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Coherence in a light beam has the potential to serve as a degree of freedom for
manipulating the beam. In this work, the self-focusing property of a partially coherent
beam with a non-uniform correlation structure propagating in a non-linear medium is
investigated. The analysis of the evolution of beam width reveals that the coherence
structure plays a vital role in the self-focusing formation. A threshold condition for the
coherence radius is proposed for the first time, and the relation of self-focusing length and
initial coherence radius is studied numerically and analytically. It is shown that a feasible
approach for manipulating the self-focusing length by adjusting the initial coherence radius
is achieved.

Keywords: partially coherent beam, non-uniform correlation structure, optical coherence, coherence radius, self-
focusing length

INTRODUCTION

Spatial coherence is a crucial intrinsic characteristic of light. Optical coherence is now the subject of a
well-developed theory [1]; the laser beam with decreased spatial coherence has been analyzed in
depth, and it has been labeled as the partially coherent beam (PCB) [2]. By adjusting the spatial
coherence of PCBs, novel properties can be exhibited that play a significant role in the light–matter
interaction and have attracted the attention of researchers [1, 3]. In the past few decades, intense
interest has been focused on the design of different types of PCBs and the interaction between PCBs
and various media. To date, many PCBs with uniform or non-uniform correlation structures have
been introduced [4], and their propagation properties in turbulence and uniaxial crystal media have
been studied [5, 6]. Although these works have been extensive and might seem to be complete, the
investigations have not exhausted all possibilities. The non-linear effect can significantly affect the
essence of PCB propagation; in practical terms, the Kerr effect strongly exists when an intense laser
beam is present in non-linear media.

There are several approaches to describe the propagation of PCBs in a non-linear medium, for
example, the coherent density approach [7], multimode decomposition [8], the geometric optics
approach [9], and the mutual coherence function [1]. At present, the Gaussian–Schell source model
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(GSM) of a partially coherent beam propagating in a non-linear
medium is frequently used [10–14]. With a spatially variant
correlation function proposed by Gori et al. [15], PCBs with a
non-uniform correlation structure not only exhibit self-focusing
and self-shifting properties [16–19] but also produce lower
scintillation in turbulence [20, 21] than that of GSM beams.
The self-focusing property of non-uniformly correlated PCBs
(NUC-PCBs) may spark extensive interest owing to their wide
application in many fields, such as laser filamentation [10],
lightening control [22], high-power atmospheric propagation
[23], optical micromanipulation [24], optical communications
[25], and optical coherence encryption [26]. Thus, the
investigation of the self-focusing property of NUC-PCBs has
potential application prospects.

Spatial coherence is regarded as a significant element of a laser
beam, and it is vital to achieve the manipulation of self-focusing
domain, especially for the control of filamentation one. Until
now, the well-known methods for controlling the filamentation
domain are as follows: modulating the laser pulse power [27],
adjusting the divergence angle of initial laser [28], launching
negatively chirped ultrashort pulses [29], and double-lens setup
[23]. It is worth mentioning that the input peak intensity is the
easiest quantity to change and control precisely [30]; however, the
laser power is still limited in the practical scene. If the spatial
coherence can be used to control the self-focusing length, it may
provide an alternative route to realize the manipulation of
filamentation domain. It not only fills in the gap of spatial
coherence to control the length of self-focusing but also
proposes a feasible solution to obtain the long-range filament
propagation. Therefore, it is time to explore an avenue for
achieving the manipulation of self-focusing length by adjusting
the coherence.

In this work, the self-focusing property of an NUC-PCB
propagating in a non-linear medium is investigated.
Combining with the non-linear Schrödinger (NLS) equation
and mutual coherence function, an analytical expression for
beam width is derived. By analyzing the evolution of beam
width, the result illustrates that the coherence structure is a
key element for self-focusing formation. Furthermore, with the
first proposal of the threshold condition of coherence radius, the
analytical formula of self-focusing length is obtained. More
importantly, it is found that a feasible approach for
manipulating the self-focusing length by adjusting the initial
coherence radius is realized. These new findings may provide
a theoretical and numerical basis in optical communication,
optical encryption, optical micro-fabrication, and related areas.

THEORY

The propagation dynamics of laser beams in a Kerr medium is
described by the NLS equation. Under the slowly varying
amplitude approximation, the NLS equation for a two-
dimensional quasi-monochromatic partially coherent beam
is [10]

i
zE
zz

+ β

2
∇2E + n2k

n0
〈EEp〉E � 0, (1)

where E � E(r, z) is the amplitude of the electric field, β is the
diffraction or second-order dispersion coefficient, ∇2 � z2/zx2 +
z2/zy2 is the transverse Laplacian, n0 (n2) is the linear (non-
linear) refractive index, k � 2π/λ is the wavenumber related to the
wavelength, 〈•〉 denotes the statistical ensemble average, and p is
the conjugation operator.

Using a PCB as the laser source, Eq. 1 is unable to correctly
describe the propagation evolution in a non-linear medium.
Spatial coherence refers to the correlation of complex fields at
the same time but at different transverse points r1 and r2. To
clarify and emphasize the influence of spatial coherence, the
temporal coherence will not be involved here. If Eq. 1 is applied to
E(r1, z) and multiplied through by Ep(r2, z), followed by
subtracting a similar expression, which is the equation applied
to Ep(r2, z) and multiplied through by E(r1, z), and the statistical
ensemble averaging the resulting expression [10, 12], one obtains

i
z〈E(r1)Ep(r2)〉

zz
+ β

2
(∇2

1 − ∇2
2)〈E(r1)Ep(r2)〉

+ n2k

n0
[|E(r2)|2 − |E(r1)|2]〈E(r1)Ep(r2)〉 � 0.

(2)

Mutual coherence function,
i.e., W(ri, rj) � 〈E(ri)Ep(rj)〉 (i, j � 1, 2), is a common
method to solve PCBs in propagation media [1, 31–34].
Equation 2 can be converted to [10, 12–14]

i
zW(r1, r2)

zz
+ β

2
(∇2

1 − ∇2
2)W(r1, r2)

+ n2k

n0
[W(r2, r2) −W(r1, r1)]W(r1, r2) � 0.

(3)

Considering the PCB with non-uniform correlation function,
i.e., assuming Gaussian weight and kernel functions in the spatial
domain, the mutual coherence function at the source plane is
[17, 18]

W(r1, r2, 0) � exp[ − (r21 + r22)/2w2
0]

× exp{ − [(r2 − r0)2 − (r1 − r0)2]2/σ4
0}, (4)

with the initial coherence radius σ0 and the maximum intensity
being in the region centered at r0.

By setting u � (r1 + r2)/2 and v � r1 − r2 in Eq. 4, we obtain
from Eq. 3

{ z

zz
− iβ∇u∇v + 2in2kuv

n0w2
0

}W(u, v, z) � 0, (5)

where

W(u, v, z) � Iz exp( − u2/w2
z − v2/w2

z − 4u2v2/σ2z + iuvφz).
Inserting initial conditions (beam width wz�0 � w0,

coherence radius σz�0 � σ0, phase φz�0 � 0, and intensity
Iz�0 � 1) into Eq. 5, a set of coupled equations for these
quantities is obtained:
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dwz

dz
� βφzwz, (6)

dσz
dz

� βφzσz, (7)

dφz

dz
� β/w4

z − βφ2
z − 16β/σ4z − 2n2k/n0w

2
z, (8)

dIz
dz

� −βφzIz. (9)

Combining Eqs. 6, 8, the dynamics of beam width of an NUC-
PCB is

d2wz

dz2
� β2(1 − c2)

w3
z

− 2βn2k
n0wz

, (10)

with the boundary condition (dwz/dz)|z�0 � 0; Equation 10 can
then be formulated as

(dwz

dz
)2

+ β2(1 − c2)( 1
w2

z

− 1
w2

0

) + 4βn2k
n0

ln(wz

w0
) � 0. (11)

To ensure the NUC-PCB with a minimum beam width
(without collapse), the first and second derivatives of beam
width should satisfy the following requirements: dwz/dz � 0
and d2wz/dz2 > 0, i.e.,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β2(1 − c2)( 1

w2
z

− 1

w2
0

) + 4βn2k
n0

ln(wz

w0
) � 0,

β2(1 − c2)
2w2

0

− βn2k

n0
> 0.

(12)

Based on Eq. 12, the critical coherence radius for the
formation of self-focusing is given by

1
σ4
cr

� 1
16w4

0

− n2k

8βn0w2
0

. (13)

Here, the initial coherence radius should be considered as σ0 < σcr.
With boundary conditions wz�0 � w0 and (dwz/dz)|z�0 � 0,

an analytical expression for beam width is obtained:

w2
z � w2

0 +
β2(1 − c2)z2

w2
0

− 2βn2k(1 + 2α)z2
n0

. (14)

Physically, the evolution of beam width is determined
by a competition for two main factors: 1) spreading
induced by free-space diffraction and 2) self-focusing caused
by the non-uniform correlation structure and non-linearity
of the medium. Here, the parameters are recorded as
c � 4w2

0/σ
2
0 � 4w2

z/σ
2
z, α � ln(σz/σ0), and the focusing case

with n2 > 0 is considered.
When the critical coherence radius is satisfied, the self-

focusing length can be expressed as

zf � (σ2
0/σ

2
cr − 1)�������������������������������������

β2(1 − c2)/w4
0 − 2βn2k[1 + 2 ln(σ0/σcr)]/n0w2

0

√ , (15)

where a variable substitution is used, due to the common range of
variables σz/σ0 ∈ (0, 1] and σ0/σcr ∈ (0, 1].

NUMERICAL CALCULATIONS AND
ANALYSIS

Using the fast Fourier transform split-stepmethod [35], the initial
parameters are chosen as follows: wavelength λ � 0.8 µm, initial
beam width w0 � 0.8 mm, Rayleigh length for PCBs
zR � kw0σ0/2[12], coefficient β � 1/n0k, propagation length
z � 0.6zR, linear refractive index of the medium n0 � 1,
transverse size 20w0, grid number N � 512, and step number
M � 2000.

The self-focusing length for the NUC-PCB in the linear and
non-linear media is investigated numerically, where the non-
linear refractive index is n2 � 3 × 10−21 m2/W, the critical
coherence radius for self-focusing is satisfied with σcr � 2w0,
and the initial coherence radius is σ0 � 0.25σcr. Due to the
existence of non-linearity, the self-focusing length in a linear
medium (Figure 1A, i.e., z � 0.1056zR) is shorter than that in a
non-linear medium (Figure 1B, i.e., z � 0.1935zR), and the peak
intensity for the linear case is lower than that of the non-linear
one (Figure 1D). It shows that the property of propagation
medium can affect the self-focusing length, and in a medium
with n2 > 0, that length can be extended. Besides, the propagation
property for the GSM is mentioned; there is no self-focusing
phenomenon seen in Figure 1C because the peak intensity is
located at the source plane (blue curve in Figure 1D). It may be
predicted that the non-uniform coherence structure plays a vital
role in the formation of self-focusing.

For the analytical expression of beam width (i.e., Eq. 14), it is
obvious that the propagation dynamics are determined by a
balance of three elements, i.e., diffraction (or dispersion),
coherence structure of beam, and property of propagation
medium. Similarly, the beam width for the GSM beam is
derived as w2

G � w2
0 + β2(1 + c)z2/w2

0 − 2βn2k(1 + 2α)z2/n0.
The critical coherence radius is 1/σ2G � n2k/2n0β − 1/4w2

0,
which shows that there is no real root in the GSM case,
i.e., there is no beam focusing. For the same non-linear
refractive index, the GSM beam spreads (magenta curve in
Figure 2), while the NUC-PCB is focused (green curve in
Figure 2). For NUC-PCBs, a higher non-linear refractive
index causes a more obvious beam focusing (red curve in
Figure 2). It illustrates that the formation of self-focusing is
more affected by the non-uniform correlation structure than by
the non-linearity of the medium. The numerical and analytical
analysis indicates that the coherence structure is the core element
for the self-focusing formation. Besides, with the initial coherence
radius increased, the beam spreading of GSM becomes
significant, and the self-focusing effect for NUC-PCBs is
gradually reduced.

Based on the analysis of the beam width’s dependence on the
coherence structure, it appears that the initial coherence radius
can be regarded as a degree of freedom for manipulating the self-
focusing length. To verify this hypothesis, the numerical and
analytical methods were successively used. In the numerical
calculation, the initial coherence radii are selected as follows:
σ0 � 0.2σcr, 0.4σcr, 0.6σcr, and 0.8σcr; the non-linear refractive
index is n2 � 3 × 10−23 m2/W. Figure 3 shows that the
corresponding self-focusing lengths are approximately 0.085zR,
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0.1596zR, 0.2052zR, and 0.2064zR, respectively. With the aid of
numerical results, the initial coherence radius can change the self-
focusing length to some extent, but the specific relation is not
clarified. Therefore, the analytical relation of the self-focusing
length and initial coherence radius was studied. Based on Eq. 15,
the relative self-focusing length zf/zR is investigated. It is shown

that the dependence of the relative self-focusing length on the
initial coherence radius is not monotonic, and the maximum of
the relative self-focusing length is located at σ0 � 0.71σcr. It is
found that the relative self-focusing length can be continuously
controlled by varying the initial coherence radius; thus, the
conclusion that the initial coherence radius may be regarded
as a degree of freedom for manipulating the self-focusing length is
established. In addition, by amodestly sized change in parameters
such as the initial beam width and wavelength, the self-focusing
length may be tunable in the range from microns to kilometers,
and it is even possible to realize controllability from the micro to
macro domains. It is worth mentioning that the correctness of the
analytical expression is verified by comparing numerical and
analytical results, and the results show that two methods have a
good agreement with each other, as shown in Figure 4
(i.e., magenta dots).

CONCLUSION AND DISCUSSIONS

In summary, the self-focusing property of a partially coherent
beam with a non-uniform correlation structure propagating in a
non-linear medium was investigated using numerical and
analytical methods. It is found that the non-uniform
correlation structure plays a core role in the self-focusing
formation. Furthermore, with the threshold condition of initial
coherence radius proposed for the first time, the analytical

FIGURE 1 | Propagation evolution of three cases: (A) NUC-PCB in a linear medium, (B) NUC-PCB in a non-linear medium, and (C) GSM beam in a non-linear
medium, where (D) shows the corresponding intensity distribution at the locations of maximum intensity in (A–C). The insets represent the mutual coherence function (or
cross-spectral density) at the source plane.

FIGURE 2 | Dependence of the beam width on the initial coherence
radius.
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formula for the self-focusing length is obtained. The result shows
that the relation of relative self-focusing length and initial
coherence radius is not monotonic, and it can be continuously
controlled by changing the initial coherence radius. More
significantly, a feasible approach for manipulating the self-

focusing length by adjusting the initial coherence radius
has been realized. These findings may have potential
applications in optical communication, optical encryption, all-
optical signal processing, and related areas. For example, it is
known that the polarization [36–38] and orbital angular
momentum [39] can be used as a carrier basis of signals for
optical communication links. Herein, spatial coherence is
regarded as the degree of freedom of a light beam as well,
and it may provide another dimension for data-coding. In
addition, the self-focusing length can be manipulated by
varying the initial coherence radius of NUC-PCBs, benefiting
for a controllable high-power laser atmospheric propagation for
moving targets.
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FIGURE 3 | Self-focusing length with various initial coherence radii: (A) σ0 � 0.2σcr , (B) σ0 � 0.4σcr , (C) σ0 � 0.6σcr , and (D) σ0 � 0.8σcr , where the insets represent
the mutual coherence function (or cross-spectral density) at the source plane.

FIGURE 4 | Dependence of the relative self-focusing length on the initial
coherence radius. The magenta dots correspond to the cases in Figure 3.
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