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The tensile fracture is a widespread feature in rock excavation engineering, such as spalling
around an opened tunnel. The phase field method (PFD) is a non-local theory to effectively
simulate the quasi-brittle fracture of materials, especially for the propagation of a tensile
crack. This work is dedicated to study the tensile failure characteristics of rock-like
materials by the PFD simulation of the Brazilian test of the intact and fissure disk
samples. The numerical results indicate that the tensile strength of the disk sample is
anisotropic due to the influence of pre-existing cracks. The peak load decreases at first and
then increases with the increase of the inclination angle, following the U-shaped trend. The
simulation results also indicate that the wing crack growth is the main failure characteristic.
Moreover, the crack propagation path initiates at the tip of the pre-existing crack when the
inclination angle is less than 60°. Crack propagation initiates near the tip of the pre-existing
crack when the angle is 75°, and it initiates at the middle of the pre-existing crack when the
angle is 90°. Finally, all cracks extend to the loading position and approximately parallel to
the loading direction. This process is in agreement with the Brazilian test of pre-existing
cracks in the laboratory, which can validate the effectiveness of the PFD in simulating the
tensile fracture of rock-like materials. This study can provide a reference for the fracture
mechanism of the surrounding rock in the underground excavation.
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INTRODUCTION

Due to the geological tectonic movement or artificial disturbance, the fracture of engineering rock
mass exhibits a rich variety of crack patterns under loading or unloading conditions [1–3]. Tensile
and compression-shear fractures often occur in practical rock engineering. Because rock-like
materials have the unilateral effect (the tensile strength is much lower than the compression
strength), the tensile fracture is more likely to occur in practical rock engineering. Moreover, the
tensile crack is also found in rock mass under compressive condition due to the effect of its
heterogeneity or pre-existing cracks [4, 5]. For example, rock block spalling appears near a cave wall
after rock excavation [6]. To avoid the occurrence of engineering disasters, corresponding solution
should be developed by numerical simulation in advance. It is therefore very important to develop a
numerical method to accurately capture the crack propagation of the surrounding rock.

Rock fracture failure behaviors can be understood bymeans of on-site monitoring, laboratory test,
theoretical analysis, and numerical simulation. Up to now, the mechanics of rock materials can be
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summarized as strain hardening/softening [7], brittle-ductile
transition [8], time-dependent [9], unilateral effect [10],
anisotropic behaviors [11], etc. The fracture mechanism of
rock has been understood qualitatively and quantitatively by
experimental and theoretical methods. The analysis results are
limited to a simple configuration or simple stress paths. However,
the failure pattern and crack propagation are also affected by the
geometry of the engineering problem. The failure characteristics
will become more complex. For example, the localization damage
and discontinuous deformation failure are often found in rock
engineering [12]. The description of these non-linear behaviors
needs to improve the existing models, which result in the
difficulty in the theoretical analysis and the complexity of
model formulation. Moreover, there is a difference between
the analytical results and test data due to a simple assumption
of uniform stress around cracks [13]. Therefore, it is difficult to
satisfy the practical demand only from the aspects of
experimental or theoretical analysis. As with the development
of numerical methods, the fracture problem of rock-like materials
may be described by combining a non-local numerical method
(such as, phase field (PF)) and a simple constitutive model.

The phase field method (PFD) is a non-local theory and can
capture the crack initiation, propagation, and coalescence of
quasi-brittle materials [14, 15], especially for the tension brittle
fracture. The discontinuous deformation near cracks can be
represented by a phase field variable. Propagation and
branching of cracks can be reflected directly in the phase
field modeling. The hybrid PFD is further proposed by
decomposing the contributions of the driving energy of
phase field evolution into tensile and compressive parts
[16–18]. So far, PFD has been successfully applied in the
simulation of quasi-brittle fracture of materials [15, 19, and 20]
and multi-field coupling problems [21, 22]. Compared with the
direct approaches for modeling crack propagation, the PFD has the
following advantages: without an enrichment function, crack
tracking algorithm, and ad hoc criterion for crack initiation.

The purpose of this work was to further promote the
application of the PFD in rock mechanics. First, a brief
literature overview of mechanical characteristics of rock-like
materials and the background of phase field development is
given in the introduction. Second, the theoretical framework
about the PFD and its anisotropic formulation are introduced
to describe the brittle fracture. Then, the finite element
discretization of the PFD is derived in Section 3. The
Brazilian disk test samples with intact or pre-existing cracks
are numerically simulated by the PFD, which is further
validated by comparing it with the laboratory Brazilian
splitting test results. Finally, some conclusions and further
research on the PFD are given at the end of this work.

PHASE FIELD METHOD (PFD)

Theoretical Foundation Description
The rock-like material failure is the result of crack initiation
and propagation. How to accurately predict the crack growth

path of engineering materials has always been the focus of
scholars. The PFD is an attractive theory to represent
discontinuous characteristics near the crack tip by a phase
field variable. An elastic body Ω ⊂ Rndim (ndim ∈ {1, 2, 3}) is
shown in Figure 1. The body boundaries contain an external
boundary zΩ and an internal discontinuous boundary Γ
within the material. The displacement (Dirichlet)
boundary zΩu and the traction (Neumann) boundary zΩt

constitute the external boundary, that is, zΩu ∩ zΩt � zΩ. n is
the outward unit vector normal to boundary zΩ. The crack
width is abstractly represented by the regularization
parameter ℓ0, which is used as a width scale of the crack
in the numerical simulation. The body force b is applied
throughout the body, and the traction force t acts on zΩt. The
sharp discontinuous field is represented by a phase field
variable ϕ, which changes from 0 to 1. The material
element is fully fractured when ϕ equals to 1, whereas the
material element is undamaged when ϕ equals to 0.

According to the first law of thermodynamics, the brittle
fracture of the material is the result of the system from a non-
equilibrium state to equilibrium state, with the energy
conversion from the elastic storage energy to the
dissipation energy [23]. Moreover, the energy release
always drives the total energy to minimize based on the
theorem of minimum potential energy. The crack begins to
initiate and propagates when the storage energy exceeds the
material resistance. The fracture process can be described by
adding an auxiliary field according to the variational
approach [24]. The total potential energy Ψ(ϕ, u) of the
system consists of two parts: internal potential energy
Ψ int(ϕ, u) and external energy Ψext(u), namely,

Ψ(ϕ, u) � Ψ int(ϕ, u) + Ψ ext(u) , (1)

where Ψ int can be expressed as the sum of the free energy and
fracture energy in Eq.2.a, and Ψext is formulated by the body
force b and the boundary force t, presented in Eq.2.b.

FIGURE 1 | Schematic diagram of diffusion characterization by the
phase field.
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Ψ int(ϕ, u) � ∫
Ω

ψ(ε)dΩ+ ∫
Ω

Gcc(ϕ,∇ϕ) dΩ , (2.a)

Ψext(u) � ∫
Ω

b · udΩ+ ∫
zΩ

t · u dzΩ , (2.b)

where ψ(ε) is the strain energy density, c(ϕ,∇ϕ) represents the crack
surface density per unit volume, and Gc is the critical fracture energy
density. ψ(ε) needs to further consider the degradation of phase field
in fracture modeling. And it can be defined by ψ(ε) � g(d)ψ0(ε).
Similar to the previous published literature [25], themost used formof
g(d) is taken as the following formulation.

g(d) � [(1 − ϕ)2 + κ] , (3)

where parameter κ is selected as a small value to ensure the
numerical stability.

The elastic strain energy ψ0(ε) of an undamaged material is
given by the volumetric–deviatoric decomposition.

ψ0(ε) �
1
2
λ[tr(ε)]2 + με2 , (4)

where λ and μ are Lamé coefficients, expressed as λ � E]
(1+])(1−2υ)

and μ � E
2(1+υ).

And the stress tensor of the bulk matrix can be deduced by

σ � zψ0(ε)
zε

� λ(trε) + 2με . (5)

As same as the published literatures [19, 26], the crack surface
density per unit volume c(ϕ,∇ϕ) is defined as

c(ϕ,∇ϕ) � 1
2ℓ0

ϕ2 + ℓ0

2
(∇ϕ)2 . (6)

The crack propagation is a process to minimize the total
energy functional. The extreme condition can be determined
by the variational principle. The differential form of the total
energy with respect to displacement u, phase field ϕ, and its
gradient ∇ϕ can be expressed as

δΨ(ϕ, u) � zΨ(ϕ, u)
zϕ

δϕ + zΨ(ϕ, u)
zu

δu + zΨ(ϕ, u)
z∇ϕ

δ∇ϕ � 0 .

(7)

Eq. (7) is satisfied for any increments such as δϕ, δu, and δ∇ϕ.
The governing equations and boundary conditions are derived by
substituting Eq. (1), (2), and (4) into Eq. (7).

The governing equations are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2(1 − ϕ)ψ(ε) − Gcℓ0Δϕ + Gc

ℓ0
ϕ � 0 inΩ

divσ + b � 0 inΩ

, (8)

And the boundary conditions are as follows

⎧⎪⎨⎪⎩
u � �u on zΩu

n · σ − t � 0 on zΩt

∇ϕ · n � 0 on zΩ
(9)

where the first equation in Eq. (9) is also called the Dirichlet
(displacement) boundary condition and the last two equations are
called the Neumann boundary condition.

Given the irreversibility of cracks growth, a history-field
H(x, t) is adopted for driving the crack propagation and
ensuring the monotonical accumulation of the phase field
variable.

H(x, t) � max
t∈[0,t]

φ(ε) . (10)

Anisotropic Formulation of PFM
Due to the unilateral effect of rock-like materials, the mechanical
properties of material deterioration are only restricted in the
tensile condition in this work. The formulation of the strain
energy function ψ(ε) requires to be written as the tension and
compression parts, namely.

ψ(ε) � g(d)φ+(ε) + φ−(ε) , (11)

where the tensile part and the compression part of ψ(ε) are
further expressed as

φ+(ε) � 1
2
λ〈tr(ε 〉) 2

+ + μtr(ε2+) , (12.a)

φ−(ε) � 1
2
λ〈tr(ε 〉) 2

− + μtr(ε2−) , (12.b)

where the bracket (·+) represents the positive value and (·−)
represents the negative value.

Therefore, the stress tensor can be divided into two parts as
seen in.

σ � g(d)σ+(ε) + σ−(ε) , (13)

where the constitutive relation of the bulk matrix is further
expressed by the volumetric–deviatoric decomposition in the
tensile and compression states.

σ+ � zψ(ε)
zε+

� λ〈trε〉+I + 2μ(ε)+ , (14.a)

σ− � zψ(ε)
zε−

� λ〈trε〉−I + 2μ(ε)− . (14.b)

Eq. (10) can prevent crack propagation healing. However, the
same formulation of the strain energy density is not obviously
suitable for various crack modes. In order to capture the tension
and shear crack modes, a modified phase field model is proposed
by distinguishing the critical release rates for these two crack
modes [17]. The phase field governing equation can be
rearranged as

−2(1 − ϕ)(Ht

GI
c

+ Hs

GII
c

) − ℓ0Δϕ + 1
ℓ0
ϕ � 0 , (15)

where GI
c is the critical energy release rate for mode I fracture and

GII
c is the critical energy rate for mode II fracture. Ht and Hs are

the history-field variable contributing to tension mode I and
shear mode II, respectively. H consists of Ht and Hs, taking the
following definitions.
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Ht � max
t∈[0,t]

{1
2
λ〈tr(ε)〉2+} , (16.a)

Hs � max
t∈[0,t]

{μ(ε+)2} (16.b)

Notably, the anisotropic phase field can be returned back to the
isotropic phasefield inEq. (8)when the conditionGI

c � GII
c is satisfied.

FE IMPLEMENTATION OF THE PHASE
FIELD MODEL

The PFD has been successfully solved by the finite element method
(FEM) [15], material point method (MPM) [27], and numerical
manifold method (NMM) [28]. Because the FEM is widely adopted
to simulate in geotechnical engineering, the numerical implementation
of the PFM is briefly introduced in the standard FEM in this work. The
small deformation assumption is assumed. The strain tensor ε can be
defined in terms of the gradient of displacement u.

ε � 1
2
(∇u + ∇uT) , (17)

The displacement field and the phase field are approximately
discretized by the test function and nodal variables, as follows:

u � Nu
I û, ϕ � Nϕ

I ϕ̂ , (18)

where Nu
I and Nϕ

I are, respectively, the shape functions for
displacement field and phase field, and û and ϕ̂ are the
displacement vector and the phase field vector of element
nodes, respectively. The strain tensor and the phase field
gradient ∇ϕ can be expressed as

ε � Bu
I û, ∇ϕ � Bϕ

I ϕ̂ , (20)

The matrix forms of Nu
I , Nϕ

I , Bu
I , and Bϕ

I in the two-
dimensional space can be expanded as

Nu
I � [ N1 0 . . . Nn 0

0 N1 . . . 0 Nn
], Nϕ

I � [N1 N2 . . . Nn ] ,
(21.a)

Bu
I � ⎡⎢⎢⎢⎢⎢⎣N1,x 0 . . . Nn,x 0

0 N1,y . . . 0 Nn,y

N1,y N1,x . . . Nn,y Nn,x

⎤⎥⎥⎥⎥⎥⎦, Bϕ
I

� [ N1,x N2,x . . . Nn,x

N1,y N2,y . . . Nn,y
], (21.b)

where x and y are coordinate variables, and n is the number of
element nodes.

The brittle fracture modeling of the PFD is transformed to a
multi-field problem (displacement field and phase field). By the
extremum condition in Eq. (7), the residual vectors corresponding
to u and ϕ can be derived in Eq. (22) and (23), respectively.

Ru
I �

δΨ

δu
� ∫

Ω

[(1 − ϕ)2 + κ](Bu
I )Tσ dΩ−

∫
Ω

(Nu
I )TbdzΩ − ∫

zΩ

(Nu
I )Th d zΩ,

(22)

Rϕ
I � δΨ

δϕ
� ∫

Ω

ℓ0(Bϕ
I )T∇ϕ + ∫

Ω

[ 1
ℓ0

+ 2(Ht

GI
c

+ Hs

GII
c

)]Nϕ
I ϕdΩ

−2 ∫
Ω

Nϕ
I(Ht

GI
c

+ Hs

GII
c

)dΩ, (23)

The above equations can also be given by the weak form of the
governing equations. Then the staggered algorithm is widely
applied for an alternate updating the displacement increment
δu and of phase field increment δϕ during the phase field
modeling. That is, the following equation system is iteratively
solved by the Newton–Raphson method.

[Kuu
ij 0

0 Kϕϕ
ij

]{ δu
δϕ

} � −{Ru
I

Rϕ
I

} , (24)

where

Kuu
ij � zRu

I

zuj
� ∫

V

[(1 − ϕ)2 + κ](Bu
I,i)TCBu

I,jdV , (25.a)

Kϕϕ
ij � zRϕ

I

zϕj

� ∫
V

ℓ0(Bϕ
I,i)TBϕ

I,j + [ 1
ℓ0

+ 2(Ht

GI
c

+ Hs

GII
c

)]Nϕ
I,iN

ϕ
I,jdV .

(25.b)

NUMERICAL SIMULATION AND ANALYSIS

In order to avoid the disturbance damage caused by sample
preparation, the tensile fracture is usually studied by an indirect
test (such as Brazilian splitting test) in the laboratory. The tensile
fracture of rock-like materials is first simulated by the PFD
modeling of the Brazilian test of the intact sample. And then,
the numerical modeling is further applied in simulating the
Brazilian test of the disk sample with a single inclination
crack. The anisotropic tensile fracture of rock-like materials is
analyzed and compared with the test results. This section will
study the tensile fracture of rock-like materials by PHDmodeling.
The plane strain condition is taken for all numerical tests.

PFD Simulation of Intact Disk Sample
In order to study tensile behaviors of rock-like materials, disk
samples were prepared from Portland pozzolana cement (PPC),
fine sands, and water [29]. The test results indicate that the
tension strength of the intact rock-like material sample is 3.81
MPa, Young’s modulus is 15 GPa, and the Poisson’s ratio is 0.21.
The above mechanical indices will be regarded as the basis of
determination of model parameters in the following PFD
simulation. The test structure consists of two rigid jaws and a
disk sample with a radius of 50 mm. In the process of numerical
simulation, the sample thickness is taken as 1 mm. The critical
fracture energy can be approximately estimated as 1.1 J/m2 to
match the tensile strength of the material in the test. Because the
shear energy is much more than the tensile energy, the
relationship between the two is set as GII

c � 10GI
c, as the same
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with the previous literature [17]. Therefore,GI
c is 0.1 J/m

2 andGII
c

is 1 J/m2.
The displacement-controlled mode is applied with the edge

of the top jaw in Figure 2. And the loading rate is
1.0 × 10−3 mm/step. To facilitate the numerical convergence
of this problem, the top and bottom nodes of the disk
sample are constrained in the horizontal direction. The
structure is discretized into 81,960 mixed triangle and
quadrilateral elements. The minimum mesh size is 0.25 mm
at axisymmetric lines of the sample. The length scale
parameter ℓ0 affects the structure bearing capacity and
crack width. In order to ensure that the simulation
strength and test tensile strength are consistent, ℓ0 is taken
as 0.5 mm about twice the minimum size by repeated
calculation in this work. In particular, ℓ0 does not
represent the actual crack width because of the smooth
processing of the crack domain. The parameter κ � 1.0 ×
10−7 is taken to avoid numerical singularity.

The PFD simulation results of the Brazilian test of intact
disk samples are presented in Figure 3. The obvious force
drop is found in the force–displacement curves of fissure
rocks with various inclined cracks. The peak load is
0.598 KN, and the tensile strength can be calculated as
3.807 MPa, which is consistent with the tensile results in
the laboratory. The crack path is middle in the sample and is
parallel to the loading direction. This phenomenon is also
the same with the failure mode in the test. Therefore, the
effectiveness of the PFD simulation of Brazilian splitting is
verified.

PFD Simulation of Fissure Disk Sample
The anisotropic tensile strength is further studied by the PFD
modeling of Brazilian disk samples with various inclination
cracks. The fissure samples are performed by inserting one
crack in the intact disk. The inclination angle θ is between the
length direction of the crack and the vertical direction of the

FIGURE 2 | 2D Brazilian test sample and boundary constraint.

FIGURE 3 | PFD simulation of Brazilian splitting mechanical responses of the intact sample.
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sample, ranging for 0 to 90 with an increment of 15, as shown in
Figure 4. The length and width of cracks are, respectively, L �
30 mm and H � 1 mm. The PFD simulation of the Brazilian test
of the fissure sample is performed by taking the same model
parameters in Section 3.

The force–displacement curves are plotted in Figure 5. The
results show that the peak load decreases at first and then
increases with the increasing inclination angle. The maximum
peak load appears at 0°, and the minimum value is at 45°.
Therefore, the pre-existing crack causes the anisotropy of
tensile strength. In order to represent the anisotropic degree of
the tensile strength, a strength ratio is defined by the ratio of peak
load between the Brazilian test of the fissure sample and intact

FIGURE 5 | Force–displacement curves of the disk sample with different
pre-existing cracks.

FIGURE 6 | Ratio of loads of disk samples with different inclination
angles to intact samples.

FIGURE 7 | Comparison between the PFD simulation and Brazilian test
of disk samples with different inclination angles (test sample failure can be
referred to [29]).

FIGURE 4 | 2D Brazilian test of the pre-cracked sample.
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sample. The strength ratio changing with the inclination angle is
plotted in Figure 6. The changing trend follows the U-shaped
distribution, which is also found in the compression test of
jointed or bedded rock mass [11, 30].

Based on the Brazilian tests of the disk sample with various
inclination angles for a single crack [29], the failure modes
between the PFD simulation and test are compared in
Figure 7. The result indicates that the final crack path in the
numerical simulation process is consistent with the test results.
The wing crack is only found in the Brazilian test and the phase
field simulation of the pre-existing crack sample. Crack
propagation initiates at the crack tip when the inclination
angle changes from 0° to 60°. Crack propagation initiates near
the crack tip when the angle is 75°, and it initiates at the middle of
the crack when the angle is 90°. And then all cracks grow to the
loading position and coalesce to form a penetrating crack. Its
growth path is curvilinear when the crack angle is at 15°, 30°, 45°,
60°, and 75°, while the path is a straight line, parallel to the loading
direction at 0° and 90°. It should be noted that the final crack path
is parallel to the loading direction regardless of the crack angle.
This is also the main feature of the wing crack development.

CONCLUSION

The tensile failure behaviors of rock-like materials are studied
by the PFD simulation of the Brazilian disk test in this work.
The anisotropy tensile fracture is considered by a single crack
with various inclination angles in the anisotropic PFD
simulation. The simulation results indicate that the peak
load is weakened due to the influence of pre-existing cracks.
And the changing of peak load with the inclination angle
follows a U-shaped trend. The wing crack in the Brazilian
test can be reproduced by the PFD simulation. The crack

propagation path is affected by the pre-existing crack. Crack
propagation initiates at the crack tip when the inclination
angle changes from 0 to 60. Crack propagation initiates near
the crack tip when the angle is 75, and crack propagation
initiates at the middle of the crack when the angle is 90°.
Finally, all cracks grow to the loading position and coalesce to
form a penetrating crack. The PFD can better simulate the
tensile failure of rock-like materials. More attention will be
performed on the PFD simulation on compression-shear
failure of rock-like materials in the future.
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