slice is similar. Raw-reconstructed images in the dataset are
generated by reversed holograms Irevs(x, y) � 255 − I(x, y) by
utilizing BFP from 42 to 65mm away from the sensor plane, and
the corresponding ground truth images, as shown in Figures 4A,B,

FIGURE 3 | (A) Experimental setup, laser, attenuators, spatial filter, SF; aperture stop, AS; collimating lens, CL; particle field, and CCD; (B) particle field in a cuvette.

FIGURE 4 | Experimental result; (A) captured hologram with multiple particles; (B) the raw-reconstructed image at 52.7 mm; (C) prediction of the U-net model; (D)
particle field of the second dataset; (E) 3D distribution of particle field.
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respectively, are generated by the proposedmethod in [50] through
image segmentation, and the minimum intensity is used as a focus
metric. Noted that the method is not completely stable and
accurate when the noise increases in a hologram which can be
caused by cross interference [43] and oblique slides. Bad data
(i.e., the holograms with severe noise mentioned above) is
manually eliminated in this study. We adopt 120 raw-
reconstructed images (256 × 256) as the inputs in the dataset to
train the U-net for 400 epochs, 20 raw-reconstructed images
among them are from the second dataset which is generated by
adhering particles between every two adjacent slides in three slides.
The test result is carried out when the raw-reconstructed image in
the second dataset, which is shown inFigure 4B, is predicted by the
U-net model. The area encompassed by the turquoise solid lines is
the in-focus particles. The corresponding prediction is shown in
Figure 4C.We observe that the in-focused particles are successfully
extracted and encoded into squares. Lateral position and diameter
of each square are obtained. It is noted that the size of the raw-
reconstructed images for testing is 1024× 1024 pixels, we divide the
big raw-reconstructed image into smaller ones with a size 256 ×
256 to conveniently feed them into the U-net model. Thereafter,
they are stitched together to form the large images. Eventually, the
test images can be rendered as a 3D volume depicted in Figure 4E.

EVALUATION AND DISCUSSIONS

As shown in Figure 4C, the in-focus particles in Figure 4B are
properly restored, and the shapes of all the particles are squares,
we can find squares to locate the lateral position of each particle,
including the center coordinate and the diameter of each
particle. As depicted in Figure 4E, the particle field is
restored successfully. The positioning error is less than
3.45 μm (1 pixel) in the x, y directions, the error of diameter
is less than 6.9 μm (2 pixel). The holograms are reconstructed
when the depth spacing equals 200 μm. We use polystyrene
spheres distributed in the milli-Q water to obtain one dataset,
and we make the second dataset through adhering particles
between every two adjacent slides in three slides because 1) the
particles in the second dataset we make are few and scattered,
which ensures the correctness of the lateral position of particles,
2) The thickness of the slides is known, so the depth spacing is
certain, which is helpful to determine the position of particles
along the z-axis. However, as the number of slides increases, the
captured hologram is of poor quality. This may be primarily
because the slides are not completely perpendicular to the
optical axis of the optical system and noise is induced by the
slides, therefore, we chose the simplest way by using three slides
to divide the particles into two slices. Finally, the simulation and
experimental results show that the proposed method is

promising, and the time to obtain the prediction of a
hologram is less than 96 s, which is much faster than the
conventional iterative optimization methods. The raw-
reconstructed images are trained to match the ground truth
images that in-focus particles are encoded into squares to easily
obtain the information of the particles.

CONCLUSION

In this study, a U-net model is used to extract in-focus particles
from the raw-reconstructed images at ground truth z and encode
them into squares. Zero-order images, twin-images, defocused
images of other particles and noise induced by the optical system
are filtered out simultaneously. The center of the square
represents the center of the particle, and the side length of the
square represents the diameter of the particle. Finally, the
information for each particle is obtained. We used squares
instead of circles to represent particles because the squares are
more convenient to acquire information of particles. The
simulation and experimental results demonstrate that the
proposed model is feasible. Eventually, a 3D particle field is
restored.
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