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Magnetic soliton is an intriguing nonlinear topological excitation that carries magnetic
charges while featuring a constant total density. So far, it has only been studied in the
ultracold atomic gases with the framework of the equilibrium physics, where its stable
existence crucially relies on a nearly spin-isotropic, antiferromagnetic, interaction.
Here, we demonstrate that magnetic soliton can appear as the exact solutions of
dissipative Gross–Pitaevskii equations in a linearly polarized spinor polariton
condensate with the framework of the non-equilibrium physics, even though
polariton interactions are strongly spin anisotropic. This is possibly due to a
dissipation-enabled mechanism, where spin excitation decouples from other
excitation channels as a result of gain-and-loss balance. Such unconventional
magnetic soliton transcends constraints of equilibrium counterpart and provides a
novel kind of spin-polarized polariton soliton for potential application in opto-
spintronics.
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I INTRODUCTION

Spinor polariton condensate in semiconductor microcavities [1–4] provides a unique out-of-
equilibrium platform for exploring exotic nonlinear excitations with spin textures, which may
even transcend usual restrictions of equilibrium systems. Formed from strong couplings between
excitons and photons, polaritons possess peculiar spin properties: the Jz � ±1 (spin-up or spin-down)
spin projections of the total angular momentum of excitons along the growth axis of the structure
directly correspond to the right- and left-circularly polarized photons absorbed or emitted by the
cavity, respectively [1]. Therefore, the properties of a spinor polariton fluid (e.g., density and phase
distributions) can be probed from the properties of the emitted light [5]. In addition, the
polariton–polariton interaction features a strong spin anisotropy [6–8], with a repulsive
interaction between same spins (g > 0) and a weaker, attractive, interaction between opposite
spins (g12 < 0). Furthermore, a polariton condensate is intrinsically open dissipative, distinguishing it
fundamentally from its atomic counterpart [9]. Recently, half-soliton [10, 11] and half-vortices [12,
13] behaving like magnetic monopoles have been experimentally observed in spinor polariton
condensates under coherent pumping. There, the key prerequisite for such excitation is the spin-
anisotropic antiferromagnetic interaction, while dissipation only occurs as a perturbation. Instead,
below, we present a new kind of polariton soliton that carries magnetic charges—dissipative
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magnetic soliton (DMS). In particular, whereas magnetic soliton
cannot occur in equilibrium condensates with strongly spin-
anisotropic (antiferromagnetic) interactions, it can nevertheless
appear in non-equilibrium spinor polariton condensates
harnessing dissipation as essential resources.

Magnetic soliton [14–16] is a localized nonlinear topological
excitation, which exhibits a density dip in one component and a
hump in the other, but featuring a constant total density. It is a
fundamentally important entity in the nonlinear context, as it
provides an exceptional example of exact vector soliton solution
that can exist outside the paradigmatic Manakov limit (g � g12);
within this limit, a multicomponent nonlinear system is
integrable [17–19]. It also attracts considerable interests in the
condensed matter, offering interesting perspectives as regards
many-body phenomenon of solitonic matter [20]. So far,
magnetic soliton has only been realized in a spinor
Bose–Einstein condensate (BEC) with nearly-isotropic spin
interactions of antiferromagnetic type [14, 21, 22], 0 < g − g12
≪ g. This requirement is essential because it makes the density
depletion—inevitably induced alongside spin
excitation—strongly suppressed by a high energy cost, thus
ensuring the characteristic constant density background of
magnetic soliton. Beyond this regime, a stable magnetic soliton
cannot occur in an atomic superfluid.

In this work, we theoretically show that a stable magnetic
soliton can be formed in a linearly polarized polariton condensate
under non-resonant excitations with a spatially homogeneous
pump, even though g − g12 > g. It is an exact soliton solution to the
multicomponent driven-dissipative Gross–Pitaevskii (GP)
equation, preserving its energy over infinitely long times—so
coined as DMS. It stems from a dissipation-enabled mechanism
rather than an energetic mechanism (cf. Figure 1): the spin-
polarization excitation, originally coupled to other dissipative

excitations in a multicomponent quantum fluid, becomes
decoupled conditionally on the local balance of gain and loss,
thus allowing non-decaying localized spin texture far from the
spin-isotropic Manakov limit. We remark that DMS exists for a
time-independent and spatially uniform pump, which affords an
appealing advantage in view of potential application [23, 24]:
while polariton soliton has been well known to promise
applications in opto-spintronics, present schemes for the
generation and stabilization of solitons usually rely on
complex engineering of the space–time profile of the pump
[25–30], which requires optical isolation that has hitherto been
challenging to integrate at acceptable performance levels and
introduce redundant and power-hungry electronic components.

The structure of the paper is as follows. In Section II, we
present our theoretical model of dissipative Gross–Pitaevskii
equations, based on which we solve for the novel magnetic
solitons that carry magnetic charges while featuring a constant
total density. In Section IV, we present a comprehensive study of
the physical mechanism of the magnetic solitons with the help of
the dynamic structure factors. Finally, we conclude with a
summary in Section V, and all the detailed mathematical
derivations are outlined in Section A

II DISSIPATIVE GROSS–PITAEVSKII
EQUATIONS AT QUASI-1D

Motivated by Ref. [31], we consider a spinor polariton BEC
formed under a homogeneous incoherent pumping in a wire-
shaped microcavity that bounds the polaritons to a quasi-1D
channel in the following geometry: In the x-direction, the
polariton BEC is homogeneous; in the y-direction, the wire
size d is sufficiently small compared to the wire length, thus
providing a strong lateral quantum confinement. Moreover, the
incoherent pump is also restricted to a small transverse size
comparable to d. When Z2/(md2) ≫ gn0, where m is the
effective mass of polaritons and n0 is the 1D polarion density,
the polarion motion in the y direction can be seen as frozen. In
this case, the order parameter for the polariton BEC at quasi-1D
can be effectively described by a complex vector [32–36],
ψ(x, t) ≡ [ψ1(x, t),ψ2(x, t)]T, in the circular basis. Here, ψ1

and ψ2 are the spin-up and spin-down wavefunctions, and we
denote the density in each component by n1 and n2, respectively.
The system dynamics is governed by driven-dissipative GP
equations coupled to a rate equation for the reservoir density
nR [37–41]:

iZ
zψ1
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� − Z2

2m
z2

zx2 + g ψ1

∣∣∣∣ ∣∣∣∣2 + g12 ψ2

∣∣∣∣ ∣∣∣∣2[ ]ψ1

+gRnRψ1 +Dsψ1,

(1)
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z2

zx2 +g ψ2
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∣∣∣∣ ∣∣∣∣2( )[ ]nR. (3)

FIGURE 1 | Schematics of DMS formation in an open-dissipative
polariton BEC under incoherent pumping, which is coupled to a reservoir via
its density nR. On top of the steady state, there exist density (blue patch) and
spin-polarization (red patch) excitation channels, which are usually
coupled. However, once the pump balances the loss, the two channel,
i.e., density excitation and spin-polarization excitation decouples (white
curve). In such, the spin-polarization excitation is immune of the reservoir and
a non-decaying DMS in spin-density excitation channel can occur.
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Here, interactions between polaritons are typically g12 < 0, g >
0, and |g12| < g. The interaction between the condensate and
reservoir is modeled by constant gR. Condensed polaritons decay
at a rate cC but are replenished from the reservoir at a rate R. This
process is captured by Ds � iZ(RnR − cC)/2. Reservoir polariton
decays at a rate cR and is driven by an off-resonant continuous-
wave pump, which is spatially homogeneous. Note that, here, we
have assumed that the reservoir lacks spin selectivity due to
infinite fast spin relaxation [37].

The steady-state solutions of Eqs. 1–3 are given by

ψ0
1(2) �

										
P/cC − cR/R

2

√
,

n0R � cC/R,

(4)

where ψ0
1(2) and n0R denote the steady-state condensate

wavefunction of each component and reservoir density,
respectively. As shown, the steady-state polariton BEC has a
uniform density determined by n0 � P/cC − cR/R and is linearly
polarized with a stochastic polarization direction in the absence of
pinning [1]. Note that Eqs. 1–3 in the limit of fast reservoir [3, 42] are
of immediate relevance in the context of the complex Ginzburg
Landau equations [23, 24]. In the following, we choose system
parameters where such steady state is within the modulation stable
regime [42–45] (this can be further seen in Section IV).

III DISSIPATIVE MAGNETIC SOLITON

On top of the steady state, two kinds of excitations can occur:
density excitation and spin-polarization excitation. These
excitations are, in general, correlated with each other and with
the reservoir, so that fluctuations in one channel can induce that
in another and are dissipative. As shown below, the central result
of this work is that under the condition

Dsψs � 0, (5)

the spin-polarization excitation decouples from other dissipative
channels, such that it can support a new kind of nonlinear
excitation against the steady-state background in situations not
allowed in the equilibrium case.

We look for an analytical solution
ψ(x − υt) ≡ [ψ1(x − υt),ψ2(x − υt)]T (in the circular basis)
satisfying Eqs. 1–3, which describes a moving soliton with
velocity υ. For simplicity, hereafter, we will denote η � x − υt.
To describe populations in each component, we rewrite n1 � n0 (1
+ δn1)/2 and n2 � n0 (1 − δn2)/2 in terms of the total density n0
and the dimensionless variables δn1(2). We, moreover, define a
linear polarization angle φr and global phase φg. The order
parameter can then be generically written as

ψ1

ψ2
( ) �

		
n0
2

√ 						
1 + δn1

√
ei

φr
2						

1 − δn2
√

e−i
φr
2

⎛⎝ ⎞⎠eiφg/2e−i
μRt
Z , (6)

with μR � gRcC/R. We consider general boundary conditions:
lim

η→±∞
δn1(2)(η) � 0 and lim

η→±∞
zηφr(g)(η) � 0. Our goal next is to

determine n0, δn1(2), φr, and φg.

Exact solutions for Eqs. 1–3 can be found under condition (5).
The detailed calculations can be found in Appendix A. The
results are:
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√
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− arctan

						
1 − U2

√
U

[ ].
(9)

Here, U�υ/ 													
n0(g − g12)/2m

√
is a dimensionless velocity and

ξs � Z/
												
2mn0(g − g12)

√
denotes the spin healing length.

A typical space–time profile of the above soliton solution is
illustrated in Figure 2A for g12 � − 0.1g. The density distribution
n1(2) in each component and φr and φg at a chosen time are shown
in Figure 2B. We see that, unlike half-solitons, the vector soliton
here is characterized by a density notch in one component and a
hump in the other, whereas n1 + n2 ≡ n0 is constant, i.e., it is magnetic
soliton (see Figure 2A and top panel of Figure 2B). The linear
polarization angle φr and the global phase φg vary simultaneously in
space (see bottom panel of Figure 2B): φr always jumps by π across
the soliton, lim

η→+∞φr − lim
η→−∞φr � π, regardless of soliton velocity. In

contrast, the phase jump of φg is velocity dependent, with the
maximum shift − π only for stationary case.

To verify the above analytical solution, we have numerically
solved Eqs. 1–3 starting from an initial order parameter given by Eqs.
6–9 for t� 0 alongwith nR (0)� cC/R. Comparisons of numerical and
analytical solutions show perfect agreement; see Figure 2B for t/τ �
15. We have numerically verified the stability of our solution by time
evolving an initial order parameter where n1 (0) − n2 (0) is perturbed
from Eq. 7 while keeping n0 � n1 (0) + n2 (0) fixed.

The polarization texture of polariton magnetic soliton in Eqs.
6–9 can be characterized by standard Stokes parameters [33, 46,
47], S(η) � (Sx, Sy, Sz), with Sx(η) � 2R(ψ*

1ψ2)/n0,
Sy(η) � 2I(ψ*

1ψ2)/n0, and Sz(η) � (|ψ1|
2 − |ψ2|

2)/n0. Here, R
and I denote the real and imaginary part, respectively. For the
stationary case U � 0, S(η) is entirely in the (Sx, Sz) plane and
presents an ingoing divergent spin texture whose direction
defines the magnetic charge (see top panel of Figure 2C): The
degree of circularization Sz reaches unity at the center, while the
linear polarization Sx flips its direction crossing the soliton core
due to the π jump in φr. In comparison, a moving soliton (see
bottom panel of Figure 2C) has a broadened localization width,
lw � ξs/

						
1 − U2

√
, and its polarization becomes strongly elliptical

in the (Sy, Sz) plane near the core, with a decreased circular
polarization (i.e., magnetization) given by Sz(η) �

						
1 − U2

√
.

However, the linear polarization still flips across the soliton,
independent of U.
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To see whether the polariton magnetic soliton in an open-
dissipative spinor condensate decays with time, we calculated its
energy E as [41, 48, 49].

E � ∫ dxψ† − Z2

2m
z2

zx2( )ψ + g − g12

4
∫ dx(n1 − n2)2

+ g + g12

4
∫ dx n1 + n2 − n0( )2.

(10)

Here, the second term corresponds to the spin–spin
interaction associated with Sz, and the third term is the energy
associated with the density depletion. Once the gain balances loss,
as formulated by Eq. 5, we derive straightforwardly (see Eq. B2 in
Appendix)

dE

dt
� −2R∫ Ds

zψ*
1

zt
+ zψ*

2

zt
( )[ ]dx � 0. (11)

FIGURE 2 | Properties of DMS. (A) Density of each component, n1 � n0 (1 + δn1)/2 and n2 � n0 (1 − δn2)/2 (see Eqs. 6, 7), in space and time. (B) Spatial distribution
of n1, n2, the linear polarization angle φr, and the global phase φg, at a dimensionless time t/τ � 15. Top panel: n1 and n2; bottom panel: φr and φg. In both panels, analytical
results are compared to numerical solutions of Eqs. 1–3. (C) Polarization texture. Top panel: schematics in the stationary case. Bottom panel: Stokes parameters for a
moving DMS. In all plots, we take cC � 0.01ps−1, R � 0.01ps−1μm2, g � 0.01meVμm2, p � 0.41ps−1μm2, cR/cC � 40, g12/g � − 0.1, and U � 0.6.

FIGURE 3 |Manifestation of dissipation-enabled decoupling of excitations in the linear regime. Panels (A) and (B): (A) real and (B) imaginary parts of the energy of
density excitation ZωD and energy ZωS of spin-polarization excitation, respectively. Solid curves depict numerical solutions of Bogoliubov’s equations, and the curve with
circles indicate analytical solutions. (C,D) Density static structure factor SD(q) and spin-density static structure factor SS(q) when the spinor polariton BEC is subjected to
a perturbation of the form (C) λei(qx−ωt) + H. c and (D) λσze

i(qx−ωt) + H. c (see main text). Same parameters as in Figure 2 are used.
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Such non-decaying polariton magnetic soliton, therefore,
belongs to dissipative solitons [50–52].

Such dissipative magnetic soliton (DMS) is quite
unconventional, as its creation cannot be understood along the line
of the well known example in the equilibrium context. In Bose
condensed atomic gas, the key prerequisite for creating magnetic
soliton is an antiferromagnetic interaction satisfying g − g12 ≪ g,
i.e., close to the spin-isotropic Manakov limit (g � g12). This condition,
as can be seen from Eq. 10, creates a large energy separation between
the density and spin-polarization excitations: The density depletion
from n0 near the soliton core requires much more energy than that
associatedwith Sz, making the former energetically suppressed and thus
ensuring a constant total density that characterizes magnetic soliton.
However, such scenario fails here because polaritons feature g − g12 > g.

IV DISSIPATION-ENABLED FORMATION
MECHANISM

To understand this unconventional phenomenon, the fact that
Eqs. 6–9 are exact solutions offer a “sweet point.”We see that the
balance of gain and loss [Eq. 5] is the key for fixing the background
density at n0 � P/cC − cR/R. Simultaneously, this gives rise to a closed
real equation for the magnetization [dSz(y)/dy]2 + S4z(y) − (1 −
U2)S2z(y) � 0 with y � η/ξs; that is, the spin polarization excitation is
decoupled from other excitation channels. We emphasize that such
conditionally coherent dynamics has a fundamentally different origin
from that in a purely conservative system such as atomic BEC. As
such, magnetic soliton in the former case can occur far from the
Manakov limit, in contrast to the latter where it is only possible when
the deviation from g � g12 is small breaking slightly system
integrability.

The above dissipation-enabled decoupling of excitations is at
the heart of DMS formation, which also manifests itself in the
linear excitation regimes, e.g., in the excitation spectrum and
linear response function. Briefly, to describe a spinor polariton
BEC linearly perturbed from the steady state, we substitute Eq. 6
into Eqs. 1–3 and follow the standard Bogoliubov–de
Gennes (BdG) approach (see details in Appendix C).
The eigen-energy Zωq of excitations solves the
equation[(Zωq)2 − (ZωS)2 ] ×{(Zωq)3+ i(Rn0 + cR)(Zωq)2−
[Rn0cC +(ZωB)2]Zωq+ ic(q)}� 0, where ZωS �																
ε0q[ε0q + (g − g12)n0]

√
, ZωB �

																
ε0q[ε0q + (g + g12)n0]

√
, and

c(q) � −(Rn0 + cR)(ZωB)2 + 2gn0ccε
0
q, with ε0q � Z2q2/(2m)

being the free-particle energy. Two decoupled equations
follow: the quadratic equation immediately yields Zωq �
±ZωS for the energy of the spin-polaridzation excitation,
whereas the cubic equation reflects the coupled linear
excitations in the reservoir and density channel of polariton
BEC. Importantly, we see ωs is purely real (Figure 3A),
regardless of whether the reservoir is fast or slow compared
to the polariton BEC. This feature of the linear spin polarization
excitation contrasts to the linear density excitation that
generically exhibits a complex energy ZωD and eventually
damps out. The latter is most transparent in the fast
reservoir limit cR/cC ≫ 1. There, an adiabatic elimination of

the reservoir gives ZωD � − iΓ/2 ± Zω0, with Zω0 �																															
ε0q[ε0q + (g + g12)n0 − 2gRZΓ/R] − Γ2/4

√
and

Γ � n0n0RR
2Z/(cR + n0R). Note that ωD is purely imaginary for

|q| ≤ qc due to polariton losses, with

qc �
																			
m( 								

α2 + Γ4/4
√ − α2)/Z2

√
. Here, we introduced parameter

α � P/Pth − 1 and the threshold value Pth � cRcC/R. In Figures
3A,B, we show the complex spectrum of linear density
excitation for cR/cC ≫ 1 where the analytical results agree
with numerical solutions of BdG equations. Note that the
damping spectrum in Figure 3B shows that the considered
steady state is indeed modulationally stable.

To further visualize the decoupling of excitations as a result
of the balance between gain and loss, we analyze the linear
response of the system. Considering an external density
perturbation described by λei(qx−ωt) + H. c with λ ≪ 1 is
acted on the exciton–polariton BEC, we calculate the density
static structure factor SD(q) and the spin-density static structure
factor SS(q) [53]. For simplicity of analytical derivation, we
assume fast reservoir limit and obtain (see the details in
Appendix C)

SD(q) �

ε0q
πZ Zω0| | log

Γ + 2 Zω0| |
Γ − 2 Zω0| |( )

4ε0q
πZΓ

1
2
+ 1
π
tan−1 4ω2

0 − Γ2
4Γω0

( )[ ] ε0q
Zω0

q< qc,
q � qc,

q> qc,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

and we also find SS(q) � 0. Figure 3C shows lim
q→∞

SD(q) → 1,
meaning the response of a polariton BEC to a density
perturbation is exhausted by the density excitation, without
collateral generations of excitations in other excitation sectors.
If the system is instead subjected to a spin-dependent
perturbation λσze

i(qx−ωt) + H. c, we find SS(q) � Zq2/(2mωS),
which approaches unity for q → ∞ and SD(q) � 0 (see
Figure 3D). This further verifies that a perturbation in the
spin polarization sector only induces spin excitations.

V CONCLUDING DISCUSSIONS

Summarizing, we theoretically show that a new kind of soliton
DMS can be created in a spinor polariton condensate. The value
and significance of our work are twofold. First, DMS has no
atomic counterpart and relies crucially on the open-dissipative
property of the system, in contrast to solitons discussed in Refs.
[25–30, 37, 54, 55] and half-solitons in Refs. [10, 11]. Second,
DMS provides a rare example of exact solutions to the
dissipative GP equations at quasi-1D. In the future, it is
interesting to explore concrete proposals for the experimental
observation of the predicted phenomenon within feasible
facilities and to study the unique quantum many-body
physics associated with a collection of DMSs with same
(opposite) magnetic charges. Furthermore, in our present
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theoretical illustration, the condition of Eq. 5 reduces to Ds � 0,
but the concept of dissipation-enabled decoupled excitations
applies for generic cases whereDsψs � 0 rather thanDs � 0 holds.
Thus, it is also interesting to explore in a broader context other
new kinds of dissipative solitons that can arise from excitation
decoupling.
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APPENDIX A: DERIVATIONS OF EXACT
SOLITON SOLUTION

Here, we present detailed derivation of the exact solutions in Eqs.
4–7 in the main text. We want to solve the effective 1D driven-
dissipative GP equations for the order parameter [ψ1,ψ2 ]T of
spinor polariton BEC, which are coupled to the rate equation of
the density nR of the polariton reservoir, i.e.,

iZ
zψ1

zt
� − Z2

2m
z2

zx2 + g ψ1

∣∣∣∣ ∣∣∣∣2 + g12 ψ2

∣∣∣∣ ∣∣∣∣2 + gRnR + iZ

2
RnR − cC[ ]{ }ψ1,

(A1)

iZ
zψ2

zt
� − Z2

2m
z2

zx2 + g ψ2

∣∣∣∣ ∣∣∣∣2 + g12 ψ1

∣∣∣∣ ∣∣∣∣2 + gRnR + iZ

2
RnR − cC[ ]{ }ψ2,

(A2)

znR
zt

� P − cR + R ψ1

∣∣∣∣ ∣∣∣∣2 + ψ2

∣∣∣∣ ∣∣∣∣2( )[ ]nR. (A3)

Here, g(g12) denotes the interaction constant between the
same (different) spin component, gR is the interaction constant
between condensed polaritons and reservoir polaritons whose
density is nR. Condensed polaritons decay at rate cC and are
replenished at a rate R from reservoir. Reservoir polaritons decay
at rate cR and P is the rate of an off-resonant cw pumping.

We aim to find a particular type of traveling soliton solution
ψ1,2(x, t) � ψ1,2(x − vt), with v the velocity of soliton, which is
characterized by |ψ1|2 + |ψ2|2 � n0 with n0 a constant and satisfies
the condition [RnR − cC]ψ1(2) � 0 (i.e., Dsψs � 0). Therefore, we
consider the following ansatz:

ψ1

ψ2
( ) �

		
n0
2

√ 					
1 + δn

√
ei

φr
2					

1 − δn
√

e−i
φr
2

⎛⎝ ⎞⎠eiφg/2e−i
μRt
Z . (A4)

Here, φg and φr are the global and relative phases of the
spin-up and spin-down wavefunctions. Without loss of
generality, we will assume the boundary conditions: φr,g � 0 at
η � − ∞ and δn � 0 at η � ±∞.

In order to determine the constant n0, we substitute Eq. (A4)
into Eq. (A3) and find n0R � P/(cR + Rn0). Thus, for
P � (cR + Rn0)cC/R, and hence n0 � P/cC − cR/R, the
condition Dsψ � 0 is fulfilled. With these, and denoting η �
x − vt, we obtain from Eqs. A1, A2 that.

−iZv zψ1 η( )
zη

� − Z2

2m
z2

zη2
+ g − g12( ) ψ1

∣∣∣∣ ∣∣∣∣2 + g12n0 + gRcC
R

[ ]ψ1 η( ),
(A5)

−iZv zψ2 η( )
zη

� − Z2

2m
z2

zη2
+ g − g12( ) ψ2

∣∣∣∣ ∣∣∣∣2 + g12n0 + gRcC
R

[ ]ψ2 η( ).
(A6)

Substituting Eq. A4 (with n0 � P/cC − cR/R) into Eqs. A5, A6
yields following equations for δn(η), φr(η), and φg(η),
respectively, i.e.,

zδn

zη/ξs
( )2

− 1 − U2( )δn2 + δn4 � 0, (A7)

1 − δn2( ) zφg

z η/ξs( ) + Uδn2 � 0, (A8)

1 − δn2( ) zφr

z η/ξs( ) − Uδn � 0. (A9)

where ξs � Z/
												
2mn0(g − g12)

√
and U � v/cs with cs �													(g − g12)n0/2m

√
.

Equation (A7) is a closed equation and can be readily solved.
Using the boundary conditions δn � 0 at η � ±∞, we find

δn(η) � 						
1 − U2

√
sech

η
ξs

( ) 						
1 − U2

√[ ]. (A10)

Substituting Eq. A10 into Eqs. A8, A9, and taking into
account of the boundary conditions φr,g � 0 at η � − ∞, we
finally arrive at the soliton solutions in Eqs. 4–7 in the
main text.

APPENDIX B: ENERGY OF THE SOLITON

Here, we calculate the change rate of the energy of above soliton.
The energy functional of the soliton can be calculated according
to [48, 49].

E � ∫ dxψ† − Z2

2m
z2

zx2
( )ψ

+ 1
4
∫ dx g + g12( ) n x, t( ) − n0{ }2 + g − g12( )S2z x, t( )[ ]

(B1)

where we have denoted n(x, t) � |ψ1(x, t)|2 + |ψ2(x, t)|2 and
Sz(x, t) � |ψ1(x, t)|2 − |ψ2(x, t)|2. Changing the integration
variable from x to η � x − vt, and using GP Eqs. A1–A3, we
can directly calculate the total time derivative of E associated with
our soliton solution as
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ψ2)

� v∫dη
n
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ϕg + δn

d

dη
ϕr( ){ } � 0. (B2)

APPENDIX C: LINEAR COLLECTIVE
EXCITATIONS

In this section, we present detailed derivations of the linear
excitations of the considered system using Bogoliubov
approach. As g > 0 and g12 < 0 with |g12|≪ g, for P ≥ cRcC/
cR, the steady state of the model system is a linearly polarized
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BEC with n01 � n02 � n0/2, where n0 � P/cC − cR/R and n0R � cC/R.
We further have μT � 1

2 (g + g12)n0 + gRn0R. For linear
excitations, we follow the standard procedures of Bogoliubov
decomposition and write [40].

ψ1 x, t( )
ψ2 x, t( )( ) � e−iμTt/Z

		
n0
2

√
1
1

( )⎡⎢⎢⎣1+
∑
q

u1q

u2q
( )ei qx−ωqt( ) + v*1q

v*2q
( )e−i qx−ω*

qt( ){ }⎤⎥⎥⎦, (C1)

and

nR t( ) � n0R 1 +∑
q

wqe
i qx−ωqt( ) + w*

qe
−i qx−ω*

qt( ){ }⎡⎢⎢⎣ ⎤⎥⎥⎦. (C2)

It’s convenient to rewrite the excited components in Eq.
(C1) in terms of ud � u1q + u2q and vd � v1q + v2q, and us � u1q −
u2q and vs � v1q − v2q, which are then subsequently substituted
into Eqs. A1–A3. Retaining only the first-order terms of the
fluctuations, we obtain the Bogoliubov–de Gennes (BdG)
equation as

Lq′

u1q + u2q

v1q + v2q
wq

u1q − u2q

v1q − v2q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � Zωq

u1q + u2q

v1q + v2q
wq

u1q − u2q

v1q − v2q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (C3)

with

Lq′ �

ε0q +
g + g12

2
n0

g + g12

2
n0 2gR + iR( )n0R 0 0

−g + g12

2
n0 − ε0q +

gn0
2

( ) −2gR + iR( )n0R 0 0

−i Rn0
2

−i Rn0
2

−i Rn0 + cR( ) 0 0

0 0 0 ε0q +
g − g12( )n0

2
( ) g − g12( )n0

2

0 0 0 − g − g12( )n0
2

− ε0q +
g − g12( )n0

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C4)

Since the matrixLq′ is block diagonal, we obtain two decoupled
BdG equations

ε0q +
g + g12

2
n0

g + g12

2
n0 2gR + iR( )n0R

−g + g12

2
n0 − ε0q +

g + g12

2
n0( ) −2gR + iR( )n0R

−i Rn0
2

−i Rn0
2

−i Rn0 + cR( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u1q + u2q

v1q + v2q
wq

⎛⎜⎜⎝ ⎞⎟⎟⎠ � ZωD

u1q + u2q

v1q + v2q
wq

⎛⎜⎜⎝ ⎞⎟⎟⎠, (C5)

which describes coupled fluctuations in the density of condensed
polaritons and reservoir, and

ε0q +
g − g12( )n0

2
g − g12( )n0

2

− g − g12( )n0
2

−ε0q −
g − g12( )n0

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u1q − u2q

v1q − v2q
( )

� ZωS
u1q − u2q

v1q − v2q
( ), (C6)

which corresponds to linear excitation in spin polarization.
The eigen-energy can be directly calculated by solving BdG

equations giving

Zωq( )2 − ZωS( )2[ ]
× Zωq( )3 + i Rn0 + cR( ) Zωq( )2 − Rn0cC + ZωB( )2[ ]Zωq + ic q( ){ }
� 0.

(C7)

with ZωS �
																
ε0q[ε0q + (g − g12)n0]

√
, ZωB �

																
ε0q[ε0q + (g + g12)n0]

√
,

and c(q) � −(Rn0 + cR)(ZωB)2 + 2gRn0cCε
0
q.

APPENDIX D: DENSITY AND SPIN-
DENSITY RESPONSE FUNCTION

Based on the knowledge of linear excitations in Section C, here,
we derive the density and spin-density response functions of the
considered system. We will present detailed calculations for the
density response function. The spin-density function are derived
in a similar fashion; we therefore only outline main steps.

1. Dynamic Density Response Function
Suppose the quasi-1D spinor polariton BEC is subjected to a
time-dependent external perturbation in a form Vλ �
−λei(q·r−ωt)eϵt + h.c with λ ≪ 1 and ϵ ≪ 1, representing a
density perturbation. In the presence of Vλ, Eqs. A1–A3 are
modified as.

iZ
zψ1

zt
� { − Z2

2m
z2

zx2 + Vλ + g ψ1

∣∣∣∣ ∣∣∣∣2 + g12 ψ2

∣∣∣∣ ∣∣∣∣2( ) + gRnR

+ iZ

2
RnR − cC[ ]}ψ1, (D1)

iZ
zψ2

zt
� { − Z2

2m
z2

zx2 + Vλ + g ψ2

∣∣∣∣ ∣∣∣∣2 + g12 ψ1

∣∣∣∣ ∣∣∣∣2( ) + gRnR

+ iZ

2
RnR − cC[ ]}ψ2, (D2)

znR
zt

� P − cR + R ψ1

∣∣∣∣ ∣∣∣∣2 + ψ2

∣∣∣∣ ∣∣∣∣2( ){ }nR. (D3)

Our goal is to calculate the density response function [53] as
defined by

χ(q,ω) � lim
λ→0

δρq/(λe−iωt). (D4)

where δρq are the Fourier component of the density fluctuation
induced by the external perturbation.
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For λ → 0, we follow standard procedures and look for solutions
corresponding to small amplitude oscillations around the unperturbed
steady-state polariton BEC and the reservoir, i.e., we write

ψ1λ � e−iμTt/Z
		
n0
2

√
+ u1λe

i qx−ωqt( ) + v*1λe
−i qx−ω*

qt( )[ ],
ψ2λ � e−iμTt/Z

		
n0
2

√
+ u2λe

i qx−ωqt( ) + v*2λe
−i qx−ω*

qt( )[ ],
nRλ � n0R 1 + wλe

i qx−ωqt( ) + w*
λe

−i qx−ω*
qt( )[ ],

(D5)

where uiλ and viλ (i � 1, 2) and wλ are small coefficients due to the
perturbation, and will be determined subsequentlty. Substituting
Eq. D5 into Eq. D4 and retainng terms at the first order of uiλ and
viλ, we obtain the linear density response function as

χ q,ω( ) � λ−1
		
n0
2

√ ∫ dxe−iqx u1λ + v1λ + u2λ + v2λ( ). (D6)

In order to determine uλ and vλ, we insert Eq. D5 into Eqs.
D1–D3, we obtain the density excitation satisfying following
equations

ε0q +
g + g12( )n0

2
− Zωq

g + g12( )n0
2

n0R 2gR + iR( )
g + g12( )n0

2
ε0q +

g + g12( )n0
2

+ Zωq n0R 2gR − iR( )
−i Rn0

2
−i Rn0

2
− i Rn0 + cR( ) + Zωq[ ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

uλ,1 + uλ,2

vλ,1 + vλ,2
wq

⎛⎜⎜⎝ ⎞⎟⎟⎠ � λ

				
2N0

V

√ 1
1
0

⎛⎜⎝ ⎞⎟⎠, (D7)

For analytical simplicity, we assume fast reservoir limit of cR/
cC ≫ 1. In this case, we find

wq � − Rn0
2 Rn0 + cR( ) u1q + v1q( ) − Rn0

2 Rn0 + cR( ) u2q + v2q( ), (D8)

which is substituted back into the first two lines of Eq. D7 to yield.

u1q � u2q � − ϵ0q + Zωq + iZΓ

Zωq − Zω0 + i
ZΓ
2

( ) Zωq + Zω0 + i
ZΓ
2

( )
		
n0
2

√
λ,

(D9)

v1q � v2q � − ε0q + Zωq − iZΓ

Zωq − Zω0 + i
ZΓ
2

( ) Zωq + Zω0 + i
ZΓ
2

( )
		
n0
2

√
λ,

(D10)

with Zω0 �
																															
ε0q[ε0q + (g + g12)n0 − 2gRZΓ/R] − Γ2/4

√
and Γ �

n0n0RR
2 Z/(cR + n0R).

Using Eqs. D8–D10, the density response function in Eq. D6
is found as

χ q,ω( ) � − 1
Zωq − ω0 + i Γ2

− 1
Zωq + Zω0 + i ZΓ2

( )Nε0q
Zω0

. (D11)

The dynamic structure factor is defined in terms of the
imaginary part of the density response function,
i.e., SD(q,ω) � 1

πIχ(q,ω), where I denotes the imaginary
part. We have

SD(q,ω) � I
ε0q

πZω0
log

Γ + 2i
																															
ε0q ε0q + g + g12( )n0 − 2gRZΓ/R[ ] − Γ2/4

√
Γ − 2i

																															
ε0q ε0q + g + g12( )n0 − 2gRZΓ/R[ ] − Γ2/4

√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭.

(D12)

Finally, we calculate the static structure factor according to
SD(q) � -

N∫∞−∞ SD(q,ω)dω and arrive at Eq. 11 in the main text.
We note that in the limit of Γ→ 0, qc � 0 and our result recovers
the well-known result SD(q) � Zq2/2m/

																
ε0q[ε0q + (g + g12)n0]

√
familiar from the atomic condensate.

2. Spin-Density Response Function
We now suppose that the model system is subjected to a time-
dependent perturbation σzVλ with Vλ defined in Section D1,
where σz is the z-component of the standard Pauli matrix.
The modified dynamical equations in the presence of spin-
dependent perturbation are given by.

iZ
zψ1

zt
� − Z2

2m
z2

zx2 + Vλ + g ψ1

∣∣∣∣ ∣∣∣∣2 + g12 ψ2

∣∣∣∣ ∣∣∣∣2 + gRnR{
+iZ
2

RnR − cC[ ]}ψ1, (D13)

iZ
zψ2

zt
� − Z2

2m
z2

zx2 − Vλ + g ψ2

∣∣∣∣ ∣∣∣∣2 + g12 ψ1

∣∣∣∣ ∣∣∣∣2 + gRnR{
+iZ
2

RnR − cC[ ]}ψ2, (D14)

znR
zt

� P − cR + R ψ1

∣∣∣∣ ∣∣∣∣2 + ψ2

∣∣∣∣ ∣∣∣∣2( ){ }nR. (D15)

Following similar steps as before, we find that the spin-density
response can be calculated as.

χS q,ω( ) � 1
λ
V

			
N0

V

√
u1λ −

			
N0

2V

√
u2λ +

			
N0

2V

√
v1λ −

			
N0

2V

√
v2λ( )
(D16)

� 1
Zωq + ZωS + iη

− 1
Zωq − ZωS + iη

[ ] Z2q2N

2mωS
(D17)

with ZωS being the spectrum of spin-density as given previously.
The spin-density static structure factor is found from SS(q) �
-
N∫∞−∞ SS(q,ω)dω as

SS(q) � Z2q2

2m
																	
ε0q ε0q + 2 g − g12( )n0[ ]√ . (D18)

Obviously, SS(q) → 1 for q → ∞.
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