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Brain-Computer Interface (BCI) is a direct communication pathway between the brain and
the external environment without using peripheral nerves andmuscles. This emerging topic
is suffering from serious issues such as malicious tampering and privacy leakage. To
address this issue, we propose a novel communication scheme for BCI Systems. In
particular, this scheme first utilizes high-dimensional chaotic systems with hyperbolic sine
nonlinearity as the random number generator, then decorrelation operation is used to
remove the physical characteristics of the output sequences. Finally, each of the
sequences is applied in differential chaos shift keying (DCSK). Since each output
sequence corresponds to a unique electrode, the communication data of different
electrodes will not interfere with each other. Compared with popular multi-user DSCK
schemes using Walsh code sequences, this scheme does not require the channel data of
all electrodes while decoding. Therefore, this scheme has higher efficiency. Experimental
results on communication data indicate that the proposed scheme can provide a high level
of security.
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INTRODUCTION

Brain-computer interface (BCI) is a real-time communication system in which messages or
commands sent by the user do not pass through the brain’s natural output pathways [1]. This
technology provides a new way of brain monitoring, human-computer interaction, and it has broad
applications in medical rehabilitation and other fields [2]. The representative works of BCI systems
mainly involve two paths [3]. The first path is the realization of information exchange and control
with the external environment by directly decoding the brain’s instructions [4]. Such applications
like BCI-based cursor system [5], robotic arm [6], wheelchair [7], text input method [8] help disabled
patients to control external devices without using peripheral nerves and muscles. The second path is
rehabilitation, enhancement, and improvement of the central nervous system [9]. By using BCI
systems, new rehabilitation paradigms are proposed to help patients to recover from nervous system
disease. Such BCI auxiliary training strategy can benefit stroke rehabilitation training [10] and spinal
injury rehabilitation training [11].

Most of the above BCI systems use plain-text to transmit EEG data, which have serious issues such
as malicious tampering and privacy leakage [12, 13]. For example, an attacker can easily decode the
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commands from the brain and control the device through
tampering [14]. For BCI-based rehabilitation methods,
malicious tampering can aggravate the patient’s condition [15].
Therefore, the communication data need to be encrypted to
prevent the BCI systems from threats.

The basic communication system consists of an information
source and an information sink connected by a channel. Unlike
image data or video data, EEG is a high-dimensional and
continuous data flow [16]. In BCI systems, the EEG data are
collected by the electrode and then converted to digital signals by

FIGURE 1 | Overall flowchart of High dimensional multi user DCSK scheme (HD-MU-DCSK).

FIGURE 2 | Waveform of output sequence: (A), the waveform of x1. (B), the waveform of x3. (C), the waveform of x5. (D), the waveform of x7.
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the AD converter. Next, the digital EEG data flow are transmitted
to the servers. The servers extract the features from the EEG
signals and decode them to human commands. Considering those
characteristics of EEG data and BCI systems, we designed a secure
communication scheme to protect the transmissive EEG data
flow. In particular, we applied a high-dimensional chaotic system
of hyperbolic sine nonlinearity in the differential chaos shift
keying (DCSK) scheme to prevent BCI systems from malicious
tampering and privacy leakage [17].

DCSK is a chaos-based method for secure communication.
Chaotic signals have many special characteristics, such as
nonperiodicity, long-term unpredictability, wide spectrum,
self- and cross-correlation characteristics [18, 19]. It is worth
noting that the chaotic system will not only produce chaotic
attractors, but also several independent attractors under certain
parameters, that is, multiple coexisting attractors [20–22]. These
characteristics meet the requirements of cryptosystem and secure
communication system [23, 24]. A large number of literatures
have proved that chaos-based image encryption schemes can
provide high security and robustness, which can be used as a
reliable image cryptosystem [25, 26].

Encryption is an effective way to protect data for information
sources and an information sink, while secure communication
scheme can protect the transmitted data in channel. DCSK is a
secure communication scheme that employ non-periodic and
wideband chaotic signals as carriers to achieve the effect of
spectrum spreading in the process of digital modulation [27].
The reason why we use this route map is as follows: 1) The
transmissive EEG data flow is a digital signal. There is no loss of
EEG signal using the DCSK scheme for communication [28]. 2)
The transmissive data in the DCSK scheme are the non-periodic
chaotic signal or the modulated chaotic signal which can protect
the EEG data frommalicious tampering and privacy leakage [29].
3) DCSK scheme is a simple method to achieve secure
communication purposes without using chaos
synchronization [30].

FIGURE 3 | phase space plots: (A), the phase space plot of x1 - x8 plane. (B), the phase space plot of x1 - x13 plane. (C), the phase space plot of x14 - x15 plane. (D),
the phase space plot of x15 - x16 plane.

FIGURE 4 | Lyapunov exponent spectrum.
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Since the BCI system is a multi-channel system, the multi-
user DCSK schemes are required to protect the EEG data flow.
Kolumban et al. first combined the multi-user technology with
the DCSK system [31]. In 2005, Frequency Modulated Efficient
DCSK, FM-E-DCSK is proposed, which uses a reference signal
to modulate multiple information signals to increase the
transmission rate [32]. In 2016, Zhang et al. proposed Multi
User Segment Shift Differential Chaos Shift Keying, MU-
SSDCSK. According to the number of users, this scheme
divides the reference signals into signal segments, and
then shifts these signal segments and matches them with
different Walsh codes to form mutually orthogonal carrying
signals [33]. In recent years, the DCSK scheme using Walsh
code has gradually become the mainstream multi-user DCSK
scheme [34]. However, all the above multi-user DCSK schemes
are not suitable for BCI system. This is because BCI system
requires high calculation accuracy to extract features from
EEG signals [35]. Multiplexing the transmission signal will
reduce the accuracy of feature extraction [36]. Although
using Walsh codes can solve this problem, it needs all the
channels to decode the transmission signal, while BCI
systems only use a few of the EEG signals to extract the
features corresponding to the command. For example,
Zhang et al. selected part of 64-channel for improving
BCI illiteracy [37]. Atkinson et al. proposed an improving

BCI-based emotion recognition by using 14 channels of 32-
electrode channels [38].

HIGH DIMENSIONAL MULTI USER DCSK
SCHEME

To design an accurate and efficient secure communication
scheme, we utilize high dimensional chaotic systems as the
pseudo-random number generator, each variable corresponds
to one channel which is used in the DCSK scheme. The flowchart
is shown in Figure 1.

In this scheme, the controller selects the communication
channel according to the corresponding BCI task. When a
specific communication channel is selected, the channel first
transmits a decorrelated chaotic sequence of length β as a
reference signal, then transmits a multiplied modulated signal
which has the same length as the decorrelated chaotic sequence.
The modulation rule is described as follows:

Si � { xi 2kβ< i≤ (2k + 1)β
bkxi−β (2k + 1)β< i≤ 2(k + 1)β (1)

Where xi is the decorrelated chaotic sequence generated by a high
dimensional chaotic system, bk is the transmitted EEG data in

FIGURE 5 | Probability density distributions of output sequences. (A), the probability density distributions of the output sequence x1. (B), the probability density
distributions of the output sequence x3. (C), the probability density distributions of the output sequence x5. (D), the probability density distributions of the output
sequence x7.
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BCI system, β is the time slot (length of the reference signal and
modulated signal), k represents the iteration time.

For the demodulation process, the receiver calculates the
correlation between the received signal ri and the signal ri−β,
which is ri delayed by β. The output of the correlator is:

Zk � ∑2(k+1)β
(2k+1)β+1 riri−β (2)

Therefore, the information bit bk can be restored by the sign of
the decision variable:

b̂k � sgn[Zk] (3)

The difficulty of this scheme is to design a high-dimensional
chaotic system to generate the pseudo-random sequences.
Reference [39] introduced a new and unified approach for
designing desirable dissipative hyperchaotic systems. Reference
[40] proposed a design method for generating hyperchaotic cat
maps with any desired number of positive Lyapunov exponents.
Our previous work proposed a simple method for generating nth
order chaotic systems with hyperbolic sine nonlinearity [41]. The
proposed scheme utilizes two back-to-back diodes representing
hyperbolic sine nonlinearity without any multiplier or
subcircuits. Therefore, the proposed high dimensional chaotic

systems can achieve both physical simplicity and analytic
complexity at the same time.

SECURE COMMUNICATION SCHEME FOR
BRAIN-COMPUTER INTERFACE BASED
SPELLER AND MICROSLEEP DETECTOR
Here we applied the proposed scheme in BCI-based speller and
microsleep detector. Electroencephalography (EEG) -based P300
speller is a type of brain-computer interface (BCI) that uses EEG
to allow a user to select characters without physical movement
[42]. The EEG-based microsleep detector uses BCI technology to
detect drowsiness, which can benefit the drivers to avoid car
accidents [43]. If the communication data of these BCI systems
have been maliciously tampered, the attackers may cause some
serious accidents.

The above BCI systems use 16-electrode to collect EEG signals.
Therefore, it is needed to design a chaotic system that has sixteen
dimensions. In this paper, EEG data were acquired from 16 scalp
sites (extended 10–20 system) using a cap with active Ag/AgCl
electrodes. Wet electrodes were used in the cap, and the electrode
impedance was modulated to be less than 5 KΩ. The reference
electrode was on the bilateral mastoid. A Neuroscan Synamps2

FIGURE 6 | Probability density distributions of output sequences after decorrelation operation. (A), the probability density distributions of the above sequence x1.
(B), the probability density distributions of the above sequence x3. (C), the probability density distributions of the above sequence x5. (D), the probability density
distributions of the above sequence x7.
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TABLE 1 | Pearson product-moment correlation coefficient of the two output sequences before decorrelation operation.

x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

0.0017 −0.0066 0.0564 0.1063 0.1209 0.0483 −0.1257 −0.3534 −0.5389 −0.5843 −0.44 −0.1283 0.2693 0.6463 0.9084 1 x1
0.0012 −0.0121 0.0631 0.1086 0.0823 −0.0578 −0.2841 −0.5009 −0.5921 −0.4838 −0.1838 0.2247 0.6224 0.902 1 0.9084 x2
−0.0018 −0.0154 0.0788 0.1023 0.0095 −0.2025 −0.4458 −0.5871 −0.5241 −0.2433 0.1739 0.5947 0.8946 1 0.902 0.6463 x3
−0.0076 −0.0079 0.0983 0.0682 −0.1122 −0.3733 −0.5672 −0.5587 −0.3062 0.1161 0.562 0.8858 1 0.8946 0.6224 0.2693 x4
−0.0144 0.0188 0.1015 −0.02 −0.2834 −0.5297 −0.5851 −0.3711 0.0516 0.5239 0.8752 1 0.8858 0.5947 0.2247 −0.1283 x5
−0.0182 0.0658 0.0559 −0.1781 −0.4711 −0.5998 −0.4361 −0.0191 0.4801 0.8627 1 0.8752 0.562 0.1739 −0.1838 −0.44 x6
−0.0132 0.1181 −0.0663 −0.3847 −0.5966 −0.4988 −0.0958 0.4308 0.8483 1 0.8627 0.5239 0.1161 −0.2433 −0.4838 −0.5843 x7
0.004 0.144 −0.2591 −0.5614 −0.5538 −0.1785 0.3748 0.8317 1 0.8483 0.4801 0.0516 −0.3062 −0.5241 −0.5921 −0.5389 x8
0.0315 0.106 −0.4581 −0.5856 −0.2658 0.3106 0.8123 1 0.8317 0.4308 −0.0191 −0.3711 −0.5587 −0.5871 −0.5009 −0.3534 x9
0.0626 −0.0163 −0.5467 −0.3507 0.2352 0.7889 1 0.8123 0.3748 −0.0958 −0.4361 −0.5851 −0.5672 −0.4458 −0.2841 −0.1257 x10
0.0868 −0.2097 −0.4056 0.1424 0.7588 1 0.7889 0.3106 −0.1785 −0.4988 −0.5998 −0.5297 −0.3733 −0.2025 −0.0578 0.0483 x11
0.067 −0.4218 0.0144 0.7129 1 0.7588 0.2352 −0.2658 −0.5538 −0.5966 −0.4711 −0.2834 −0.1122 0.0095 0.0823 0.1209 x12
−0.1225 −0.4909 0.6195 1 0.7129 0.1424 −0.3507 −0.5856 −0.5614 −0.3847 −0.1781 −0.02 0.0682 0.1023 0.1086 0.1063 x13
−0.5065 0.00003 1 0.6195 0.0144 −0.4056 −0.5467 −0.4581 −0.2591 −0.0663 0.0559 0.1015 0.0983 0.0788 0.0631 0.0564 x14
−0.0001 1 0.00003 −0.4909 −0.4218 −0.2097 −0.0163 0.106 0.144 0.1181 0.0658 0.0188 −0.0079 −0.0154 −0.0121 −0.0066 x15
1 −0.0001 −0.5065 −0.1225 0.067 0.0868 0.0626 0.0315 0.004 −0.0132 −0.0182 −0.0144 −0.0076 −0.0018 0.0012 0.0017 x16

TABLE 2 | Pearson product-moment correlation coefficient of the two output sequences after decorrelation operation.

x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

−0.0006 0.0009 0.00001 −0.00001 0.0002 −0.0006 −0.002 −0.0009 −0.0004 −0.0004 −0.0005 0.0004 −0.0007 0.0004 −0.0017 1 x1
−0.0007 −0.0015 0.0002 −0.0001 0.0031 0.0012 −0.0009 −0.0013 0.0018 0.0021 0.0014 0.0005 0.0006 −0.0004 1 −0.0017 x2
−0.0018 −0.0005 0.0009 0.0004 −0.0003 −0.0001 0.0022 0.0001 0.0007 −0.0016 −0.0003 0.0001 −0.0008 1 −0.0004 0.0004 x3
−0.0013 −0.0005 0.0004 0.0013 −0.0001 −0.0009 0.0005 −0.0004 −0.0001 0.0011 0.0015 −0.0011 1 −0.0008 0.0006 −0.0007 x4
0.0012 0.0005 −0.0011 0.0004 −0.0006 0.0003 −0.0001 0.0008 −0.0002 −0.0002 0.001 1 −0.0011 0.0001 0.0005 0.0004 x5
0.001 −0.0005 0.0007 −0.0009 −0.0002 −0.0007 0.0004 −0.0003 0.0005 0.0005 1 0.001 0.0015 −0.0003 0.0014 −0.0005 x6
−0.0011 0.0008 0.0007 −0.0007 0.0015 0.0024 0.00003 −0.0015 −0.0009 1 0.0005 −0.0002 0.0011 −0.0016 0.0021 −0.0004 x7
−0.0029 0.0017 0.001 −0.0004 −0.0008 −0.0001 0.001 −0.0002 1 −0.0009 0.0005 −0.0002 −0.0001 0.0007 0.0018 −0.0004 x8
0.0002 0.0009 0.0002 0.0019 −0.0001 0.0005 0.0001 1 −0.0002 −0.0015 −0.0003 0.0008 −0.0004 0.0001 −0.0013 −0.0009 x9
−0.0006 0.0009 −0.0002 0.0004 −0.0001 −0.0011 1 0.0001 0.001 0.00003 0.0004 −0.0001 0.0005 0.0022 −0.0009 −0.002 x10
0.0014 0.0019 −0.0007 −0.0012 0.0001 1 −0.0011 0.0005 −0.0001 0.0024 −0.0007 0.0003 −0.0009 −0.0001 0.0012 −0.0006 x11
0.0017 −0.0003 0.001 −0.0028 1 0.0001 −0.0001 −0.0001 −0.0008 0.0015 −0.0002 −0.0006 −0.0001 −0.0003 0.0031 0.0002 x12
0.0017 0.0002 0.0007 1 −0.0028 −0.0012 0.0004 0.0019 −0.0004 −0.0007 −0.0009 0.0004 0.0013 0.0004 −0.0001 −0.00001 x13
0.0004 0.0017 1 0.0007 0.001 −0.0007 −0.0002 0.0002 0.001 0.0007 0.0007 −0.0011 0.0004 0.0009 0.0002 0.00001 x14
0.0014 1 0.0017 0.0002 −0.0003 0.0019 0.0009 0.0009 0.0017 0.0008 −0.0005 0.0005 −0.0005 −0.0005 −0.0015 0.0009 x15
1 0.0014 0.0004 0.0017 0.0017 0.0014 −0.0006 0.0002 −0.0029 −0.0011 0.001 0.0012 −0.0013 −0.0018 −0.0007 −0.0006 x16
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amplifier amplified the EEG signal. The sampling rate of the EEG
signal was 1 kHz. We collected EEG data of subjects performing
ballistic index finger abduction movements [28], and the data
length is about 15 min.

16th-Order Hyperbolic Sine Chaotic System
Based on the design method proposed in Ref. [41], we proposed
the 16th-order hyperbolic sine chaotic system, which is described
as follows:

_x1 � x2 − x1

_x2 � x3 − x2

_x3 � x4 − x3

_x4 � x5 − x4

_x5 � x6 − x5

_x6 � x7 − x6

_x7 � x8 − x7

_x8 � x9 − x8

_x9 � x10 − x9

_x10 � x11 − x10

_x11 � x12 − x11

_x12 � x13 − x12

_x13 � x14 − x13

_x14 � x15

_x15 � x16

_x16 � cx16 − ρ sinh(φx15) − 16x14 − 16x13 − 16x12 − 16x11

− 16x10 − 16x9 − 16x8 − 16x7 − 16x6 − 16x5 − 16x4 − 16x3

− 16x2 − 1
32

x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

When c � 1, the system exhibits chaotic behavior, the
waveform is shown as Figure 2, the phase space plot is shown
in Figure 3.

To study the overall dynamic behavior of the proposed system,
we plot the Largest Lyapunov exponent spectrum. Lyapunov
exponent is a measure of a system’s predictability and
sensitivity to changes in its initial conditions. If the largest
Lyapunov exponent (LLE) is greater than zero, the system
exhibits chaotic behavior. If LLE � 0, the system exhibits
periodic behavior. If LLE <0, the system converges to a stable

TABLE 3 | Results of SP 800–22 test using x1 after decorrelation operation.

Test p-value Result

Approximate Entropy 0.098853 Success
Block Frequency 0.94943 Success
Cumulative Sums 0.392,502 Success
FFT 0.978,037 Success
Frequency 0.252,624 Success
Linear Complexity 0.906,511 Success
Longest Run 0.443,146 Success
Non-Overlapping Template 0.361,567 Success
Overlapping Template 1 Success
Random Excursions 0.05684 Success
Random Excursions Variant 0.627,287 Success
Rank 0.659,889 Success
Runs 0.668,711 Success
Serial 0.093027 Success
Universal 0.141,508 Success

TABLE 4 | Results of SP 800–22 test using x3 after decorrelation operation.

Test p-value Result

Approximate Entropy 1 Success
Block Frequency 0.930,814 Success
Cumulative Sums 0.545,722 Success
FFT 0.201,659 Success
Frequency 0.352,521 Success
Linear Complexity 0.516,151 Success
Longest Run 0.113,107 Success
Non-Overlapping Template 0.257,712 Success
Overlapping Template 1 Success
Random Excursions 0.394,639 Success
Random Excursions Variant 0.785,267 Success
Rank 0.82942 Success
Runs 0.180,869 Success
Serial 0.485,295 Success
Universal 0.822,527 Success

TABLE 5 | Results of SP 800–22 test using x5 after decorrelation operation.

Test p-value Result

Approximate Entropy 0.831,444 Success
Block Frequency 0.774,929 Success
Cumulative Sums 0.390,633 Success
FFT 0.516,412 Success
Frequency 0.439,182 Success
Linear Complexity 0.784,995 Success
Longest Run 0.159,788 Success
Non-Overlapping Template 0.186,118 Success
Overlapping Template 0.054513 Success
Random Excursions 0.301,755 Success
Random Excursions Variant 0.723,645 Success
Rank 0.142,671 Success
Runs 0.585,076 Success
Serial 0.978,004 Success
Universal 0.854,829 Success

TABLE 6 | Results of SP 800–22 test using x7 after decorrelation operation.

Test p-value Result

Approximate Entropy 0.846,242 Success
Block Frequency 0.904,758 Success
Cumulative Sums 0.689,519 Success
FFT 0.832,839 Success
Frequency 0.523,474 Success
Linear Complexity 0.651,641 Success
Longest Run 0.276,194 Success
Non-Overlapping Template 0.07046 Success
Overlapping Template 0.051553 Success
Random Excursions 0.150,568 Success
Random Excursions Variant 0.616,838 Success
Rank 0.644,792 Success
Runs 0.900,739 Success
Serial 0.834,662 Success
Universal 0.881,265 Success
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point. When c � [0, 3], The largest Lyapunov exponent
spectrum is shown as Figure 4.

From Figure 4, the chaos exists in c ∈ [0.07 − 2.49] except
some period windows are embedded.

PHYSICAL CHARACTERISTICS OF THE
OUTPUT SEQUENCE

Although the proposed system can generate pseudo-random
sequences, it has physical characteristics [45], Figure 5 is the
probability density distributions of the output sequence x1, x3,
x5, x7.

From the results of Figure 5, the output sequences have
physical characteristics. Therefore, it may be cracked by the
side-channel attack. To remove the physical characteristics, we
utilize the decorrelation operation:

Sout � Sin p 10
5 − floor(Sin p 105) (5)

The probability density distributions of the above sequences
after decorrelation operation are plotted in Figure 6.

EXPERIMENTS

This section is the performance analysis of the proposed scheme,
which includes mutual interference suppression, security, bit
error rate, and time efficiency.

MUTUAL INTERFERENCE BETWEEN
CHANNELS

The decorrelation operation not only can remove the physical
characteristics, but also can suppress mutual interference between
channels. We test the Pearson product-moment correlation

coefficient (PPMCC) of 105 data of two output sequences. The
comparative results are shown in Tables 1, 2.

From the results in Table 1. Most PPMCCs are greater than
0.4, some PPMCC like x1 ∼ x2, x2 ∼ x3 are over 0.9, which means
the original sequences have strong correlation. From the results
in Table 2, PPMCC after decorrelation are less than 0.01, which
means the sequences after decorrelation operation have strong
interference suppression ability, the communication data flow
of different channels will not interfere with each other, which
ensures that the BCI systems can accurately extract EEG
features.

KEY SPACE ANALYSIS

If the attackers have all the details of the HD-MU-DCSK scheme,
this communication protocol will no longer be secure. In this
circumstance, the defender can improve the security by
frequently changing the secure key. For Eq. 4, all initial
conditions and control parameters can set to be the secure
keys. As shown in Figure 4, chaos exists in c ∈ [0.05, 2.49].
Suppose all initial conditions and control parameters are equal,
the key space will be larger than (5.68 × 109)59 ≫ 10531 (for 32-bit
system), if the defender changes secure key every second, the keys
can be used for over 3.17 × 1058 years. Therefore, the proposed
scheme can provide high security level.

SECURITY ANALYSIS

Security is the most important performance considered in this
work. To evaluate the data security of the proposed scheme,
we use the standard statistical test suite (SP 800–22) for
random number generators provided by the National
Institute of Standard Technology (NIST). The test results
of the output sequence x1 after decorrelation operation is
shown in Table 3.

From Tables 3–6, the output sequence x1, x3, x5, and x7 after
decorrelation operation can pass all of the NIST tests. Therefore,
it can provide a high level of security when these sequences as the
carrier signal.

BIT ERROR RATE

The proposed scheme can carry out secure communication under
noisy channels. The performance of the bit error rate is shown in
Figure 7.

FIGURE 7 | BER performance under additive white Gaussian noise
(AWGN) channels.

TABLE 7 | Results of time and speed of the scheme.

Index Time, s Speed, kb/s

Generation of Carrier signal 29.864 33.485
Modulation 0.250 4,000
Demodulation 0.278 3,597.122
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TIME EFFICIENCY

We have tested 106 bit data to evaluate the time efficiency
performance of the proposed scheme. The computer configuration
used in this test is i5-8,265 processor (8-core, 1.60 GHz) with 8 GB
memory. The average detailed results are shown in Table 7.

From the testing results of time efficiency performance, the
main factor restricting the speed of this scheme is the generation of
chaotic sequences. This is because we utilize Fourth-order Runge-
Kutta algorithm to generate the output sequence, each iteration
time requires 80 iterations. If a circuit or FPGA is used to generate
high-speed pseudo-random numbers, this problem can be solved.

CONCLUSION AND FUTURE WORK

In this work, we proposed a secure communication scheme for
BCI systems based on high-dimensional hyperbolic sine chaotic
systems. The testing results indicate that the proposed scheme
can provide a high level of security. The communication data
between the electrodes will not cause mutual interference. For the
time efficiency of the proposed scheme, the generation of the
pseudo-random sequences is the bottleneck restricting the
execution speed of the scheme. Designing the corresponding
circuit or FPGA system can solve this bottleneck.
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