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Inspired by lots of applications like viral marketing of products and transmitting information
in a network, ranking the spreading ability of nodes in the network has been widely studied.
At present, the above problem is mostly studied on unsigned networks which only contain
positive relationships (e.g., friend or trust) between users. In real-world networks, there
usually exist both positive relationships and negative relationships (e.g., foe or distrust)
between users. Based on this, we aim to find the influential spreaders in a signed network
which meet the requirement of real scene. Moreover, when the spreading only aims to
affect a specific group of nodes instead of all nodes, such as promoting cigarette, a new
problem called localized targets spreading problem was come up with. Localized targets
spreading problem has been studied on unsigned networks, but it is still open for signed
networks. Thus, in this paper, we propose a newmethod, called local influencematrix (LIM)
method, which aims to find the seed nodes set with maximum positive influence on a
specific group of targets but with minimum influence on the non-target nodes in signed
social networks. Simulation results show that our method performs well on real networks.
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1 INTRODUCTION

In recent years, a variety of attention has been paid to investigating the spreading ability of nodes in
complex networks. Effectively identifying influential nodes is of great significance in reality, for
instance, and helping to design appropriate marketing strategies. There are numerous studies having
been done on this issue and a series of methods have been proposed, such as degree centrality (DC)
[1], betweenness centrality (BC) [2] and k-shell decomposition (KS) [3] etc. In addition to these
famous methods, many researchers proposed other novel methods [4, 5]. Recently Guilbeault and
Centola derived a new measure called complex centrality (CC) [6] depending on a “complex” path
instead of a “simple path.”

In previous research, people often concentrate on finding the most influential nodes for the entire
network. However, in our daily life, there are some situations where we’d like to find the most
influential nodes for localized targets, i.e. aiming to infect not all the nodes but only a small number of
localized nodes. The problem of localized targets was firstly proposed by Sun et al. [7]. Actually, the
target spreading problem has many real applications. For example, in advertising based on online
social networks (e.g., Facebook and Twitter), cigarette advertisement should be promoted as much as
possible among adults and but should avoid being promoted among teenagers. However, some
traditional centrality methods can not meet this requirement. For example, when some information
needs to be passed to the target nodes in the yellow circle in Figure 1, most degree-related methods
are hard to achieve the goal. In Figure 1, the network’s maximum out-degree node is far away from
the target nodes. So if the information is passed from the node with maximum out-degree to the
targets, the seed node is very likely to lose its spreading ability during the propagation process. So the
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following problem comes up naturally: how to identify the most
influential nodes in a network which can activate the given
localized targets as often as possible while activating the non-
target nodes as little as possible?

The pioneer method proposed by Sun et al. [7] is suitable for
the unsigned networks, and their method only pays attention to
the first objective (i.e., activate the given localized targets as often
as possible), but ignores the second objective (i.e., avoid activating
the non-target nodes). On the other hand, in some online social
systems (e.g., Slashdot, Bitcoinalpha), users are allowed to mark
positive signs or negative signs on the relationships with others.
Compared with unsigned networks, the signed networks describe
the real social systems more accurately and reasonably. There are
also a few methods of identifying the influential nodes in a signed
network. But to our best knowledge, there is still not any study
attempting to identify the most influential nodes towards given
target nodes in a signed network. In this paper, we thus propose a
local influence matrix method (LIM) to solve this problem by
computing the local paths from target nodes to other nodes. After
applying this method on some generated networks and real
networks, we test its efficiency. We also compare it with some
traditional methods which are extended simply to deal with this
particular case, and verify this new method’s better performance.

2 MODELLING SIGNED SOCIAL
NETWORKS

In this paper, we model a signed social network as a directed,
weighted, and signed graph G(V, E, P, R), where V is the set of
nodes that correspond to users in the social network with |V| �N.
Let E be the set of edges, and the attitude (positive, negative, or
neutral) of each edge is stored at the matrix R with R(u, v) ∈ {1, 0,
−1}. Let P be a non-negative diffusion probability matrix, where
P(u, v) shows the diffusion probability from user u to user v. For
example, if P(u, v) is equal to 0.2, it means that the probability that
user u will successfully deliver message to user v is 0.2.

Here we use the example in Figure 2 to illustrate the signed
social networks. Figure 2A shows an example of a signed social
network which introduces the relationship between the three
users (Jerry, Tuffy, and Tom). Figure 2B demonstrates the graph
model of the signed social network of Figure 2A. Three nodes v,
u, and w are corresponding to user Jerry, Tuffy, and Tom
respectively. Note that the direction of edges in Figure 2A are
opposite to those in Figure 2B. The reason is as follows. For
instance, Jerry likes Tuffy in Figure 2B, so he’d like to be
influenced by Tuffy, in other words, if Tuffy likes some
products, Jerry is easily influenced by Tuffy and likes these
products. In Figure 2, Jerry likes Tuffy, so R(u, v) � + 1; Jerry
dislikes Tom, so R(u, v) � − 1; and there is no relationship
between Tom and Tuffy, so R(u, v) � 0. Figure 2B only shows the
signs on the edges but not the weights on the edges. In Figure 2B,
0.1 and 0.2 represent the weights of two edges. The probability of
v being successfully affected by u or w is 0.1 or 0.2.

The probability of information being accepted depends on the
matrix P. If P(v, u) is equal to 0.2, it means that u will accept the
information from vwith the probability of 0.2. And the attitude of
u towards information depends on matrix R. If u accepts v’s
information and R(v, u) is equal to 1, u will support v’s
information. On the contrary, if R(v, u) is equal to −1, u will
oppose v’s information. As a result, we define a matrix A � R*P
with its elementA(u, v) � R(u, v) · P(u, v), to consider the extent of
positive influence or negative influence. For example, in
Figure 2B, A(w, v) is −0.2.

Matrix P can be generated by three methods, which will be
discussed in Experiments Section.

3 THE LOCAL INFLUENCE MATRIX
METHOD

Usually the target nodes that need to be infected or activated are
localized, which means they are within a certain distance from
each other. To identify the most influential nodes in a signed

FIGURE 1 | Illustration of the problem of spreading towards localized targets in complex networks. The network is an artificial network (350 nodes and 1,129 links)
with two communities. The color (from dark red to white) of the nodes represents their respective degrees. Nodes in the yellow circle are the targets that need to be
activated. The maximum out-degree node whose color is darkest is marked.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8062592

Song et al. Localized Targets in Signed Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


network which can positively activate the given localized targets as
often as possible while activating the non-target nodes as little as
possible, we present the following Local Influence Matrix method
(abbreviated as LIM). The basic idea is to compute all positive and
negative paths within k steps from V \ T to the target nodes T,
which shows the probability of a node in V \ T activating the node
in T, and we will use them later to measure the infecting ability of
the nodes in V \ T.

As mentioned above, let A be the N × N adjacency matrix of
the input signed network, where ai,j ∈ [−1, 1] means the
probability that node i infects j with the same (or different)
status if ai,j > 0 (or ai,j < 0). Note that (Ak)i,j means the probability
that node i infects j at k steps. The elements on the main diagonal
of the matrix Ak represent cycles (which means a node will be
activated twice in the same path and is not reasonable), we should
exclude them by setting themain diagonal to zero in each step. Let
�A
k be the new matrix, and define

Ak+1 � �A
k × A (1)

and then set the main diagonal of Ak+1 to zero again and repeat
the above process.

Then the infected probability matrix within k steps between
any pair of nodes of V can be calculated as:

S � ∑k
l�0

�A
l+1
, (2)

Note that if k > 3, (Ak)i,j is relatively smaller, thus in the
following we restrict k � 3. Figure 3 gives a simple example to
explain the reason why the matrices’ diagonal elements are set to
zero. In Figure 3, there are two opposite arcs between node u and
v whose diffusion probability is 0.3 and 0.5 respectively. One way
that u infects v is by the arc (u, v) with a probability of 0.3 in
Figure 3B. If we do not let the diagonal elements of A2 become
zeros, then the following path u→ v→ u→ vwith a probability of
0.045 will be calculated in A3.

Then we divide the matrix S into the following two matrices SP
and SN.

SP u, v( ) � S u, v( ) S u, v( )> 0
0 S u, v( )≤ 0{ (3)

and

SN u, v( ) � 0 S u, v( )≥ 0
−S u, v( ) S u, v( )< 0{ (4)

SP(u, v) (or SN(u, v)) measures the possibility that node u
activates v positively (or negatively) if the original attitude/status

FIGURE 2 | An example of modeling a signed social network. (A) A signed social network (B) A directed, weighted, and signed graph

FIGURE 3 | Special situation in spreading process. (A) There are two opposite sides between node u and v. The probability of u successfully spreading information
to v is 0.3. And the probability from v to u is 0.5. (B) The probability from u to v is 0.3. (C) The probability from u to v to u is 0.15. (D) The probability of u to v passing
through u-v-u-v is 0.045.
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of u is positive. Recall that our problem is to identify the most
influential nodes in a signed network which can positively activate
the given localized targets as often as possible while activating the
non-target nodes as little as possible. At first, we would like to select
nodes which could positively activate target nodes as often as
possible and negatively activate target nodes as little as possible.
Meanwhile, it is better to minimize the impact on other non-target
nodes, whether it is positively influenced or negatively influenced.
The positive influence from non-target nodes to target nodes can be
expressed by SP · f, where f is a N × 1 vector in which the positions
corresponding to target nodes are 1, and 0 otherwise. Likewise, SN · f
shows the negative influence from non-target nodes to target nodes,
which is also a positive vector. In addition, SP · f′ and SN · f′
respectively represent the positive and negative influence from non-
target nodes to other non-target nodes where f′ is also aN × 1 vector
indicating non-target nodes position. To adjust the preference of
these three indicators, α, β and γ are introduced as the weights of
these three indicators.

Based on the above requirements, we proposed a formula to
measure the influence of nodes fromV \ T to target set T as follows:

SLIM � αSP − βSN( ) · f − γ SP + SN( ) · f′, (5)

The LIM process is illustrated with a toy network in Figure 4,
where α, β, and γ are set to be 1, 1, and 0 respectively. One can see

that the most highly ranked node by LIM is different from the
node with maximum out-degree.

4 EXPERIMENTS

4.1 Experimental Setup
4.1.1 Datasets
To validate the LIM method, we will apply it to two real signed
networks: Slashdot [8] and Bitcoinalpha [9, 10].

• Slashdot. This is a signed and directed network in which
users can rate each other as a friend or a foe. We use its
biggest subgraph with 10,966 users and 44,356
relationships.

• Bitcoinalpha. Bitcoinalpha used here is a directed, signed
network with 3,783 nodes and 24,186 links. Original data
has weight on each arc, but here we use its underlying graph
only and generate the weights by the following three models.

4.1.2 Diffusion Probability Generation
If one unweighted signed network is given, researchers [8, 11, 12]
usually use the following three models to generate the influence
probabilities on arcs.

FIGURE 4 | Illustrations of the local influence matrix (LIM) algorithm (α � 1, β � 1, γ � 0). The red nodes are target nodes and others are non-target nodes. (A) The
nodes with numbers are directly connected with target nodes. All irrelevant nodes and edges are marked in dashed lines. The numbers on the nodes can be calculated
by A · f. (B) The nodes with numbers can reach target nodes in exactly two steps. All possible paths with length two are considered and the numbers on nodes can be
calculated by �A

2 · f . (C) The nodes with numbers can reach target nodes in exactly three steps. All possible paths with length three are considered and the numbers
on nodes can be calculated by �A

3 · f . (D) The numbers on the nodes represent the LIM score when α � 1, β � 1, and γ � 0. The blue and orange nodes have maximum
LIM, out-degree values respectively.
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• Weighted Cascade (WC)model. In this model, P(u, v) for an
edge (u, v) is 1/d−(v), where d−(v) is the in-degree of v.

• TRIVALENCY model. On each edge (u, v), this model
randomly selects a value from 0.1, 0.01, and 0.001 as a
diffusion probability.

• Uniformly (UN) model. The diffusion probability of all the
edges are assigned the same value.Wewill test a relatively small
value of 0.03 and a relatively large value of 0.5, respectively.

4.1.3 Localized Targets’ Selection
Note that a localized target node set T should be given beforehand
when testing this new method LIM on a data set. We use the
following strategy to generate T. We first randomly pick up a
node v with a smaller coreness centrality [3], then add those
nodes within two steps from v into the target set. Note that in this
paper target nodes are not allowed as seed.

4.1.4 Independent Cascade With Sign Model
The standard Independent Cascade (IC) model [12] used
for unsigned networks is extended to the signed case in the
following, which is called IC-S Model. Each node v has three

states s(v) in IC-S model, including active positive, active negative,
and inactive. For a node u, active positive statusmeans that u is active
with positive attitude. A node u with inactive status means that u is
not active yet.

At time t, each newly activated node u (i.e., the node which is
activated at time t − 1) has only one chance to activate each of
its currently inactive neighbors w. If node w is activated by u, its
status s(w) is determined by the status of u and the relationship
between them, i. e, s(w) � R(u, w) × s(u). If s(w) > 0, then the status
of w is active positive, and active negative otherwise. If w is not
activated successfully by u, w can also be activated by its other
neighbors.

4.1.5 Comparison Methods
To show this new method’s performance, besides the random
selection method baseline, we also use the following methods to
compare with.

• Degree centrality. The degree of node i can be defined as k(i)
� ∑j∈G(|aij| + |aji|) where aij is the entry of matrix A
mentioned above.

FIGURE 5 | Result Comparisons between LIM method and some degree-based centrality methods when applying on (A) Slashdot network (B) Bitcoinalpha
network. The experiments are conducted on (A) Slashdot network (B) Bitcoinalpha network. Three diffusion probability methods are considered, i.e. WC model,
TRIVALENCY model, and UN model. For UN model, the probability value we set is 0.03. In each experiment, parameter k means that k seeds are selected to activate
other nodes, and λmeans the proportion of positively activated target nodes among all activated nodes. The targets we set are a center node with small coreness
and nodes within two steps from it. (A) On the Slashdot network, node 2,921 is the center node. (B) On the Bitcoinalpha network, the center node we set in targets is
node 7,062. Ranking methods include Degree (yellow triangles), Out-Degree (purple diamonds), Positive Out-Degree (pink triangles), Random (green circles), and LIM
(red circle) methods. The results in each figure are obtained by averaging over 2,000 independent realizations.
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• Out-Degree centrality. The out-degree of node i can be
defined as o(i) � ∑j∈G|aij|, where aij is also the entry of
matrixA. The out-degree of the node represents the number
of the out neighbors of the node, which reflects the direct
influence from this node to others.

• Positive Out-Degree centrality. The positive out-degree of
the node i is defined as o+(i) � ∑j∈Ga

+
ij. Here a

+
ij means that

edges whose aij > 0. The positive out-degree of the node
represents the direct positive influence from the node to others.

• Local Degree 1. Mathematically, the first type local degree
LD1 of node i is given by:

ld1
i �

∑
j∈Va+ij i ∈ Ω

0 i ∉ Ω
⎧⎨⎩ (6)

where Ω is the node set within the distance l � 3 from the target
nodes.

• Local Degree 2. The second type local degree LD2 of node i
is given by:

ld2
i �

∑
j∈Ω

a+ij i ∈ Ω
0 i ∉ Ω

⎧⎨⎩ (7)

Note that the two type local degree methods are used to rank
the node set Ω which are within the distance l � 3 from the target
nodes. The difference between them is that LD1 counts the our-
positive neighbor in the whole network while LD2 counts the out-
positive neighbor only in Ω.

4.2 Experiment Results
In this section, we present our experiment results of the positive
influence spreading performance of different methods on Slashdot
and Bitcoinalpha. We also define the positive influence spreading
performance as the proportion of the target nodes that are
positively infected to the total infected nodes under the IC-Smodel.

Figure 5A,B shows the performance of four comparison
methods (Random, Degree, Out-Degree, and Positive Out-
Degree) under three types of propagation probabilities model
(WC model, TRIVALENCY model, and UN model) on Slashdot
data set (or Bitcoinalpha data set). The size of seed nodes k is set
ranging from 50 to 300. For the UN model, we set the diffusion
probability to 0.03.When constructing the target setT, we treat node
2,921 whose coreness is 2 as the center, and take the nodes within
two steps from it as the target nodes. The top k nodes under the five
ranking methods are selected to be the seeds, whose infecting ability
are then tested by the IC-S model. After 2,000 iterations on the IC-S

FIGURE 6 |Result Comparisons between LIM and LD1 and LD2 when applying on (A) Slashdot data set (B) Bitcoinalpha data set. The experiments are conducted
on (A) Slashdot network (B) Bitcoinalpha network. Three diffusion probability methods are considered, i.e., WCmodel, TRIVALENCY model, and UNmodel. For the UN
model, the probability value we set is 0.03. In each experiment, parameter k means that k seeds are selected to activate other nodes. And λ means the proportion of
positively activated target nodes among all activated nodes. Rankingmethods include Local Degree 1 (yellow triangles), Local Degree 2 (green circles), and LIM (red
circle) methods. The results in each figure are obtained by averaging over 2,000 independent realizations.
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model, the average positive influence spreading performances can be
obtained. As shown in both Figure 5A,B, the LIM method
outperforms the other four methods as the size of the seed nodes
changes with all three types of different propagation probability.

The reason why the LIM method performs better at the
beginning is that the λ we calculate is a proportion, not the
number of nodes. Because of the difference of the size of seed
nodes, the number of the target nodes that are positively activated
and the number of the nodes finally activated are different. So even if
λ1 is bigger than λ2, the number of the target nodes that are positively
infected in experiment 1 may be smaller than that of experiment 2.
Besides, the experiments on Bitcoinalpha under TRIVALENCY
mode and UN model do not perform as well as in the WC
model. This is mainly because that there is a lot of overlap
between the nodes selected by LIM method and the nodes
selected by other methods. For example, if we select 150 nodes to
be seed nodes, more than 80 nodes are repeatedly selected by both
the LIMmethod andDegreemethod under either of the twomodels.

We also compare the method LIM with the two local degree
methods (LD1, LD2) on these two data sets under three types of

propagation probabilities model, see Figure 6A,B This also shows
that the LIM method performs well.

Furthermore, in order to validate the effects of the three
parameters α, β, and γ, we change each of these three
parameters separately and observe the changes in spreading
ability. During all three experiments, the parameter that needs
to be tested is changed while the other two parameters are kept as
1. Figure 7A shows the effect of α when applying on Slashdot
under the WCmodel, here 30 seeds are selected. θ1 represents the
proportion of positively activated target nodes among all
activated nodes. We can see that as the value of α increases, θ1
increases significantly and then stabilizes. The significant
increasing in θ1 shows that a bigger parameter α can help to
select those nodes which can positively activate targets as seeds.
Similarly, Figure 7B shows the effect of parameter β applying on
Slashdot under the UN model with the diffusion probability of
0.5, and 100 seeds are selected. θ2 represents the proportion of
negatively activated target nodes among all activated nodes. It can
be seen that θ2 has a slight downward trend but is not more
obvious, this is because in most real social networks, there are

FIGURE 7 | Results of parameter testing. The experiment is carried out on Slashdot. The first and third experiments use WCmodels and select 30 seeds, while the
second one is done under the UN model which set the diffusion probability to 0.5 and selects 100 seeds. The center node of the target nodes is set to node 2,921. (A)
Results of parameter α. θ1 means the proportion of positively activated target nodes among all activated nodes. Each point in this figure represents the θ1 value with a
different α value. (B) Results of parameter β. θ2 means the proportion of negatively activated target nodes among all activated nodes. Each point in this figure
represents the θ2 value with different β value. (C) Results of parameter γ. θ3 means the proportion of positively and negative activated non-target nodes among all
activated nodes. Each point in this figure represents the θ3 value with different γ value.

FIGURE 8 | Results of targets set transformation. The experiment is done on Bitcoinalpha. The experiment selects 150 seeds under three models. And the center
node of the targets is node 1 which has the highest coreness. Same as the above experiments, the LIM method compares with other 6 methods.
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more positive edges than negative edges. The downward trend in
Figure 7B sufficiently shows that the setting of a bigger parameter
β effectively prevent negatively activating target nodes. Figure 7C
shows the effect of parameter γ applying on Slashdot under WC
model, and 30 seeds are selected. θ3 represents the proportion of
positively and negative activated non-target nodes among all
activated nodes. The value of θ3 decreases from 0.9 to nearly
0.2 as γ increases, which shows that the setting of a bigger
parameter γ is also useful to prevent activating non-target nodes.

5 DISCUSSION

Identifying the influential spreaders is a very important problem
both in theory and in practice. Though a number of methods have
been proposed, most of them aim to infect most nodes across
entire networks. However, in some real systems which intend to
infect a small group of nodes, the traditional centrality methods
are found to be not accurate enough to find the influential nodes
to target. We extend this problem from unsigned networks to
signed networks, and thus propose a local influence matrix
method to rank the spreading ability of the nodes towards the
targets. The simulation results indicate that our method
outperforms the traditional centrality methods. Furthermore,
by adjusting the parameters we set, the new method is found
to be able to reduce the impact on non-target nodes.

Regarding the choice of the center node of the targets in the
experiments, we would like to choose a node with smaller
coreness. That is because the node with high coreness is more
closely connected with other nodes, which easily causes too many

targets to be selected. For example, there are 3,783 nodes on
Bitcoinalpha and more than 2,000 nodes are selected as targets, if
the node with highest coreness is chosen as center node. This is
inconsistent with the scenario for local targets we set in advance.
For example, if we choose node 1 of the Bitcoinalphain which has
the highest coreness as the center of the targets, the results
comparing the LIM method with the other 6 methods show
that the LIM method still performs better but not much better
than others, see Figure 8. This also shows that this new LIM
method will work better when the target is localized.
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